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Experimental evidence of the anomalous acceleration of ions in the TCV tokamak in regimes

with second-harmonic (X2) Electron-Cyclotron Current Drive (ECCD) in low current, low den-

sity, high temperature discharges is reported in a companion paper presented at this conference

[1]. This text concentrates on the presentation of a possible mechanism explaining the observed

phenomenon.
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Figure 1: Correlation of electron and ion temperatures (normalized)

with ECCD injection. At t=1.3 s, 3 X2 gyrotrons start de-

position of 1.5 MW of microwave power, one in ECH, two

in counter-ECCD configuration.

The temperatures of suprathermal tails in the

ion distribution function, experimentally ob-

served with TCV’s Neutral Particle Analy-

sers (NPA) [2], measuring charge exchange

neutral fluxes perpendicularly to the mag-

netic field, show a strong correlation with

the suprathermal electron dynamics. Figure

1 shows the rapid and correlated time evo-

lution of the measured suprathermal elec-

tron (perpendicular X-mode ECE) and ion

temperatures (compact NPA) when ECCD is

switched on and resonant at the magnetic

axis.

The very short timescales for the appear-

ance of these ions cannot result from sim-

ple Coulomb collisions and suggest a wave-

particle interaction, able to resonate with the electrons and ions simultaneously. A possible

candidate is the current-driven ion-acoustic instability, excited in plasmas with drifting elec-

trons (the onset threshold depends on large Te/Ti), propagates at frequencies . ωpi and can

transfer parallel momentum and energy from the electrons into mostly transverse energy of the

ions [3].

ECCD launching angle, electron density and current scans presented in [1] are qualitatively

in agreement with the predictions of the theory: Whereas the bulk temperatures (T
(0)

e , T
(0)

i ),

through collisions, slightly increase with electron density, the number of suprathermal electrons

and ions decrease due to the reduced electron drift velocity (decreasing ECCD efficiency). The

same tendency is seen in the φECCD scan; the tail is most populated when the driven current

is highest (maximum drift velocity). On the other hand, with increasing inductive current, the

toroidal electric field is found to fall, implying decreased resistivity! Simultaneously, the en-

ergy and density of the suprathermal ion populations are observed to be strongly decreased,

which is, in the frame of the theory, understood as a loss of anomalous resistivity due to re-

duced momentum transfer from electrons to ions.

In the following, it is shown that ion-acoustic turbulence can, in principle, develop in the plas-

mas with our parameters.

Conditions for the onset of the instability

For the sake of simplicity, the plasma particle populations are described by maxwellian distri-

bution functions: a) a thermal electron bulk denoted by f
(0)
e ; b) a shifted suprathermal electron
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Figure 2: CQL3D simulated pitch angle distribution for the elec-

trons.
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Figure 3: 2D-fit of the electron distribution using two anisotropic

maxwellians, one with parallel drift.

population with a modest drift velocity parallel to the magnetic field compatible with the current

driven by ECCD and high perpendicular temperature due to electron-cyclotron (pure perpendic-

ular ECH) power deposition ( f
(1)
e ). c) Ions (fuel gas and impurities) are initially considered as

isotropic ( f
(0)
i ). The ratio of electron to ion temperature is high, for the electrons we distinguish

between temperatures perpendicular and parallel to the magnetic field (anisotropy parameter

τ). We consider deuterium plasmas with a small fraction of carbon impurities, with effective

charge Ze f f in the range 2,..,3. The setup of the electrons of a plasma of interest (discharge with

internal transport barrier, 1 MW on axis counter-ECCD, 1 MW off axis to achieve high temper-

ature and to sustain the ITB) was simulated with the Fokker-Planck code CQL3D [4] (see figure

2). The approximate description with the set of Maxwellians is parameterised by T
(0)

e = 7 keV

(consistent with Thomson scattering), Te
(1)
‖ ≃ Te

(1)
⊥ = 15..20 keV, n

(0)
e (ρ = 0) ∼ 2 · 1019m−3

(from inverted FIR interferometry data), n
(1)
e /n

(0)
e ≈ 0.1, v

(1)
d ≈ 0.7v

(1)
the‖, consistent with the

driven current density JCD = en
(1)
e v

(1)
d . 10 MA/m2. The bulk ion temperature is about 300 eV

(CXRS), consistent with the thermal part of the NPA charge exchange spectrum.

The relevant linear dispersion relation for an electrostatic wave (Ωci ≪ ω ≪ Ωce) for a magne-

tised plasma may be written

ε(k,ω) = 1+∑
α

ω2
pα

k2v2
thα‖

∞

∑
n=−∞

Λn (βα)

{

1+
ω +(τα −1)nΩα

ω −nΩα

[

W
(

z
(α)
n

)

−1
]

}

= 0 (1)

with ωpα the plasma frequency of population α , vthα‖ the thermal velocity parallel to the mag-

netic field, Λn(βα) = e−β In(β ) with In(x) a modified Bessel function of the first kind and β =

k2
⊥ρ2

α with ρα the mean Larmor radius. The argument of the dielectric function W (z) is z
(α)
n =

ω−k‖vdα−nΩα

|k‖|vthα‖
.
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Figure 4: Solution of Rε(k,ω) = 0 for differ-

ent propagation angles with respect

to the direction of the magnetic field.

The ions are treated unmagnetised since the resonance at Ωci

is not present. For magnetic fields B = ∼1.2 T, ωpe ≈| Ωce |,
Doppler interactions (n = ±1) are unimportant and only the

Čerenkov interactions are considered. The argument of the

dispersion function is convergent for the electrons (| z |≪ 1)

and asymptotic for the ions; terms to fourth order in z were

retained. With these simplifications, we search for a solution

ω = ωk + iγk with |γk| ≪ |γk|. The frequency of the mode is
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Figure 5: γα : from left top to right bottom: electron bulk, drifted hot electrons, deuterium

ions and total growth rate.
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Figure 6: Simulation of ECE with NOTEC.
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Figure 7: Angular dependence of the res-

onance. Left plot: width of the

spread of perpendicular wave num-

bers at resonance. Right plot: Min-

imum energy of ions at resonance.obtained from Rε(k,ω) = 0 by solving equation 1 numer-

ically. For wave numbers 1/ρi ≪ k ≪ 1/ρe ≈ 400..4000 m−1, where this theory applies, a

solution exists with ωk . ωpi, figure 4. In the resonant approximation, the rate of change of the

amplitude of the instability is γk = − Iε(k,ω)

R
δε(k,ω)

δω

∣

∣

∣

∣

ω=ωk

, whose contribution due to the different

plasma populations is shown in figure 5 (normalized to ωpi).

The parameters used in the calculation are those fitted to the CQL3D distribution function for

discharge #31188 at t = 1.4 s, for different propagation angles θ with respect to the direction

of the magnetic field B. As the ions (deuterium is shown here) were assumed to be distributed

isotropically, Landau damping (γi0 is negative) is independent of θ , but is most efficient at high

|k|. This calculation was performed with Ze f f = 2.5 and damping on carbon may be neglected.

The growth rate of the instability, given by positive γe1, is maximum for alignment of k with

B. Following [3] we argue that the wave picks up parallel momentum and energy and is then

damped on a large angular spread on the ions. The relevant resonance condition may be written

k ·vi = ω = k‖ve1‖ (2)

indicating that, for k⊥ > k‖, longitudinal electron energy is transferred into mostly transverse

energy of the ions. However, Landau damping may be efficient on the bulk of the electrons,

indeed, γe0 becomes strongly negative with increasing θ . The total γ = ∑α γα drops below zero

for large | k | due to the strong ion damping and doesn’t excite the mode for k when θ > 50◦.

The radiative Electron Cyclotron Emission (ECE) perpendicular temperature determined from

measurements of radiometers working in X-mode with antennaes at HFS and LFS at the mid-

plane gives much higher values (up to 35 keV) than those obtained from the estimations with

CQL3D. Simulations of the ECE spectra with the 3D ray tracing code NOTEC [6] indicated an

increased density of suprathermal electrons (n
(1)
e /n

(0)
e = 0.2), diffusing to radii up to ρ ≃ 0.4

(figure 6). Increasing n
(1)
e /n

(0)
e (with the drift velocity corrected to maintain the level of current

drive) and the anisotropy T
(1)

e⊥ /T
(1)

e‖ increases the spread of k-vectors to θ > 60◦.
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From the resonance condition, equation 2, assuming v
(1)
e‖ ≈ v

(1)
the‖, the range of resonant ion

velocities may be determined. Figure 7 shows the angular dependence of the resonant velocity

for the parameters as estimated by NOTEC, where a minimum is observed at θ = 63◦ corre-

sponding to a deuterium ion energy of 3.2 keV (5 times the thermal ion velocity), where the ion

density is about 6 orders of magnitude lower than n
(0)
i . As the tail develops, we may assume the

damping on the ions must be strongly increasing. For a weak tail population, our linear model

may be hopefully used to extrapolate this effect. The addition of a maxwellian suprathermal

ion population to equation 1 shows that with a small fraction n
(1)
i /n

(0)
i the ion damping strongly

increases and the number of ions involved in the resonance become important.

Quasilinear estimates

Work is currently in progress, to solve the quasilinear diffusion equation at marginal stability

with a (varying) external electric field in order to maintain the inductive current (#31188: Ip =

140 kA, ET = -0.05 V/m). In our scenario, the electric field E, and the imposed ECCD, con-

tinuously drive the instability. The E-field accelerates a small number of electrons to runaway

velocities, which we observe through (weak) signals on a hard-X ray detector outside the torus.

For discharge #31188 discussed here, the Monte-Carlo code DOUBLE interpolates the NPA

CX spectrum using a bi-maxwellian function and estimates a fraction of 10 % of the ions being

located in the tail, figure 8 (a constant profile of suprathermal ions is assumed for ρ . 0.7).

The effective tail temperature is T
(1)

i = 2.4 keV, obtained from the NPA ion energy distribution

slope. The observed steady-state tails on the ion distribution function may be understood as the

saturation level of the resonant process, the transfer of electron momentum to the ions results

in anomalous resistivity, which prevents the electron distribution from running away as a whole

(the so called slide-away regime [3]).
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Figure 8: Compact NPA CX spectrum and DOUBLE simulation.

n
(1)
i /n

(0)
i = 0.1, T

(0)
i = 300 eV, T

(1)
i = 2.4 keV, Eknee = 1.6

keV.

However, without solving the quasilinear dif-

fusion equation, we may consider the in-

stability as trying to establish a quasilin-

ear plateau in the distribution function. For

the gentle bump instability [5], the en-

ergy density in the wave to be dissipated

on the resonant particles may be approxi-

mated by 1
2
n

(1)
e mev

(1)
d vth1‖, which is of the

order of the energy required to bring the

resonant ions into the tail (obtained from

the difference in the energy of the ions

in the thermal and suprathermal population

above the knee energy, E ≃ 1.6 keV, mea-

sured by the NPA charge-exchange spec-

trum).
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