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1. Introduction

A multichordal, multichannel hard X-ray (HXR) pinhole camera, on loan from Tore Supra,

is used on the TCV tokamak to study the spatial and spectral distribution of bremsstrahlung

emission in the 10-200 keV range. Photon detection is effected by a linear array of CdTe detec-

tors [1] with an intrinsic energy resolution of ~7 keV. Eight energy channels, with adjustable

thresholds, are available for each of 14 vertical viewing chords, which span the outboard half

of the plasma cross section with partially overlapping étendues and a radial resolution of ap-

proximately 2 cm on the midplane (see Fig. 1).

Hard X-ray radiation in the energy range under consideration is emitted

by suprathermal electrons, and can thus be used to diagnose their spatial dis-

tribution and temporal dynamics; indirect information on the energy distri-

bution of the fast electron population can also be gleaned from the HXR

spectrum. In TCV, substantial HXR emission is generated when high power

electron cyclotron waves are injected in the plasma with a finite parallel

wave number; this injection scheme, which is used for electron cyclotron

current drive (ECCD), creates measurable non-thermal photon distributions

for injection angles deviating by more than 4-5o from the normal to the mag-

netic field [2]. For smaller angles, when the applied power is sufficient to

raise the electron temperature above ~4 keV, the HXR diagnostic detects

only the emission from the tail of the bulk Maxwellian distribution.

The results presented in this paper pertain to the first set of experiments

carried out with 470 kW third harmonic X-mode (X3) electron cyclotron

heating (ECH) at 118 GHz [3]. The power was applied through a lateral

launcher to the plasma center after a second harmonic X-mode (X2) pre-

heating phase. The target plasmas has major radius R=0.88 m, minor radius

Fig. 1 Geometry of
hard X-ray camera.
The chords are par-
tially overlapped.



a=0.25 m, elongationκ=1.31, magnetic field BT=1.42 T and central density ne0=2.5x1019 m-3.

The X2 and X3 cold resonance locations are separated by ~5 cm and are distributed symmetri-

cally on the high and low field sides of the magnetic axis, respectively. Both the X2 and X3

waves are launched from the low field side of the torus. The X2 power and launching geometry,

as well as the plasma current, were selectively varied over a set of discharges in order to char-

acterize the X3 absorption efficiency under a variety of conditions.

2. Dependence of suprathermal emission on X2 injection angle

The primary result of the X2-X3 experiments is that the absorbed X3 power fraction, meas-

ured by a diamagnetic loop (DML), is larger than the value predicted by linear calculations

based on a Maxwellian distribution function [3]. In particular, a scan of the X2 toroidal injection

angle, for constant 200 kA current and 470 kW X2 power, has revealed that the absorption has

two maxima atφ~+20o (whereφ=-arcsin[k.B/(kB)] at the absorption location,k is the wave

vector, and the sign ofφ is positive for co-current drive). The two peaks are asymmetric, the

positive one being larger and reaching ~100%.

The HXR energy channels in this experiment were set at 8 keV intervals from 8 to 64 keV.

In general, the logarithms of the spectra reveal the presence of two features: a low energy com-

ponent with a slope consistent with the bulk tempera-

ture, and a higher energy component with lower

amplitude but a lesser slope. By excluding the first two

energy channels, a satisfactory linear fit can generally

be obtained for the suprathermal part; the fit is robust

in that the resulting photon temperature is insensitive to

the elimination of additional channels. The result of the

fit can be written as dγ/dE=Ae-E/T, whereγ is the emis-

sivity; we can then characterize the suprathermal popu-

lation by the temperature Tph and the total emissivity

γtot=ATph for a central chord, i.e. for emissivity line-in-

tegrated over the entire plasma cross section. These two

parameters are shown in Fig. 2 as functions ofφ, for

both the preheating X2 phase and the combined X2-X3

phase; the X3 absorbed power fraction is also plotted

for comparison. The HXR signal was integrated over

0.2 s. The photon temperature during X2 heating in-

creases indefinitely with |φ|, confirming earlier results

[2]; by contrast, the total emissivity peaks at the angles
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Fig. 2 (a) X3 absorbed power fraction, (b)
HXR suprathermal photon temperature, (c)
integrated HXR emissivity, vs. φ (comple-
mentary to the angle between X2 wave vector
and magnetic field). The suppressed points
correspond to cases in which only the ther-
mal spectrum is measurable.



for which the X3 absorption is maximized. When X3 is applied, the emissivity increases further

in all cases and the dependence onφremains qualitatively similar. The photon temperature dur-

ing X2+X3 is approximately 12-14 keV with little dependence onφexcept at the highest angles,

where an increase with |φ| is observed.

These results strongly suggest that the anomalously high absorption efficiency of X3 ECH

is related to the presence of a suprathermal electron population in the plasma, which lies outside

the scope of linear calculations in ray tracing codes. The further acceleration of these fast elec-

trons by the X3 waves leads to a further increase in the emissivity. The final photon temperature,

and indeed the form of the HXR spectra on all the chords, are only weakly dependent onφ. This

suggests that the intrinsic efficiency of X3 absorption by the fast electron population is relative-

ly insensitive to the detailed spectrum of the initial “seed” distribution, and that the ultimate dis-

tribution is primarily determined by the characteristics of the X3 waves. Only for the highest

toroidal angles, at which the X2 waves are able to

significantly populate energy levels in excess of

50 keV, does the final distribution retain a meas-

urable memory of the seed distribution. The most

significant factor influencing the X3 absorption

thus appears to be the total density of fast elec-

trons rather than their energy distribution.

3. Spatial distribution of hard X-ray emissivity

The spatial distribution of the local HXR

emissivity is reconstructed by assuming poloidal

homogeneity and performing profile inversions

with the Fischer regularization method. The spa-

tial profiles, normalized to a maximum of unity,

are shown for both the X2 and X2+X3 phases for

several values ofφ in Fig. 3. The 40-48 keV ener-

gy range has been chosen to prevent pollution of

the signal by the thermal bulk. The location of the

primary peak can be taken to be atρ=0 in all cases,

as the shift toρ~0.1 seen in some discharges is not

significant within the accuracy of the equilibrium

reconstruction (ρ is the square root of the normal-

ized poloidal flux). The width of the X2 profiles is

an increasing function of |φ|, consistent with the
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Fig. 3 Profiles of local HXR emissivity in the 40-
48 keV range for (a) X2 and (b) combined X2 and
X3 heating, vs. normalized radial coordinate, for 5
values of the angle φ.



increasing spread of the absorption region towards the low field

side caused by Doppler shift of the resonance frequency. The

X2+X3 profiles are close to their X2 counterparts for angles at

which there is a measurable suprathermal signal during X2; at

lower values of |φ|, the X2+X3 profiles become broader and es-

sentially independent ofφ. This is exemplified by Fig. 4, which

shows the rms profile width as a function ofφ. It may be specu-

lated that X3 absorption, and the attendant fast electron accelera-

tion, occurs preferentially in the spatial region occupied by the

seed suprathermal electrons; at the smallest angles, for which the

seed population is negligible, the X3 absorption coefficient is

smaller and the damping profile appears to be determined by the

properties of the X3 wave alone.

In spite of the strong variation of the absolute emissivity across the plasma cross section,

the form of the spectrum is essentially constant in space, as il-

lustrated in Fig. 5 by the spatial distribution of the photon tem-

perature. This is true in a wide variety of conditions and

suggests that the radial diffusion rate of suprathermal electrons

may not depend significantly on energy.
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Fig. 4 Root mean square width
(in units of ψn

-1/2) of the HXR
emissivity profile, in the X2 and
X2+X3 heating phases, vs. X2
resonance angle φ.
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Fig. 5 Suprathermal photon tem-
perature from line-integrated
HXR emission vs. chord number,
in the X2 and X2+X3 phases of a
shot with φ=+24o.


