
The Next 700 BFT Protocols

Rachid Guerraoui,
Nikola Knežević

EPFL
rachid.guerraoui@epfl.ch,
nikola.knezevic@epfl.ch

Vivien Quéma
CNRS

vivien.quema@inria.fr

Marko Vukolić
IBM Research - Zurich
mvu@zurich.ibm.com

Abstract
Modern Byzantine fault-tolerant state machine replication
(BFT) protocols involve about 20.000 lines of challenging
C++ code encompassing synchronization, networking and
cryptography. They are notoriously difficult to develop, test
and prove. We present a new abstraction to simplify these
tasks. We treat a BFT protocol as a composition of instances
of our abstraction. Each instance is developed and analyzed
independently.

To illustrate our approach, we first show how, with our
abstraction, the benefits of a BFT protocol like Zyzzyva
could have been obtained with much less pain. Namely, we
develop AZyzzyva, a new protocol that mimics the behav-
ior of Zyzzyva in best-case situations (for which Zyzzyva
was optimized) using less than 24% of the actual code of
Zyzzyva. To cover worst-case situations, our abstraction en-
ables to compose AZyzzyva with any existing BFT protocol,
typically, a classical one like PBFT which has been proved
correct and widely tested.

We then present Aliph, a new BFT protocol that outper-
forms previous BFT protocols both in terms of latency (by
up to 30%) and throughput (by up to 360%). Development
of Aliph required two new instances of our abstraction. Each
instance contains less than 25% of the code needed to de-
velop state-of-the-art BFT protocols.

1. Introduction
State machine replication (SMR) is a software technique for
tolerating failures using commodity hardware. The critical
service to be made fault-tolerant is modeled by a state ma-
chine. Several, possibly different, copies of the state machine
are then placed on different nodes. Clients of the service ac-
cess the replicas through a SMR protocol which ensures that,

EPFL Technical Report LPD-REPORT-2008-008. May 9, 2008. Last revision
November 6, 2009.

despite contention and failures, replicas perform client re-
quests in the same order.

Two objectives underly the design and implementation of
a SMR protocol: robustness and performance. Robustness
conveys the ability to ensure availability (liveness) and one-
copy semantics (safety) despite failures and asynchrony. On
the other hand, performance measures the time it takes to re-
spond to a request (latency) and the number of requests that
can be processed per time unit (throughput). The most robust
protocols are those that tolerate (a) arbitrarily large periods
of asynchrony, during which communication delays and pro-
cess relative speeds are unbounded, and (b) arbitrary (Byzan-
tine) failures of any client as well as up to one-third of the
replicas (this is the theoretical lower bound [17]). These are
called Byzantine-Fault-Tolerance SMR protocols, or simply
BFT protocols, e.g., PBFT, QU, HQ and Zyzzyva [1, 6, 11,
15]. The ultimate goal of the designer of a BFT protocol is to
exhibit comparable performance to a non-replicated server
under “common” circumstances that are considered the most
frequent in practice. The notion of “common” circumstance
might depend on the application and underlying network, but
it usually means network synchrony, rare failures, and some-
times also the absence of contention.

Not surprisingly, even under the same notion of “com-
mon” case, there is no “one size that fits all” BFT proto-
col. According to our own experience, the performance dif-
ferences among the protocols can be heavily impacted by
the actual network, the size of the messages, the very na-
ture of the “common” case (e.g, contention or not); the ac-
tual number of clients, the total number of replicas as well
as the cost of the cryptographic libraries being used. This
echoes [20] which concluded for instance that “PBFT [6]
offers more predictable performance and scales better with
payload size compared to Zyzzyva [15]; in contrast, Zyzzyva
offers greater absolute throughput in wider-area, lossy net-
works”. In fact, besides all BFT protocols mentioned above,
there are good reasons to believe that we could design new
protocols outperforming all others under specific circum-
stances. We do indeed present an example of a such protocol
in this paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147939671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To deploy a BFT solution, a system designer will hence
certainly be tempted to adapt a state-of-the-art BFT proto-
col to the specific application/network setting, and possi-
bly keep adapting it whenever the setting changes. But this
can rapidly turn into a nightmare. All protocol implemen-
tations we looked at involve around 20.000 lines of (non-
trivial) C++ code, e.g., PBFT and Zyzzyva. Any change to
an existing protocol, although algorithmically intuitive, is
very painful. The changes of the protocol needed to opti-
mize for the “common” case have sometimes strong impacts
on the part of the protocol used in other cases (e.g., “view-
change” in Zyzzyva). The only complete proof of a BFT pro-
tocol we knew of is that of PBFT and it involves 35 pages
(even without using any formal language).1 This difficulty,
together with the impossibility of exhaustively testing dis-
tributed protocols [7] would rather plead for never changing
a protocol that was widely tested, e.g., PBFT.

We propose in this paper a way to have the cake and eat
a big chunk of it. We present Abortable Byzantine faulT-
toleRant stAte maChine replicaTion (we simply write Ab-
stract): a new abstraction to reduce the development cost of
BFT protocols. Following the divide-and-conquer principle,
we view BFT protocols as a composition of instances of our
abstraction, each instance targeted and optimized for specific
system conditions. An instance of Abstract looks like BFT
state machine replication, with one exception: it may some-
times abort a client’s request.

The progress condition under which an Abstract instance
should not abort is a generic parameter.2 An extreme in-
stance of Abstract is one that never aborts: this is exactly
BFT. Interesting instances are “weaker” ones, in which an
abort is allowed, e.g., if there is asynchrony or failures (or
even contention). When such an instance aborts a client re-
quest, it returns a request history that is used by the client
(proxy) to “recover” by switching to another instance of
Abstract, e.g., one with a stronger progress condition. This
new instance will commit subsequent requests until it itself
aborts. This paves the path to composability and flexibility
of BFT protocol design. Indeed, the composition of any two
Abstract instances is idempotent, yielding yet another Ab-
stract instance. Hence, and as we will illustrate in the paper,
the development (design, test, proof and implementation) of
a BFT protocol boils down to:

• Developing individual Abstract instances. This is usually
way much simpler than developing a full-fledged BFT
protocol and allows for very effective schemes. A single

1 It took Roberto De Prisco a PhD (MIT) to formally (using IOA) prove
the correctness of a state machine protocol that does not even deal with
malicious faults.
2 Abstract can be viewed as a virtual type; each specification of the this
progress condition defines a concrete type. These genericity ideas date back
to the seminal paper of Landin: The Next 700 Programming Languages
(CACM, March 1966).

Abstract instance can be crafted solely with its progress
in mind, irrespective of other instances.

• Ensuring that a request is not aborted by all instances.
This can be made very simple by reusing, as a black-box,
an existing BFT protocol as one of the instances, without
indulging into complex modifications.

To demonstrate the benefits of Abstract, we present two
BFT protocols:

1. AZyzzyva, a protocol that illustrates the ability of Ab-
stract to significantly ease the development of BFT pro-
tocols. AZyzzyva is the composition of two Abstract in-
stances: (i) ZLight, which mimics Zyzzyva [15] when
there are no asynchrony or failures, and (ii) Backup,
which handles the periods with asynchrony/failures by
reusing, as a black-box, a legacy BFT protocol. We lever-
aged PBFT which was widely tested, but could replace
it with any BFT protocol. The code line count and proof
size required to obtain AZyzzyva are, conservatively, less
than 1/4 than those of Zyzzyva. In some sense, had Ab-
stract been identified several years ago, the designers of
Zyzzyva would have had a much easier task devising a
correct protocol exhibiting the performance they were
seeking. Instead, they had to hack PBFT and, as a result,
obtained a protocol that is way less stable than PBFT.

2. Aliph, a protocol that demonstrates the ability of Ab-
stract to develop novel efficient BFT protocols. Aliph
achieves up to 30% lower latency and up to 360% higher
throughput than state-of-the-art protocols. Aliph uses,
besides the Backup instance used in AZyzzyva (to han-
dle the cases with asynchrony/failures), two new in-
stances: (i) Quorum, targeted for system conditions that
do not involve asynchrony/failures/contention, and (ii)
Chain, targeted for high-contention conditions without
failures/asynchrony. Quorum has a very low-latency (like
e.g., [1, 5, 12]) and it makes Aliph the first BFT protocol
to achieve a latency of only 2 message delays with as few
as 3f + 1 servers. Chain implements a pipeline message-
pattern, and relies on a novel authentication technique.
It makes Aliph the first BFT protocol with a number of
MAC operations at the bottleneck server that tends to 1 in
the absence of asynchrony/failures. This contradicts the
claim that the lower bound is 2 [15]. Interestingly, each
of Quorum and Chain could be developed independently
and required less than 25% of the code needed to develop
state-of-the-art BFT protocols.3

The rest of the paper is organized as follows. Section 2
presents Abstract. After describing our system model in
Section 3, we describe and evaluate our new BFT proto-
cols: AZyzzyva in Section 4 and Aliph in Section 5. Sec-

3 Our code counts are in fact conservative since they do not discount for the
libraries shared between ZLight, Quorum and Chain, which amount to 10%
of a state-of-the-art BFT protocol.

tion 6 discusses the related work and concludes the paper.
For better readability, details are postponed to appendices.
Appendix A contains the formal specification of Abstract
the details on model checking Abstract idempotency using
TLA+ tools [16]. Appendix B contains protocol details with
the correctness proofs given separately in Appendix C.

2. Abstract
We propose a new approach for the development of BFT
protocols. We view a BFT protocol as a composition of in-
stances of Abstract. Each instance is itself a protocol that
commits clients’ requests, like any state machine replication
(SMR) scheme, except if certain conditions are not satisfied,
in which case it can abort requests. These conditions, deter-
mined by the developer of the particular instance, capture the
progress semantics of that instance. They might depend on
the design goals and the environment in which a particular
instance is to be deployed. Each instance can be developed,
proved and tested independently, and this modularity comes
from two crucial properties of Abstract:

1. Switching between instances is idempotent: the compo-
sition of two Abstract instances yields yet another Ab-
stract instance.

2. BFT is nothing but a special Abstract instance — one
that never aborts.

A correct implementation of an Abstract instance always
preserves BFT safety — this extends to any composition
thereof. The designer of a BFT protocol only has to make
sure that: a) individual Abstract implementations are cor-
rect, irrespectively of each other, and b) the composition of
the chosen instances is live: i.e. that every request will even-
tually be committed. We exemplify this later, in Sections 4
and 5. In the following, we highlight the main characteristics
of Abstract. For better readability, precise specification of
Abstract, our theorem on Abstract switching idempotency
and model checking details are postponed to Appendix A.

Switching. Every Abstract instance has a unique identifier
(instance number) i. When an instance i commits a request, i
returns a state-machine reply to the invoking client. Like any
SMR scheme, i establishes a total order on all committed
requests according to which the reply is computed for the
client. If, however, i aborts a request, it returns to the client
a digest of the history of requests h that were committed by
i (possibly along with some uncommitted requests); this is
called an abort history. In addition, i returns to the client
the identifier of the next instance (next(i)) which should
be invoked by the client: next is the same function across
all abort indications of instance i, and we say instance i
switches to instance next(i). In the context of this paper, we
consider next to be a pre-determined function (e.g., known
to servers implementing a given Abstract instance); we talk
about deterministic or static switching. However, this is not

Abstract

instance

#1

Client

A

request #1

commit #1

request #50

abort #50, hist_1, next=2

commit #50

Abstract

instance

#2

request #50, hist_1, next=2

commit #51

request #51, hist_1, next=2

Client

B

request #51

abort #51, hist_1, next=2

Client

C

abort #130, hist_2, next=3

request #130

Abstract

instance

#3

commit #130

request #130, hist_2, next=3

commit #131

request #131

.

.

.

.

.

.

Figure 1. Abstract operating principle.

required by our specification; next(i) can be computed “on-
fly” by the Abstract implementation (e.g., depending on
the current workload, or possible failures or asynchrony) as
long as next remains a function. In this case, we talk about
dynamic switching; this is out of the scope of this paper.

The client uses abort history h of i to invoke next(i); in
the context of next(i), h is called an init history. Roughly
speaking, next(i) is initialized with an init history, before it
starts committing/aborting clients’ requests. The initializa-
tion serves to transfer to instance next(i) the information
about the requests committed within instance i, in order to
preserve total order among committed requests across the
two instances.

Once i aborts some request and switches to next(i), i
cannot commit any subsequently invoked request. We im-
pose switching monotonicity: for all i, next(i) > i. Conse-
quently, Abstract instance i that fails to commit a request is
abandoned and all clients go from there on to the next in-
stance, never re-invoking i.

Illustration. Figure 1 depicts a possible run of a BFT sys-
tem built using Abstract. To preserve consistency, Abstract
properties ensure that, at any point in time, only one Ab-
stract instance, called active, may commit requests. Client
A starts sending requests to the first Abstract instance. The
latter commits requests #1 to #49 and aborts request #50, be-
coming inactive. Abstract appends to the abort indication an
(unforgeable) history (hist 1) and the information about the
next Abstract instance to be used (next = 2). Client A sends
to the new Abstract instance both its uncommitted request

(#50) and the history returned by the first Abstract instance.
Instance #2 gets initialized with the given history and exe-
cutes request #50. Later on, client B sends request #51 to
the first Abstract instance. The latter returns an abort indi-
cation with a possibly different history than the one returned
to client A (yet both histories must contain previously com-
mitted requests #1 to #49). Client B subsequently sends re-
quest #51 together with the history to the second abstract in-
stance. The latter being already initialized, it simply ignores
the history and executes request #51. The second abstract
instance then executes the subsequent requests up to request
#130 which it aborts. Client B uses the history returned by
the second abstract instance to initialize the third abstract
instance. The latter executes request #130. Finally, Client
C, sends request #131 to the third instance, that executes
it. Note that unlike Client B, Client C directly accesses the
currently active instance. This is possible if Client C knows
which instance is active, or if all three Abstract instances are
implemented over the same set of replicas: replicas can then,
for example, ‘tunnel’ the request to the active instance.

A view-change perspective. In some sense, an Abstract
instance number can be seen as a view number, e.g., in
PBFT [6].4 Like in existing BFT protocols, which merely
reiterate the exact same sub-protocol across the views (possi-
bly changing the server acting as leader), the same Abstract
implementations can be re-used (with increasing instance
numbers). However, unlike existing BFT protocols, Abstract
compositions allow entire sub-protocols to be changed on a
‘view-change’ (i.e., during switching).

Misbehaving clients. Clients that fail to comply with the
switching mechanism (e.g., by inventing/forging an init his-
tory) cannot violate the Abstract specification. Indeed, to be
considered valid, an init history of next(i) must be previ-
ously returned by the preceding Abstract i as an abort his-
tory. To enforce this causality, in practice, our Abstract com-
positions (see Sec. 4 and Sec. 5) rely on unforgeable digi-
tal signatures to authenticate abort histories in the presence
of potentially Byzantine clients. View-change mechanisms
employed in existing BFT protocols [6, 15], have similar re-
quirements: they exchange digitally signed messages.

3. System Model
We assume a message-passing distributed system using
a fully connected network among processes: clients and
servers. The links between processes are asynchronous and
unreliable: messages may be delayed or dropped (we speak
of link failures). However, we assume fair-loss links: a mes-
sage sent an infinite number of times between two correct
processes will be eventually received. Processes are Byzan-
tine fault-prone; processes that do not fail are said to be
correct. A process is called benign if it is correct or if it

4 The opposite however does not hold, since multiple views of a given BFT
protocol can be captured within a single Abstract instance.

fails by simply crashing. In our algorithms, we assume that
any number of clients and up to f out of 3f + 1 servers
can be Byzantine. We assume a strong adversary that can
coordinate faulty nodes; however, we assume that the adver-
sary cannot violate cryptographic techniques like collision-
resistant hashing, message authentication codes (MACs),
and signatures.

We further assume that during synchronous periods (i.e.,
when there are no link failures) any message m sent between
two correct processes is delivered within a bounded delay ∆
(known to sender and receiver) if the sender retransmits m
until it is delivered.

Finally, we declare contention in an Abstract instance
whenever there are two concurrent requests such that both
requests are invoked but not yet committed/aborted.

4. Putting Abstract to Work: AZyzzyva
We illustrate how Abstract significantly eases the design,
implementation, and proof of BFT protocols with AZyzzyva.
This is a full fledged BFT protocol that mimics Zyzzyva [15]
in its “common case” (i.e., when there are no link or server
failures). In “other cases” we rely on Backup, an Abstract
implementation with strong progress guarantees that can
be implemented on top of any existing BFT protocol. In
our implementation, we chose PBFT [6] for it has been
extensively tested and proved correct. We chose to mimic
Zyzzyva, for it is known to be efficient, yet very difficult to
implement [9]. Using Abstract, we had to write, prove and
test less than 24% of the Zyzzyva code to obtain AZyzzyva.

In the “common case”, Zyzzyva executes the fast specu-
lative path depicted in Figure 2. A client sends a request to a
designated server, called primary (r1 in Fig. 2). The primary
appends a sequence number to the request and broadcasts
the request to all replicas. Each replica speculatively exe-
cutes the request and sends a reply to the client. All messages
in the above sequence are authenticated using MACs rather
than (more expensive) digital signatures. The client commits
the request if it receives the same reply from all 3f +1 repli-
cas. Otherwise, Zyzzyva executes a second phase that aims
at handling the case with link/server/client failures (“worst-
case”). Roughly, this phase (that AZyzzyva avoids to mimic)
consists of considerable modifications to PBFT [6], which
arise from the “profound effects” [15], that the Zyzzyva
“common-case” optimizations have on its “worst-case”. The
second phase is so complex that, as confessed by the au-
thors themselves [9], it is not entirely implemented in the
current Zyzzyva prototype. In fact, when this second phase
is stressed, due to its complexity and the inherent bugs that
it contains, the throughput of Zyzzyva drops to 0.

In the following, we describe how we build AZyzzyva,
assess the qualitative benefit of using Abstract and discuss
the performance of AZyzzyva.

r1

r2

r3

r4

client
Number of MAC

operations per process

Number of MACs
carried by a message

3f+1 3f+1 3

3f+1 2 1

3f+1

Figure 2. Communication pattern of ZLight.

4.1 Protocol overview
Our goal when building AZyzzyva using Abstract is to show
that we can completely separate the concerns of handling
the “common-case” and the “worst-case”. We thus use two
different Abstract implementations: ZLight and Backup.
Roughly, ZLight is a Abstract that guarantees progress in
the Zyzzyva “common-case”. On the other hand, Backup is
an Abstract with strong progress: it guarantees to commit an
exact certain number of requests k (k is itself configurable)
before it starts aborting.

We then simply construct AZyzzyva such that every odd
(resp., even) Abstract instance is ZLight (resp., Backup).
ZLight is first executed. When it aborts, it switches to
Backup, which commits the next k requests. Backup then
aborts subsequent requests and switches to (a new instance
of) ZLight, and so on.

Note that ZLight uses a lightweight checkpoint protocol
(shared with Aliph’s Quorum and Chain, Sec. 5) triggered
every 128 messages to truncate histories (see Sec. B.7).

In the following, we briefly describe ZLight and Backup.
Details are postponed to Appendix B, whereas correctness
proofs can be found in Appendix C.

4.2 ZLight
ZLight implements Abstract with the following progress
property which reflects Zyzzyva “common case”: it com-
mits requests when (a) there are no server or link failures,
and (b) no client is Byzantine (simple client crash failures
are tolerated). When this property holds, ZLight implements
Zyzzyva “common-case” pattern (Fig. 2), described earlier.
Outside the “common-case”, when a client does not receive
3f + 1 consistent replies, the client sends a PANIC message
to replicas. Upon reception of this message, replicas stop ex-
ecuting requests and send back a signed message containing
their history (replicas will now send the same abort message
for all subsequent requests). When the client receives 2f +1
signed messages containing replica histories, it can generate
an abort history and switch to Backup. Client generates abort
history ah such that ah[j] equals the value that appears at po-
sition j ≥ 1 of f + 1 different replica histories (the details
of the panic and switching mechanisms are in the appendix,
in Sec. B.5 and B.6, respectively).

4.3 Backup
Backup is an Abstract implementation with a progress prop-
erty that guarantees exactly k ≥ 1 requests to be committed,
where k is a generic parameter (we explain our configura-
tion for k at the end of this section). We employ Backup in
AZyzzyva (and Aliph) to ensure progress outside “common-
cases” (e.g., under replica failures).

We implemented Backup as a very thin wrapper (around
600 lines of C++ code) that can be put around any existing
BFT protocol. In our C/C++ implementations, Backup is im-
plemented over PBFT [6], for PBFT is the most extensively
tested BFT protocol and it is proven correct. Other existing
BFT protocols that provide robust performance under fail-
ures, like Aardvark [9], are also very good candidates for the
Backup basis (unfortunately, the code of Aardvark is not yet
publicly available).

To implement Backup, we exploit the fact that any BFT
can totally order requests submitted to it and implement any
functionality on top of this total order. In our case, Backup
is precisely this functionality. Backup works as follows: it
ignores all the requests delivered by the underlying BFT
protocol until it receives a request containing a valid init
history, i.e. an unforgeable abort history generated by the
preceding Abstract (ZLight in the case of AZyzzyva). At
this point, Backup sets its state by executing all the requests
contained in a valid init history it received. Then, it simply
executes the first k requests ordered by BFT (neglecting
subsequent init histories) and commits these requests. After
committing the kth request, Backup aborts all subsequent
requests returning the signed sequence of executed requests
as the abort history (replica digital signature functionality
assumed here is readily present in all existing BFT protocols
we know of).

The parameter k is generic and is an integral part of the
Backup progress guarantees. Our default configuration in-
creases k exponentially, with every new instance of Backup.
This ensures the liveness of the composition, which might
not be the case with, say, a fixed k in a corner case with very
slow clients.5 More importantly, in the case of failures, we
actually do want to have a Backup instance remaining ac-
tive for long enough, since Backup is precisely targeted to
handle failures. On the other hand, to reduce the impact of
transient link failures, which can drive k to high values and
thus confine clients to Backup for a long time after the tran-
sient failure disappears, we flatten the exponential curve for
k to maintain k = 1 during some targeted outage time. 6 In
our implementation, we also periodically reset k. Dynami-

5 In short, k requests committed by a single Backup instance i might all
be invoked by the same, fast client. A slow client can then get its request
aborted by i. The same can happen with a subsequent Backup instance, etc.
This issue can be avoided by exponentially increasing k (for any realistic
load that does not increase faster than exponentially) or by having the
replicas across different Abstract instances share a client input buffer.
6 For example, using k = dC ∗ 2me, where m is incremented with every
new Abstract instance, with the rough average time of 50ms for switching

cally adapting k to fit the system conditions is appealing but
requires further studies and is out of the scope of this paper.

4.4 Qualitative assessment
In evaluating the effort of building AZyzzyva, we focus on
the cost of ZLight. Indeed, Backup, for which the additional
effort is small (around 600 lines of C++ code), can be reused
for other BFT protocols in our framework. For instance, we
use Backup in our Aliph protocol as well (Sec. 5).

Table 1 compares the number of pages of pseudo-code,
pages of proofs and lines of code of Zyzzyva and ZLight. The
comparison in terms of lines of code is fair, since Zyzzyva
and all protocols presented in this paper use the same code
base (inherited from PBFT [6]). Notice that, all implemen-
tations in the PBFT code base, share about 7500 lines of
code implementing cryptographic functions, data structures
(e.g. maps, sets), etc. We do not count these lines, which
we packaged in a separate library. The code line compar-
ison shows that to build ZLight we needed less than 24%
of the Zyzzyva line count (14339 lines). This is, however,
conservative since we needed only about 14% to implement
ZLight “common case”; the remaining 10% (1391 lines) are
due to panicking and checkpointing mechanisms, which are
all shared among ZLight, Quorum and Chain (the latter two
are used in Aliph, Sec. 5). The difference in the ZLight vs.
Zyzzyva code size is that ZLight aborts as soon as the system
conditions fall outside the “common-case” (in which case
AZyzzyva shifts the load to Backup). Hence, we avoid the
“common-case”/“worst-case” code dependency that plagued
Zyzzyva.

Using the same syntax as the one used in the original
Zyzzyva paper [15], ZLight requires approximately half a
page of pseudo-code, its plain-english proof requires about
1 page (see Sec. C.1). In comparison, the pseudo-code of
Zyzzyva (without checkpointing) requires 4.5 pages, making
it about 9 times bigger than that of ZLight. Due to the
complexity of Zyzzyva, the authors first presented a version
using signatures and then explained how to modify it to
use MACs. The correctness proof of the Zyzzyva signature
version requires 4 (double-column) pages, whereas the proof
for the MAC version is only sketched.

Zyzzyva ZLight
Pages of pseudo-code 4,5 0,5
Pages of proofs > 4 1
Lines of code 14339 3358

Table 1. Complexity comparison of Zyzzyva and ZLight.

4.5 Performance evaluation
We have compared the performance of AZyzzyva and
Zyzzyva in the “common-case”, using the benchmarks de-
scribed in Section 5.2. Not surprisingly, AZyzzyva and

between 2 consecutive Backup instances in AZyzzyva, we can maintain
k = 1 during 10s outages with C = 2−200.

Zyzzyva have the exact same performance in this case. In
this section, we do thus focus on the cost induced by Ab-
stract switching mechanism when the operating conditions
are outside the common-case (and ZLight aborts a request).
We could not compare against Zyzzyva. Indeed, as explained
above, it has bugs in the second phase in charge of handling
faults, which makes its impossible to evaluate the current
prototype outside the “common-case”.

To assess the switching cost, we perform the following
experiments: we feed the request history of ZLight with
r requests of size 1kB. We then issue 10000 successive
requests. To isolate the cost of the switching mechanism,
we do not execute the ZLight common case; the measured
time comprises the time required (1) by the client to send
a PANIC message to ZLight replicas, (2) by the replicas to
generate and send a signed message containing their history,
(3) by the client to invoke Backup with the abort/init history,
and (4) by the (next) client to get the abort history from
Backup and initialize the next ZLight instance. Note that we
deactivate the functions in charge of updating the history of
ZLight, so that we ensure that for each aborted request, the
history contains r requests. We reproduced each experiment
three times and observed a negligible variance.

Figure 3 shows the switching time (in ms) as a function
of the history size when the number of tolerated faults equals
1. As mentioned above, ZLight uses a checkpointing mech-
anism triggered every 128 requests. To account for requests
that might be received by servers while they are perform-
ing a checkpoint, we assume that the history size can grow
up to 250 requests. We plot two different curves: one cor-
responds to the case when replicas do not miss any request.
The other one corresponds to the case when replicas miss
requests. More precisely, we assess the performance when
30% of the requests are absent from the history of at least
one replica. Not surprisingly, we observe that the switch-
ing cost increases with the history size and that it is slightly
higher in the case when replicas miss requests (as replicas
need to fetch the requests they miss). Interestingly, we see
that the switching cost is very reasonable. It ranges between
19.7ms and 29.2ms, which is low provided faults are sup-
posed to be rare in the environment for which Zyzzyva has
been devised.

5. Putting Abstract to Really Work: Aliph
In this section, we demonstrate how we can build novel,
very efficient BFT protocols, using Abstract. Our new pro-
tocol, called Aliph, achieves up to 30% lower latency and up
to 360% higher throughput than state-of-the-art protocols.
The development of Aliph consisted in building two new in-
stances of Abstract, each requiring less than 25% of the code
of state-of-the-art protocols, and reusing Backup (Sec. 4.3).
In the following, we first describe Aliph and then we evaluate
its performance.

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 0 50 100 150 200 250

Sw
itc

hi
ng

 ti
m

e
(m

s)

History size (nb of requests)

30% misses
no misses

Figure 3. Switching time in function of history size and
percentage of missing requests in replica histories.

5.1 Protocol overview
The characteristics of Aliph are summarized in Table 2,
considering the metrics of [15]. In short, Aliph is the first
optimally resilient protocol that achieves a latency of 2 one-
way message delays when there is no contention. It is also
the first protocol for which the number of MAC operations at
the bottleneck replica tends to 1 (under high contention when
batching of messages is enabled): 50% less than required by
state-of-the-art protocols.

PBFT Q/U HQ Zyzzyva Aliph
1 3f+1 5f+1 3f+1 3f+1 3f+1
2 2+ 8f

b 2+4f 2+4f 2+ 3f
b 1+ f+1

b

3 4 2 4 3 2

Table 2. Characteristics of state-of-the-art BFT protocols.
Row 1 is the number of replicas. Row 2 is the throughput in
terms of number of MAC operations at the bottleneck replica
(assuming batches of b requests). Row 3 is the latency in
terms of number of 1-way messages in the critical path. Bold
entries denote protocols with the lowest known cost.

Aliph uses three Abstract implementations: Backup (in-
troduced in Sec. 4.3), Quorum and Chain (both described
below). A Quorum instance commits requests as long as
there are no: (a) server/link failures, (b) client Byzantine fail-
ures, and (c) contention. Quorum implements a very simple
communication pattern and gives Aliph the low latency fla-
vor when its progress conditions are satisfied. On the other
hand, Chain provides exactly the same progress guarantees
as ZLight (Sec. 4.2), i.e., it commits requests as long as there
are no server/link failures or Byzantine clients. Chain im-
plements a pipeline pattern and, as we show below, allows
Aliph to achieve better peak throughput than all existing pro-
tocols. Both Quorum and Chain share the panicking mech-
anism with ZLight, which is invoked by the client when it
fails to commit the request.

Aliph uses the following static switching ordering to or-
chestrate its underlying protocols: Quorum-Chain-Backup-
Quorum-Chain-Backup−etc. Initially, Quorum is active. As
soon as it aborts (e.g., due to contention), it switches to
Chain. Chain commits requests until it aborts (e.g., due to
asynchrony). Aliph then switches to Backup, which executes
k requests (see Sec. 4.3). When Backup commits k requests,
it aborts, switches back to Quorum, and so on.

In the following, we first describe Quorum (Sec. 5.1.1)
and Chain (Sec. 5.1.2) (full details and correctness proofs
can be found in Appendix B and C, respectively). Then, we
discuss some system-level optimizations of Aliph (Sec. 5.1.3).

5.1.1 Quorum
Quorum implements a very simple communication pattern
(see Fig. 4); it requires only one round-trip of message ex-
change between a client and replicas to commit a request.
Namely, the client sends the request to all replicas that spec-
ulatively execute it and send a reply to the client. As in
ZLight, replies sent by replicas contain a digest of their his-
tory. The client checks that the histories sent by the 3f + 1
replicas match. If that is not the case, or if the client does
not receive 3f + 1 replies, the client invokes a panicking
mechanism. This is the same as in ZLight (Sec. 4.2): (i) the
client sends a PANIC message to replicas, (ii) replicas stop
executing requests on reception of a PANIC message, (iii)
replicas send back a signed message containing their his-
tory. The client collects 2f + 1 signed messages containing
replica histories and generates an abort history. Note that,
unlike ZLight, Quorum does not tolerate contention: concur-
rent requests can be executed in different orders by different
replicas. This is not the case in ZLight, as requests are or-
dered by the primary.

r1

r2

r3

r4

client
Number of MAC

operations per process

Number of MACs
carried by a message

3f+1 2 3f+1

3f+1 3f+1

Figure 4. Communication pattern of Quorum.

The implementation of Quorum is very simple. It requires
3200 lines of C code (including panicking and checkpoint
libraries). Quorum makes Aliph the first BFT protocol to
achieve a latency of 2 one-way message delays, while only
requiring 3f + 1 replicas (Q/U [1] has the same latency but
requires 5f +1 replicas). Given its simplicity and efficiency,
it might seem surprising not to have seen it published earlier.
We believe that Abstract made that possible because we
could focus on weaker (and hence easier to implement)

Abstract specifications, without caring about (numerous)
difficulties outside the Quorum “common-case”.

5.1.2 Chain
Chain organizes replicas in a pipeline (see Fig. 5). All
replicas know the fixed ordering of replica IDs (called chain
order); the first (resp., last) replica is called the head (resp.,
the tail). Without loss of generality we assume an ascending
ordering by replica IDs, where the head (resp., tail) is replica
r1 (resp., r3f+1).

r1

r2

r3

r4

client
Number of MAC

operations per process

Number of MACs
carried by a message

f+1 f+2 2(f+1)

f+1 2f+1 (f+1)(f+2)
2

2f+1 f+1

2(f+1) f+2 f+1

Figure 5. Communication pattern of Chain.

In Chain, a client on invoking a request, sends the request
req to the head, who assigns sequence numbers to requests.
Then, each replica ri forwards the message to its successor−→ri , where −→ri = ri+1. The exception is the tail whose
successor is the client: upon receiving the message, the tail
sends the reply to the client. Similarly, replica ri in Chain
accepts a message only if sent by its predecessor←−ri , where←−ri = ri−1; the exception is the head, which accepts requests
only from the client.

The behavior of Chain, as described so far, is very similar
to the protocol described in [21]. That protocol, however, did
only tolerate crash faults. We tolerate Byzantine failures by
ensuring: (1) that the content of a message is not modified
by a malicious replica before being forwarded, (2) that no
replica in the chain is bypassed, and (3) that the reply sent by
the tail is correct. To provide those guarantees, our Chain re-
lies on a novel authentication method we call chain authen-
ticators (CAs). CAs are lightweight MAC authenticators, re-
quiring processes to generate (at most) f + 1 MACs (in con-
trast to 3f + 1 in traditional authenticators). CAs guarantee
that, if a client commits request req, every correct replica
executed req. CAs, along with the inherent throughput ad-
vantages of a pipeline pattern, are key to Chain’s dramatic
throughput improvements over other BFT protocols. We de-
scribe below how CAs are used in Chain.

Replicas and clients generate CAs in order to authenticate
the messages they send. Each CA contains MACs for a set of
processes called successor set. The successor set of clients
consists of the f +1 first replicas in the chain. The successor
set of a replica ri depends on its position i: (a) for the first 2f
replicas, the successor set comprises the next f + 1 replicas
in the chain, whereas (b) for other replicas (i > 2f), the

successor set comprises all subsequent replicas in the chain,
as well as the client. Dually, when process p receives a
message m it verifies m, i.e., it checks whether m contains a
correct MAC from the processes from p’s predecessor set
(a set of processes q such that p is in q’s successor set).
For instance, process p1 verifies that the message contains a
valid MAC from process p0 and the client, whereas the client
verifies that the reply it gets contains a valid MAC from the
last f + 1 replicas in the chain. Finally, to make sure that the
reply sent by the tail is correct, the f processes that precede
the tail in the chain append a digest of the response to the
message.

When the client receives a correct reply, it commits it. On
the other hand, when the reply is not correct, or when it does
not receive any reply (e.g., due to the Byzantine tail which
discards the request), the client broadcasts a PANIC message
to replicas. As in ZLight and Quorum, when replicas receive
a PANIC message, they stop executing requests and send
back a signed message containing their history. The client
collects 2f + 1 signed messages containing replica histories
and generates an abort history.

Chain’s implementation requires 3300 lines of code (with
panic and checkpoint libraries). Moreover, it is the first pro-
tocol in which the number of MAC operations at the bottle-
neck replica tends to 1. This comes from the fact that, under
contention, the head of the chain can batch requests. Head
and tail do thus need to read (resp. write) a MAC from (resp.
to) the client, and write (resp. read) f + 1 MACs for a batch
of requests. Thus for a single request, head and tail perform
1+ f+1

b MAC operations. Note that all other replicas process
requests in batch, and have thus a lower number of MAC op-
erations per request. State-of-the-art protocols [6, 15] do all
require at least 2 MAC operations at the bottleneck server
(with the same assumption on batching). The reason why
this number tends to 1 in Chain can be intuitively explained
by the fact that these are two distinct replicas that receive the
request (the head) and send the reply (the tail).

5.1.3 Optimizations
When a Chain instance is executing in Aliph, it commits
requests as long as there are no server or link failures. In
the Aliph implementation we benchmark in the evaluation,
we slightly modified the progress property of Chain so that
it aborts requests as soon as replicas detect that there is no
contention (i.e. there is only one active client since at least
2s). Moreover, Chain replicas add an information in their
abort history to specify that they aborted because of the lack
of contention. We slightly modified Backup, so that in such
case, it only executes one request and aborts. Consequently,
Aliph switches to Quorum, which is very efficient when there
is no contention. Finally, in Chain and Quorum we use the
same checkpoint protocol as in ZLight.

5.2 Evaluation
This section evaluates the performance of Aliph. For lack
of space, we focus on experiments without failures (of pro-
cesses or links), since we compare to protocols that are
known to perform well in the common-case — PBFT [6],
Q/U [1] and Zyzzyva [15].

We first study latency, throughput, and fault scalability
using Castro’s microbenchmarks [6, 15], varying the number
of clients. Clients invoke requests in closed-loop (meaning
that a client does not invoke a new request before it commits
a previous one). In the x/y microbenchmark, clients send
xkB requests and receive ykB replies. We also perform an
experiment in which the input load dynamically varies.

We evaluate PBFT and Zyzzyva because the former is
considered the “baseline” for practical BFT implementa-
tions, whereas the latter is considered state-of-the-art. More-
over, Zyzzyva systematically outperforms HQ [15]; hence,
we do not evaluate HQ. Finally, we benchmark Q/U as it is
known to provide better latency than Zyzzyva under certain
condition. Note that Q/U requires 5f + 1 servers, whereas
other protocols we benchmark only require 3f + 1 servers.

PBFT and Zyzzyva implement two optimizations: re-
quest batching by the primary, and client multicast (in which
clients send requests directly to all the servers and the pri-
mary only sends ordering messages). All measurements of
PBFT are performed with batching enabled as it always im-
proves performance. This is not the case in Zyzzyva. There-
fore, we assess Zyzzyva with or without batching depending
on the experiment. As for the client multicast optimization,
we show results for both configurations every time we ob-
serve an interesting behavior.

PBFT code base underlies both Zyzzyva and Aliph. To
ensure that the comparison with Q/U is fair, we evaluate its
simple best-case implementation described in [15].

We ran all our experiments on a cluster of 17 identical
machines, each equipped with a 1.66GHz bi-processor and
2GB of RAM. Machines run the Linux 2.6.18 kernel and are
connected using a Gigabit ethernet switch.

5.2.1 Latency
We first assess the latency in a system without contention,
with a single client issuing requests. The results for all mi-
crobenchmarks (0/0, 0/4 and 4/0) are summarized in Table 3
demonstrating the latency improvement of Aliph over Q/U,
PBFT, and Zyzzyva. We show results for a maximal number
of server failures f ranging from 1 to 3. Our results show
that Aliph consistently outperforms other protocols, since
Quorum is active when there is no contention. These results
confirm the theoretical expectations (see Table 2, Sec. 5.1).
The results show that Q/U also achieves a good latency with
f = 1, as Q/U and Quorum use the same communica-
tion pattern. Nevertheless, when f increases, performance of
Q/U decreases significantly. The reason is that Q/U requires
5f + 1 replicas and both clients and servers perform addi-

tional MAC computations compared to Quorum. Moreover,
the significant improvement of Aliph over Zyzzyva (31% at
f = 1) can be easily explained by the fact that Zyzzyva
requires 3-one-way message delays in the common case,
whereas Aliph (Quorum) only requires 2-one-way message
delays.

5.2.2 Throughput
In this section, we present results obtained running the 0/0,
0/4, and 4/0 microbenchmarks under contention. We do not
present the results for Q/U since it is known to perform
poorly under contention. Notice that in all the experiments
presented in this section, Chain is active in Aliph. The rea-
son is that, due to contention, there is always a point in time
when a request sent to Quorum reaches replicas in a different
order, which results in a switch to Chain. As there are no fail-
ures in the experiments presented in this section, Chain exe-
cutes all the subsequent requests.

Our results show that Aliph consistently and significantly
outperforms other protocols starting from a certain number
of clients that depends on the benchmark. Below this thresh-
old, Zyzzyva achieves higher throughput than other proto-
cols.

0/0 benchmark. Figure 6 plots the throughput achieved
in the 0/0 benchmark by various protocols when f = 1.
We ran Zyzzyva with and without batching. For PBFT, we
present only the results with batching, since they are substan-
tially better than results without batching. We observe that
Zyzzyva with batching performs better than PBFT, which it-
self achieves higher peak throughput than Zyzzyva without
batching (this is consistent with the results of [15, 20]).

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Number of clients

Zyzzyva

Zyzzyva (batching)

PBFT

Aliph

PBFT
Zyzzyva

Zyzzyva (batching)
Aliph

Figure 6. Throughput for the 0/0 benchmark (f=1).

Moreover, Figure 6 shows that with up to 40 clients,
Zyzzyva achieves the best throughput. With more than
40 clients, Aliph starts to outperform Zyzzyva. The peak
throughput achieved by Aliph is 21% higher than that of
Zyzzyva. The reason is that Aliph executes Chain, which
uses a pipeline pattern to disseminate requests. This pipeline
pattern brings two benefits: reduced number of MAC op-

0/0 benchmark 4/0 benchmark 0/4 benchmark
f=1 f=2 f=3 f=1 f=2 f=3 f=1 f=2 f=3

Q/U 8 % 14,9% 33,1% 6,5 % 13,6% 22,3% 4,7% 20,2% 26%
Zyzzyva 31,6 % 31,2% 34,5% 27,7 % 26,7% 15,6% 24,3% 26% 15,6%
PBFT 49,1% 48,8% 44,5% 36,6 % 38,4 % 26% 37,6% 38,2% 29%

Table 3. Latency improvement of Aliph for the 0/0, 4/0, and 0/4 benchmarks.

erations at the bottleneck server, and better network usage:
servers send/receive messages to/from a single server.

Nevertheless, the Chain is efficient only if its pipeline
is fed, i.e. the link between any server and its successor in
the chain must be saturated. There are two ways to feed the
pipeline: using large messages (see the next benchmark), or
a large number of small messages (this is the case of 0/0
benchmark). Moreover, as in the microbenchmarks clients
invoke requests in closed-loop, it is necessary to have a large
number of clients to issue a large number of requests. This
explains why Aliph starts outperforming Zyzzyva only with
more than 40 clients.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50

La
te

nc
y

pe
r r

eq
ue

st
 (m

s)

Throughput (Kops/sec)

PBFT
Zyzzyva

Zyzzyva (batching)
Aliph

Figure 7. Response-time vs. throughput for the 0/0 bench-
mark (f=1).

Figure 7 plots the response-time of Zyzzyva (with and
without batching), PBFT and Aliph as a function of the
achieved throughput. We observe that Aliph achieves consis-
tently lower response-time than PBFT. This stems from the
fact that the message pattern of PBFT is a very complex one,
which increases the response time and limits the through-
put of PBFT. Moreover, up to the throughput of 37Kops/sec,
Aliph has a slightly higher response-time than Zyzzyva. The
reason is the pipeline pattern of Chain that results in a higher
response time for low to medium throughput, which stays
reasonable nevertheless. Moreover, Aliph scales better than
Zyzzyva: from 37Kops/sec, it achieves lower response time,
since the messages are processed faster due to the higher
throughput ensured by Chain. Hence, messages spend less
time in waiting queues. Finally, we observe that for very low
throughput, Aliph has lower response time than Zyzzyva.
This comes from the fact that Aliph uses Quorum when there

is no contention, which significantly improves the response-
time of the protocol.

0/4 benchmark. Figure 8 shows the throughput of the var-
ious protocols for the 0/4 microbenchmark when f = 1.
PBFT and Zyzzyva are using the client multicast optimiza-
tion. We observe that with up to 15 clients, Zyzzyva outper-
forms other protocols. Starting from 20 clients, Aliph out-
performs PBFT and Zyzzyva. Nevertheless, the gain in peak
throughput (7,7% over PBFT and 9,8% over Zyzzyva) is
lower than the gain we had with the 0/0 microbenchmark.
This can be explained by the fact that the dominating cost
is now sending replies to clients, partly masking the effect
of request processing and request/sequence number forward-
ing. In all protocols, there is only one server sending a full
reply to the client (other servers send only a digest of the re-
ply). We were expecting PBFT and Zyzzyva to outperform
Aliph (which executes Chain when there is load), since the
server that sends a full reply in PBFT and Zyzzyva changes
on a per-request basis. Nevertheless, this is not the case.
We again attribute this result to the fact that Chain uses
a pipeline pattern: the last process in the chain replies to
clients at the throughput of about 391MB/sec.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Number of clients

PBFT
Zyzzyva

Aliph

Figure 8. Throughput for the 0/4 benchmark (f=1).

4/0 benchmark. Figure 9 shows the results of Aliph, PBFT
and Zyzzyva for the 4/0 microbenchmark with f = 1.
Notice the logarithmic scale for the X axis, that we use to
better highlight the behavior of various protocols with small
numbers of clients. For PBFT and Zyzzyva, we plot curves
both with and without client multicast optimization. The
graph shows that with up to 3 clients, Zyzzyva outperforms

other protocols. With more than 3 clients, Aliph significantly
outperforms other protocols. Its peak throughput is about
360% higher than that of Zyzzyva. The reason why Aliph
is very efficient under high load and when requests are large
was explained earlier in the context of the 0/0 benchmark.

 0

 2

 4

 6

 8

 10

 1 10

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Number of clients

PBFT (client multicast)

PBFT (primary multicast)

Zyzzyva (primary multicast)

Zyzzyva (client multicast)

Aliph

PBFT (client multicast)
PBFT (primary multicast)
Zyzzyva (client multicast)

Zyzzyva (primary multicast)
Aliph

Figure 9. Throughput for the 4/0 benchmark (f=1).

Notice also the interesting drop in the performance of
Zyzzyva and PBFT when client multicast optimization is
used (Fig. 9). This is to be contrasted with the case when
the primary forwards requests, where the performance of
PBFT and Zyzzyva remain almost constant after the peak
throughput has been reached. These results may seem sur-
prising given that [6, 15] recommend to use the client mul-
ticast optimization when requests are large, in order to spare
the primary of costly operations request forwarding. Nev-
ertheless, these results can be explained by the fact that si-
multaneous multicasts of large messages by different clients
result in collisions and buffer overflows, thus requiring many
message retransmissions7 (there is no flow control in UDP).
This explains why enabling the concurrent client multicasts
drastically reduces performance. On the other hand, when
the primary forwards messages, there are fewer collisions,
which explains the better performance we observe.

Impact of the request size. In this experiment we study
how protocols are impacted by the size of requests. Figure 10
shows the peak throughput of Aliph, PBFT and Zyzzyva as a
function of the request size for f = 1. To obtain the peak
throughput of PBFT and Zyzzyva, we benchmarked both
protocols with and without client multicast optimization and
with different batching sizes for Zyzzyva. Interestingly, the
behavior we observe is similar to that observed using simula-
tions in [20]: differences between PBFT and Zyzzyva dimin-
ish with the increase in payload. Indeed, starting from 128B
payloads, both protocols have almost identical performance.

7 Note that similar performance drops with large UDP packets have already
been observed in the context of broadcast protocols. For instance, a recent
study made by the authors of the JGroups toolkit showed that with 5K
messages, their TCP stack achieves up to 5 times the throughput of their
UDP stack, even if the latter includes some flow control mechanisms.

Figure 10 also shows that Aliph sustains high peak through-
put with all message sizes, which is again the consequence
of Chain being active under contention.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 100 1000

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Request size (B)

PBFT
Zyzzyva

Aliph

Figure 10. Peak throughput in function of request size
(f=1).

Fault scalability. One important characteristic of BFT pro-
tocols is their behavior when the number of tolerated server
failures f increases. Figure 11 depicts the performance of
Aliph for the 4/0 benchmark when f varies between 1 and
3. We do not present results for PBFT and Zyzzyva as their
peak throughput is known to suffer only a slight impact [15].
Figure 11 shows that this is also the case for Aliph. The peak
throughput at f = 3 is only 3,5% lower than that achieved
at f = 1. We also observe that the number of clients that
Aliph requires to reach its peak throughput increases with
f . This can be explained by the fact that Aliph uses Chain
under contention. The length of the pipeline used in Chain
increases with f . Hence, more clients are needed to feed the
Chain and reach the peak throughput.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Number of clients

f = 1
f = 2
f = 3

Figure 11. Impact of the number of tolerated failures f on
the Aliph throughput.

5.2.3 Performance in case of faults
As mentioned in Section 4.3, when Aliph switches to Backup,
it executes k requests, and then switches back to Quorum.

To asses the impact of k on system’s performance, we com-
pared performance for two different values of k – in the first
case, k = 1, and in the second case, k = 2i, where i is the
number of invocations of Backup since beginning.

In this experiment, we skip execution in Chain, and focus
only on Quorum and Backup. There is one client, which is-
sues 15.000 requests in total. If run just under Quorum, sys-
tem would process these requests in 7s. After client sends
2.000 requests, one of the replicas goes down, and remains
down for 10s. During this time, only three replicas are ac-
tive. Hence, as Quorum protocol requires all replicas to re-
spond, it will not execute any request. Figure 12 shows the
throughput of the system, when Aliph switches to Backup for
a single request. As discovery of replica failure in Quorum
is done with timers, only handful of requests will be ser-
viced (by Backup) while one replica is down. On the other
hand, Figure 13 shows the behavior of the system if it stays
in Backup for 2i requests. Although it takes less time to fin-
ish the experiment, system may stay for too long in Backup.
Replica came back up at t = 11s in the experiment, but
switch from Backup to Quorum occurred around t = 14s,
because Backup had to process 8192 requests.

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16 18 20

off

on

Th
ro

ug
hp

ut
 (k

op
s/

s)

Se
rv

ice
 s

ta
te

Time (s)

Aliph
Backup state

Figure 12. Throughput under faults, when system switches
to Backup for one request.

5.2.4 Dynamic workload
Finally, we study the performance of Aliph under dynamic
workload (i.e., fluctuating contention). We compare its per-
formance to that achieved by Zyzzyva and by Chain alone.
We do not present results for Quorum alone as it does not
perform well under contention. The experiments consists in
having 30 clients issuing requests of different sizes, namely,
0k, 0.5k, 1k, 2k, and 4k. Clients do not send requests all at
the same time: the experiment starts with a single client is-
suing requests. Then we progressively increase the number
of clients until it reaches 10. We then simulate a load spike
with 30 clients simultaneously sending requests. Finally, the
number of clients decreases, until there is only one client
remaining in the system.

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16 18

off

on

Th
ro

ug
hp

ut
 (k

op
s/

s)

Se
rv

ice
 s

ta
te

Time (s)

Aliph
Backup state

Figure 13. Throughput under faults, when system switches
to Backup for 2i requests.

Figure 14 shows the performance of Aliph, Zyzzyva, and
Chain. For each protocol, clients were invoking the same
number of requests. Moreover, requests were invoked after
the preceding clients have completed their bursts. First, we
observe that Aliph is the most efficient protocol: it completes
the experiment in 42s, followed by Zyzzyva (68.1s), and
Chain (77.2s). Up to time t = 15.8s, Aliph uses Quorum,
which performs much better than Zyzzyva and Chain. Start-
ing at t = 15.8, contention becomes too high for Quorum,
which switches to Chain. At time t = 31.8s, there is only
one client in the system. After 2s spent with only one client
in the system, Chain in Aliph starts aborting requests due to
the low load optimization (Sec. 5.1.3). Consequently, Aliph
switches to Backup and then to Quorum. This explains the
increase in throughput observed at time t = 33.8s. We also
observe on the graph that Chain and Aliph are more efficient
than Zyzzyva when there is a load spike: they achieve a peak
throughput about three times higher than that of Zyzzyva.
On the other hand, Chain and Aliph have slightly lower per-
formance than Zyzzyva under medium load (i.e. from 16s
to 26s on the Aliph curve). This suggests an interesting BFT
protocol that would combine Quorum, Zyzzyva, Chain and
Backup. However, this requires smart choices for dynamic
switching, e.g., between Zyzzyva and Chain. We believe that
building such a protocol is an interesting research topic.

6. Concluding Remarks
The idea of aborting if “something goes wrong” is old. It
underlies for instance the seminal two-phase commit proto-
col [13]: abort can be decided if there is a failure or some
database server votes ”no”. The idea was also explored in
the context of mutual exclusion: a process in the entry sec-
tion can abort if it cannot enter the critical section [14].
Abortable consensus was proposed in [8] and [4]. In the first
case, a process can abort if a majority of processes cannot be
reached whereas, in the second, a process can abort if there

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80

Th
ou

gh
pu

t (
Ko

ps
/s

ec
)

Time (s)

Aliph
Zyzzyva

Chain

Figure 14. Throughput under dynamic workload.

is contention. The latter idea was generalized for arbitrary
shared objects in [3] and then [2]. In [2], a process can abort
and then query the object to seek whether the last query of
the process was performed. This query can however abort
if there is contention. Our notion of abortable state machine
replication is different. First, the condition under which Ab-
stract can abort is a generic parameter: it can express for
instance contention, synchrony or failures. Second, in case
of abort, Abstract returns (without any further query) what
is needed for recovery in a Byzantine context; namely, an
unforgeable history. This, in turn, can then be used to invoke
another, possibly stronger, Abstract. This ability is key to
the composability of Abstract instances.

Several examples of speculative protocols, distinguish-
ing an optimistic phase from a recovery one, were discussed
in the survey of Pedone [19]. These speculation ideas were
used in the context of Byzantine state machine replication,
e.g., in HQ [11] and Zyzzyva [15]. We are however the
first to clearly separate the phases and encapsulate them
within first class, well-specified, modules, that can each be
designed, tested and proved independently. In a sense, Ab-
stract enables to build a BFT protocol as the composition of
as many (gracefully degrading) phases as desired, each with
a “standard” interface. This allows for an unpreceded flexi-
bility in BFT protocol design that we illustrated with Aliph,
a BFT protocol that combines three different phases.

Several directions can be interesting to explore. It would
be interesting to devise efficient Abstract implementations
for other interesting definitions of the progress property, e.g.,
implementations that perform well despite failures. It would
be also interesting to explore possibilities for signature-free
switching, to obtain practical BFT protocols that do not rely
on signatures [10]. Moreover, we believe that an interesting
research challenge is to define and evaluate effective heuris-
tics for dynamic switching among Abstract instances. While
we described Aliph and showed that, albeit simple, it outper-
forms existing BFT protocols, Aliph is simply the starting

point for Abstract. The idea of dynamic switching depend-
ing on the system conditions seems very promising.

Acknowledgements
We would like to thank Jialin Zhang for her help with model
checking of Abstract and the composition theorem. We also
thank Lorenzo Alvisi, Hagit Attiya, Christian Cachin, Idit
Keidar, Dejan Kostić and Ramakrishna Kotla for very useful
discussions and comments.

References
[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and

J. Wylie. Fault-scalable Byzantine fault-tolerant services. In
SOSP, 2005.

[2] M. K. Aguilera, S. Frolund, V. Hadzilacos, S. L. Horn, and
S. Toueg. Abortable and query-abortable objects and their
efficient implementation. In PODC, 2007.

[3] H. Attiya, R. Guerraoui, and P. Kouznetsov. Computing with
reads and writes in the absence of step contention. In DISC,
2005.

[4] R. Boichat, P. Dutta, S. Frölund, and R. Guerraoui. Decon-
structing Paxos. SIGACT News in Distributed Computing,
34(1):47–67, 2003.

[5] F. V. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal.
Consensus in one communication step. In PaCT, 2001.

[6] M. Castro and B. Liskov. Practical Byzantine fault tolerance.
In OSDI, 1999.

[7] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made
live: an engineering perspective. In PODC, 2007.

[8] W. Chen. Abortable consensus and its application to proba-
bilistic atomic broadcast. Technical Report MSR-TR-2006-
135, 2007.

[9] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making Byzantine fault tolerant systems tolerate Byzantine
faults. In NSDI, 2009.

[10] M. Correia, N. F. Neves, and P. Verı́ssimo. From consensus
to atomic broadcast: Time-free Byzantine-resistant protocols
without signatures. Comput. J., 49(1):82–96, 2006.

[11] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira.
HQ replication: A hybrid quorum protocol for Byzantine fault
tolerance. In OSDI, 2006.

[12] D. Dobre and N. Suri. One-step consensus with zero-
degradation. In DSN, 2006.

[13] J. Gray. Notes on database operating systems. In Operating
Systems — An Advanced Course, number 66. 1978.

[14] P. Jayanti. Adaptive and efficient abortable mutual exclusion.
In PODC, 2003.

[15] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: speculative Byzantine fault tolerance. In SOSP,
2007.

[16] L. Lamport. Specifying Systems, The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-
Wesley, 2002.

[17] L. Lamport. Lower bounds for asynchronous consensus. In
FuDiCo, 2003.

[18] L. Lamport. The +CAL algorithm language. In NCA, 2006.

[19] F. Pedone. Boosting system performance with optimistic
distributed protocols. Computer, 34(12):80–86, 2001.

[20] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. BFT
protocols under fire. In NSDI, 2008.

[21] R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. In OSDI, 2004.

A. Abstract specification and composition
Before diving into the precise specification of Abstract,
we first introduce some notations and definitions. We de-
note the output function of the (replicated) state machine
by rep(h), where h is a sequence of requests called commit
history: the initial state is an implicit argument of rep(). Ba-
sically, rep(h) represents replies that state machine outputs
to clients. We assume that every Abstract instance has its
own unique id i (a natural number) that uniquely determines
the implementation and the set of underlying servers.

Abstract i exports one operation: Invokei(m, [h]), where
m is a request, and h a (optional) sequence of requests called
init history; we say the client invokes request m (with init
history h). By convention, when i = 1, the invocation never
contains an init history. Abstract i returns two indications to
the client:

1. Commiti(m, rep(h)), where commit history h contains
m;

2. Aborti(m, h, next(i)), where the sequence of requests
h is called an abort history and next is a function that
returns an integer.

Respectively, we say that a client commits/aborts the re-
quest m. In the case of an abort, we also say that instance
Abstract i switches to instance next(i). We also define a
valid init history (VIH) as follows: init history h is a VIH if
there is an Abstract j that returned Abortj(∗, h, i) (i.e., such
that next(j) = i). Similarly, we define a valid init request
(VIR) as follows: (1) if i = 1, any invoked request is a VIR;
(2) if i 6= 1, m is a VIR if and only if m is invoked with
a VIH. We say that an instance i > 1 is initialized upon it
commits or aborts some VIR. Finally, we say that a request
m is valid if (1) m is a VIR, or (2) m is invoked after i gets
initialized.

We are now ready to specify the properties of Abstract
(parametrized by a predicate P). In the following, “prefix”
refers to a non-strict prefix.

1. (Validity) In every commit/abort history, no request ap-
pears twice and every request is a valid request, or an
element of a valid init history.

2. (Termination) If a correct client c invokes a valid request
m, then c eventually commits or aborts m.

3. (Progress) If a correct client c invokes a valid request m
and some predicate P holds, then c commits m.

4. (Init Order) The longest common prefix of all valid init
histories is a prefix of any commit or abort history.

5. (Commit Order) Let h and h′ be any two commit histo-
ries: either h is a prefix of h′ or vice versa.

6. (Abort Order) Every commit history is a prefix of every
abort history.

7. (Switching Monotonicity) For every Abstract instance i,
i < next(i).

It is important to see that Abstract is a strict generaliza-
tion of BFT. Namely, BFT is precisely an Abstract (with
id i = 1) that never aborts. In this case, Abort Order and
Switching Monotonicity become irrelevant, and Init Order
trivially holds.

We build BFT protocols by composing Abstract in-
stances. At the heart of the composition lies a simple scheme
(we refer to as Abstract composition algorithm (ACA)),
given in Figure 15, where: a) correct clients use an abort
history of an aborting Abstract instance (e.g., i) as the init
history for the next instance (next(i)), and b) a given client
invokes next(i) with an init history included only once
(with its first invocation of next(i)): subsequently, it invokes
next(i) without any init history.

INVOKEi (m,[h])

active:=i

active = i

Invokeactive
(m,[h])

ABORTi (m,hA,next) COMMITi (m,rep(hC))

active : = next;
h := hA;

Abortactive
(m,hA,next)

Commitactive
(m,rep(hC))

no

yes

initialization

Figure 15. Abstract composition algorithm (ACA). Invoca-
tions/indications of the composed Abstract are in uppercase.

The key invariant in the Abstract framework is idempo-
tence: a composition of any two Abstract instances is, itself,
an Abstract instance. More precisely:

Theorem 1. Given any two Abstract instances i and i′ and
integer i′′, such that i′ = next(i) and next(i′) = i′′, ACA
implements a single Abstract instance with the instance id i,
such that next(i) = i′′.

By induction, the theorem extends to a composition of
any number of Abstract instances, which yields again an
Abstract instance. To prove our composition theorem, we
specified ACA and Abstract properties in +CAL/TLA+ and
leveraged their correctness using the TLC model checker
[16, 18].

Details of the model checking are given in Figures 16-
18. In Figures 16- 18, for simplicity, we focused on model
checking the case where i = 1 to avoid simulating input init
histories (not used for instance i = ABSID = 1). More-
over, we assumed (without loss of generality) next(i) = i+
1. We model checked the configuration with two clients, with
1 or 2 requests per client (MaxReq = 1 or MaxReq = 2).

Output of the TLC model checker for the evaluated configu-
ration is given in Figure 18.

1 module Abstract
2 extends Integers, TLC , FiniteSets, Sequences
3 constants MaxReq , ABSID , Abstract , Client , LCPrefix (), Set2Sequence(,), InitHistories(), Tails()

5 Requests ∆= 1 . . MaxReq ∗ Cardinality(Client) contains all possible requests

7 prefix (m, h) ∆= (Len(m) ≤ Len(h)) ∧ (∀ i ∈ 1 . . Len(m) : m[i] = h[i]) Definition of a non-strict prefix

9 Checks whether commit history ch satisfies Commit Order

10 CommitOrder(ch, ex) ∆=
11 ∀m ∈ ex : m.type = “COMMIT”⇒ (prefix (m.history , ch) ∨ prefix (ch, m.history))

13 Checks whether commit history ch satisfies Abort Order

14 AbortOrder4Commit(ch, ex) ∆= ∀m ∈ ex : m.type = “ABORT” ⇒ prefix (ch, m.history)

16 Checks whether abort history ah satisfies Abort Order

17 AbortOrder(ah, ex) ∆= ∀m ∈ ex : m.type = “COMMIT”⇒ prefix (m.history , ah)

19 Recursive functions are prefixed with R

20 RTails(histories) ∆=
21 if histories = {} then {}
22 else let h ∆= choose m ∈ histories : m ∈ histories
23 in {Tail(h)} ∪ Tails(histories \ {h})
24 RLCPrefix (histories) ∆= Returns a largest common prefix of a set of histories

25 if histories = {} then 〈〉
26 else let hist ∆= choose m ∈ histories : ∀mm ∈ histories : Len(m) ≤ Len(mm)
27 in if (hist = 〈〉) ∨ (∃m1 ∈ histories : Head(hist) 6= Head(m1))
28 then 〈〉
29 else 〈Head(hist)〉 ◦ LCPrefix (Tails(histories))
30 RInitHistories(inv) ∆= Returns a set of init histories from a set of invoked requests inv

31 if ∀mm ∈ inv : mm.type 6= “INIT” then {}
32 else let init ∆= choose m ∈ inv : m.type = “INIT”
33 in {init .history} ∪ InitHistories(inv \ {init})
34 InitOrder(h, inv) ∆= prefix (LCPrefix (InitHistories(inv)), h) Checks whether commit/abort history h satisfies Init Order

36 Response(m, ex) ∆= {mm ∈ ex : m.req = mm.req}

38 Checks whether h is a valid init histories (VIH) for instance AbsID

39 VIH (h, AbsID , ex) ∆= ∃ precID ∈ Abstract : ∃m ∈ ex [precID] : ∧m.type = “ABORT”
40 ∧m.history = h
41 ∧m.Next = AbsID

43 Returns a set of valid requests for AbsID that were invoked but not yet committed/aborted

44 NewValidRequest(AbsID , inv , ex) ∆= {m ∈ inv [AbsID] : m.valid = true ∧ Response(m, ex [AbsID]) = {}}

46 Histories(ValidRequests()) returns a set of histories that conform with Abstract Validity

47 Exists(req , h) ∆= ∃ i ∈ 1 . . Len(h) : h[i] = req
48 ValidRequests(AbsID , inv , ex) ∆= {req ∈ Requests : ∃mm ∈ inv : ∨ (mm.req = req ∧mm.valid = true)
49 ∨ (∧mm.type = “INIT”
50 ∧ Exists(req , mm.history)
51 ∧VIH (mm.history , AbsID , ex))}
52 SetPermutations(len, S) ∆=
53 {f ∈ [1 . . len → S] : ∀ v , w ∈ 1 . . len : (v = w) ∨ f [w] 6= f [v]}
54 RSet2Sequence(len, S) ∆=
55 if len = 0 then {} else SetPermutations(len, S) ∪ Set2Sequence(len − 1, S)
56 Histories(invokedReqs) ∆= Set2Sequence(Cardinality(invokedReqs), invokedReqs)

58 validCommitHistories(newReq , AbsID , inv , ex) ∆= Returns all possible commit histories for a given newReq

59 {ch ∈ Histories(ValidRequests(AbsID , inv [AbsID], ex)) : ∧ Exists(newReq .req , ch)
60 ∧ CommitOrder(ch, ex [AbsID])
61 ∧AbortOrder4Commit(ch, ex [AbsID])
62 ∧ InitOrder(ch, inv [AbsID])}

1

Figure 16. Abstract model checking in +CAL/TLA+ 1/3.

64 validAbortHistories(newReq , AbsID , inv , ex) ∆= Returns all possible abort histories for a given newReq

65 {ah ∈ Histories(ValidRequests(AbsID , inv [AbsID], ex)) : ∧AbortOrder(ah, ex [AbsID])
66 ∧ InitOrder(ah, inv [AbsID])}

68 next(AbsID) ∆= AbsID + 1 Sample next() function

–algorithm ACA{
variables \ ∗Global variables for asserting correctness

Invoked = [i ∈ Abstract 7→ {}]; Executed = [i ∈ Abstract 7→ {}];
INVOKED = {}; EXECUTED = {};
UniqueReqID = 0;

finished = [i ∈ Client 7→ false];

macro RETURN (m){EXECUTED := EXECUTED ∪ {m}; }
macro INVOKE(m){

if (m.type = “NORMAL”)

INVOKED := INVOKED ∪ {[type 7→ “NORMAL”, req 7→ m.req, valid 7→ (ABSID = 1) ∨ (EXECUTED 6= {})]}}

macro Return(AbsID , m){Executed [AbsID] := Executed [AbsID] ∪ {m}}
macro Invoke(AbsID , m){
if (m.type = “NORMAL”)

Invoked [AbsID] := Invoked [AbsID] ∪ {[type 7→ “NORMAL”, req 7→ m.req, valid 7→ (AbsID = 1) ∨ (Executed [AbsID] 6= {})]}
else Invoked [AbsID] := Invoked [AbsID] ∪ {[type 7→ “INIT”, req 7→ m.req, history 7→ m.history,

valid 7→ Executed [AbsID] 6= {} ∨VIH (m.history, AbsID , Executed)]}}

process(clnt ∈ Client)

variables absReq; active = 1;

localts = 0; \ ∗ localts : counter for local requests for model checking purposes

{C : while(localts < MaxReq){
localts := localts + 1;

UniqueReqID := UniqueReqID + 1;

\ ∗ Requests without init histories are tagged as “NORMAL”.

absReq := [type 7→ “NORMAL”, req 7→ UniqueReqID];

INVOKE(absReq);

absInv : Invoke(active, absReq);

absResp : with(m ∈ Response(absReq, Executed [active]))

if (m.type = “ABORT” ∧ active = 1){
active := m.Next ;

\ ∗ Requests with init histories are tagged as “INIT”

absReq := [type 7→ “INIT”, req 7→ absReq.req, history 7→ m.history];

goto absInv ; }
else{
RETURN (m);

goto C ; }};
finished [self] := true} \ ∗ end process(clnt)

process(AbsID ∈ Abstract){
S : while(∃ c ∈ Client : finished [c] = false){

with(newReq ∈ NewValidRequest(self , Invoked , Executed)){
either{
with(hist ∈ validCommitHistories(newReq, self , Invoked , Executed))

Return(self , [type 7→ “COMMIT”, req 7→ newReq.req, history 7→ hist]); }
or{
with(hist ∈ validAbortHistories(newReq, self , Invoked , Executed))

Return(self , [type 7→ “ABORT”, req 7→ newReq.req, Next 7→ next(self), history 7→ hist])}}}}
} \ ∗ algorithm ACA

125 BEGIN TRANSLATION

126 END TRANSLATION

128 Perms ∆= Permutations(Client)

130 Abstract properties

131 VALIDITY (id , ex , inv) ∆= ∀m ∈ ex : (let h ∆= m.historyin
132 (∀ i ∈ 1 . . Len(h) : ∧ h[i] ∈ ValidRequests(id , inv , ex)
133 ∧ (∀ k ∈ i + 1 . . Len(h) : h[i] 6= h[k])))

2

Figure 17. Abstract model checking in +CAL/TLA+ 2/3.

135 INITORDER ∆= true Since we implement Abstract with id 1, Init Order trivially holds

136 COMMITORDER(ex) ∆= ∀m ∈ ex : (m.type = “COMMIT”⇒ CommitOrder(m.history , ex))
137 ABORTORDER(ex) ∆= ∀m ∈ ex : (m.type = “ABORT”⇒ AbortOrder(m.history , ex))
138 SWITCHING(ex) ∆= ∀m ∈ ex : (m.type = “ABORT”⇒ m.Next = next(next(1)))

140 Safety ∆= ∧VALIDITY (ABSID , EXECUTED , INVOKED)
141 ∧ INITORDER
142 ∧ COMMITORDER(EXECUTED)
143 ∧ABORTORDER(EXECUTED)
144 ∧ SWITCHING(EXECUTED)

146 TERMINATION (ex , inv) ∆= (∀ self ∈ ProcSet : pc[self] = “Done”)⇒
147 (∀m ∈ inv : ∃mm ∈ ex : m.req = mm.req)

149 Liveness ∆= TERMINATION (EXECUTED , INVOKED)
150

\ ∗ Results SPECIFICATION Spec

constant

ABSID = 1 \ ∗ implemented Abstract instance

Abstract = {1, 2}
LCPrefix ← RLCPrefix

Set2Sequence ← RSet2Sequence

InitHistories ← RInitHistories

Tails ← RTails

MaxReq = 1

Client = {p1, p2}

SYMMETRY Perms INVARIANT Safety PROPERTY Liveness

Model checking completed. No error has been found. Estimates of the probability that TLC did not check all reachable states because

two distinct states had the same fingerprint:

calculated (optimistic): 1.1906511475541504E − 12 based on the actual fingerprints: 7.615995759161076E − 12

9398 states generated, 5041 distinct states found, 0 states left on queue. The depth of the complete state graph search is 19.

With MaxReq = 2

Model checking completed. No error has been found. Estimates of the probability that TLC did not check all reachable states because

two distinct states had the same fingerprint:

calculated (optimistic): 9.900040347878242E − 5 based on the actual fingerprints: 6.460365656696169E − 5

85564169 states generated, 44799917 distinct states found, 0 states left on queue. The depth of the complete state graph search is 27.

3

Figure 18. Abstract model checking in +CAL/TLA+ 3/3.

B. Detailed protocol descriptions
In this Appendix, we give the details of ZLight, Quorum,
Chain and their shared panicking mechanism (Sec. B.2 -
B.5). For ease of presentation, we first give details about han-
dling invocations without init histories and then (Sec. B.6)
we show how we handle init histories and switch between
Abstract instances in AZyzzyva and Aliph. Finally, we give
the details of our checkpointing subprotocol in Section B.7.

Correctness proofs can be found in Appendix C.

B.1 Notation
A message m sent by process p to the process q and authen-
ticated with a MAC is denoted by 〈m〉µp,q

. A process p can
use vectors of MACs (called authenticators [6]) to simulta-
neously authenticate the message m for multiple recipients
belonging to the set S; we denote such a message, which
contains 〈m〉µp,q , for every q ∈ S, by 〈m〉αp,S

. In addition,
we denote the digest of the message m by D(m), whereas
〈m〉σp

denotes a message that contains D(m) signed by the
private key of process p and the message m. All processes
are assumed to own the public key of every other process.
Finally, we denote the set of all (3f + 1) replicas by Σ.

i - current Abstract id

c/rj - client (resp., replica) ID

tc - local timestamp at client c

tj [c] - the highest tc seen by replica rj

o - operation invoked by the client

LHj - a local history at replica rj

replyj - rep(LHj) (application reply in function of LHj)

snj - sequence number at replica rj (not used in Quorum)

Figure 19. Message fields and local variables.

Notation for message fields and client/replica local vari-
ables used in ZLight, Quorum and Chain is shown in Fig-
ure 19. To help distinguish clients’ requests for the same op-
eration o, we assume that client c calls Invokei(req), where
req = 〈o, tc, c〉 and where tc is a unique, monotonically in-
creasing client’s timestamp. A replica rj executes req by ap-
pending it to LHj .

B.2 ZLight details
Step Z1. On Invokei(req), client c sends the message
m′ = 〈REQ, req, i〉αc,Σ to the primary (say r1) and trig-
gers timer T .

Step Z2. The primary r1 on receiving m′ = 〈REQ, req, i〉αc,Σ ,
if:

• req.tc is higher than t1[c],

then it:

• updates t1[c] to req.tc,
• increments sn1, and

• sends 〈〈ORDER, req, i, sn〉µr1,rj
, MACj〉 to every replica

rj , where MACj is the MAC entry for rj in the client’s
authenticator for m′.

Step Z3. Replica rj on receiving (from primary r1)
〈〈ORDER, req, i, sn′〉µr1,rj

, MACj〉, if:

• MACj authenticates req and i,
• sn′ = snj + 1, and
• tj [c] < req.tc,

then it:

• updates snj to sn′ and tj [req.c] to req.tc,
• executes req, and
• sends 〈RESP, replyj , D(LHj), i, req.tc, rj〉µrj,c

to c.8

Moreover, if MACj verification fails, rj stops executing
Step Z3 in instance i.

Step Z4. If client c receives 3f+1 〈RESP, reply, LHDigest,
i, req.tc, ∗〉µ∗,c messages from different replicas before ex-
piration of T , with identical digests of replicas’ local history
(LHDigest) and identical replies (or digests thereof), then
the client commits req with reply. Otherwise, the client
triggers the panicking mechanism explained in Section B.5
(Step P1).

B.3 Quorum details
Step Q1. On Invokei(req), client c sends message 〈REQ, req, i〉µc,Σ

to all replicas and triggers timer T .

Step Q2. Replica rj on receiving 〈REQ, req, i〉µc,Σ from
client c, if:

• req.tc is higher than tj [c]

then it:

• updates tj [c] to req.tc,
• executes req, and
• sends 〈RESP, replyj , D(LHj), i, req.tc, rj〉µrj,c

to c.

Step Q3. Identical to Step Z4 of ZLight.

B.4 Chain details
In the following, we assume that every CHAIN message
sent by process p contains its respective chain authenticator
(CA), as well as MACs p received from its predecessor ←−p
destined to processes in p’s successor set (see Sec. 5.1.2).

Step C1. On Invokei(req), client c sends the message
m′ = 〈CHAIN, req, i〉 to the head (say r1) and triggers
the timer T .

8 As an optimization (which also applies to Step Q2 of Quorum), all but one
designated replica can send reply digests D(replyj) instead of replyj .

Step C2. The head r1, on receiving m = 〈CHAIN, req, i〉
from client c, if:

• req.tc is higher than t1[c], and
• the head can verify client’s MAC (otherwise the head

discards m),

then the head:

• updates t1[c] to req.tc,
• increments sn1, and
• sends 〈CHAIN, req, i, sn1,⊥〉 to −→r1 = r2.

Step C3. Replica rj on receiving m = 〈CHAIN, req, i, sn,
REPLY 〉 from←−rj , if

• it can verify MACs from all processes from its predeces-
sor set against the content of m,

• sn = snj + 1, and
• req.tc is higher than tj [c],

then it:

• updates snj to sn and tj [c] to req.tc,
• (ii) executes req, and
• (iii) sends 〈CHAIN, req, i, sn,REPLY, LHDigest〉 to−→rj , where REPLY = LHDigest = ⊥ in case of the

first 2f replicas, REPLY = D(replyj) and LHDigest =
D(LHj) in case i ∈ {2f + 1 . . . 3f}, or REPLY =
replyj and LHDigest = D(LHj) in case rj is tail.

In case MAC verification mentioned above fails, replica
stops executing Step C3 in instance i.

Step C4. If client c receives 〈CHAIN, req, i, ∗, reply, LHDigest〉
from the tail before expiration of T , and with MACs from
last f + 1 replicas that authenticate req, i, LHDigest and
D(reply) (or reply itself), then c commits req with reply.
Otherwise, the client triggers the panicking mechanism ex-
plained in the following section (Step P1, Sec. B.5).

B.5 Panicking mechanism
This is the mechanism through which we initiate the switch-
ing from ZLight (resp., Quorum, Chain) in Step Z4 (resp.,
Q3, C4).

Step P1. If the client does not commit request req by the ex-
piration of timer T (triggered in Steps Z1/Q1/C1), c panics,
i.e., it sends a 〈PANIC, req.tc〉µc,rj

message to every replica
rj . Since messages may be lost, client periodically PANIC
messages , until it aborts the request.

Step P2. Replica rj , on receiving a 〈PANIC, req.tc〉µc,rj

message, stops executing new requests (i.e., stops executing
Step Z3/Q2/C3) and sends 〈ABORT, req.tc, LHj , next(i)〉σrj

to c.

Step P3. When client c receives 2f + 1 〈ABORT, req.tc, ∗,
next(i)〉 messages with correct signatures from different
replicas and the same value for next(i), the client collects
these messages into the set ProofAHi

, and extracts the abort
history AHi from ProofAHi

as follows:

• First, c generates history h such that AH[j] equals the
value that appears at position j ≥ 1 of f + 1 different
histories LHj that appear in ProofAHi

;
• If such a value does not exist for position x then h does

not contain a value at position x or higher.
• Finally, AHi is the longest prefix of h in which no request

appears twice.

B.6 Handling init histories and switching
To switch from ZLight, Quorum or Chain instance i, client
invokes instance i′ = next(i) by accompanying req with
init history IHi′ = AHi and ProofAHi

. Then a replica run-
ning instance i′, executing its first request in i′ (e.g., in Step
C3 of Chain), simply makes the library call to verify IH ′i
against ProofAHi

following the algorithm given in Sec. B.5
and verifies that ABORT messages in ProofAHi indeed de-
clare i′ as next(i). In the case of switching to Backup, this
check is simply a part of the functionality implemented on
top of the underlying BFT.

To switch from Backup9, Backup replicas must provide
the client with f + 1 different signatures of the identical
abort history and the next Abstract instance id i′. This is
a reasonable requirement on the BFT that underlies Backup,
since any BFT protocol must anyway provide an identical
reply from at least f + 1 replica; in the case of Backup abort
history, we just require this particular reply to be signed
(we trivially implemented this in PBFT). Then, the client
includes these signatures with req in its invocations of an
Abstract i′ (e.g., ZLight) and replicas running i′, before
executing the request (e.g., in Step Z3 of ZLight), simply
verify the signatures against the submitted init history to find
f + 1 matching ones.

In all cases of switching, a replica running instance i′ ex-
ecutes all the requests contained in the first verified init his-
tory IH ′i before executing the invoked request itself. Repli-
cas simply ignore all subsequent init histories. Below we
summarize the additional init history related actions per-
formed by processes in steps of ZLight, Quorum and Chain.
In the following, we assume that the verification of init his-
tories is performed as described above.

Step Z1/Q1/C1. On Invokei′(req, IH), the message(s)
sent by the client contain also IH and the set of signa-
tures ProofIH returned by the preceding Abstract i, where

9 In AZyzzyva, Backup switches to ZLight, whereas in Aliph it switches to
Quorum.

i′ = next(i).

Step Z2/C2. If its local history LH1 is empty, the pri-
mary/head r1 executes the step only if IH can be verified
against ProofIH .

Step Z3/Q2/C3. If its local history LHj is empty, the replica
rj executes the step only if it receives IH that can be veri-
fied against ProofIH . If so, then (before executing req) rj
executes all the requests contained in IH (i.e., rj sets LHj

to IH); then rj executes req unless req was already in IH .

Step P1. On sending PANIC messages for a request that was
invoked with an init history, client also includes IH and the
set of signatures ProofIH returned by the preceding Ab-
stract i within a PANIC message.

Step P2. If its local history LHj is empty, replica rj , exe-
cutes the step only if IH can be verified against ProofIH .
Then, before executing the step as described in Section B.5,
rj first sets LHj to IH .

B.7 Lightweight checkpointing subprotocol
In ZLight, Quorum and Chain we use a lightweight check-
point subprotocol (LCS) to truncate histories every CHK
requests (in our evaluations, CHK = 128), similarly to
checkpoint protocols used in [6, 15]. Here, we explain our
simple LCS and its impact on our implementations as pre-
sented earlier in this appendix.

LCS consists in the following:

1. every replica rj increments the checkpoint counter cc and
sends it along with the digest of its local state to every
other replica (using simple point-to-point MACs), when
its (non-checkpointed suffix of) local history reaches
CHK requests. Then, rj triggers a checkpoint timer.

2. if the timer expires and there is no checkpoint, the replica
stops executing all requests.

3. If replica rj receives the digest of the same state st
with the same checkpoint counter number cc greater than
lastcc (initially lastcc = 0) from all replicas, rj : (a)
truncates its local history and checkpoints its state to st
and (b) stores cc to variable lastcc. Such a checkpointed
state (referred to as stcc) becomes a prefix of replicas’
local histories to which new requests are appended and is
treated as such in all operations on local histories in our
algorithms. Moreover, every abort or commit history of
length at most cc ∗ CHK is considered to be a prefix of
stcc.

LCS has no impact on ZLight, Quorum and Chain as de-
scribed earlier in this appendix, with a single exception, re-
lated to client extraction of abort histories from the received
ABORT messages (see Step P3, Sec. B.5). Namely, if the

client receives a history from some replica rj consisting of
a checkpointed state followed by CHK requests, the client
will first collapse all such histories into the single check-
pointed state (i.e., the client will perform the checkpoint on
behalf of the replica). Only in case the client cannot retrieve
t + 1 confirmations of (some) checkpointed state when ex-
ecuting Step P3 in this way, the client will repeat the proce-
dure described in this step with replica histories as received
from replicas, i.e., precisely as described in Step P3, Sec-
tion B.5.

C. Correctness proofs
In this Section, we give the correctness proofs of ZLight,Quorum,
and Chain. Moreover, we omit the correctness proof of
Backup which is straightforward due to the properties of the
underlying BFT. Finally, the proofs of liveness of our com-
positions trivially rely on the assumption of an exponentially
increasing Backup configuration parameter k (Sec. 4.3).

Since ZLight and Quorum share many similarities, we
give their correctness proof together. This is followed by the
proof of Chain.

C.1 ZLight and Quorum
In this Section, we prove that ZLight and Quorum imple-
ments Abstract. We first prove the common properties of
the two implementations and then focus on the only differ-
ent property (Progress).

Well-formed commit indications. It is easy to see that
the reply returned by a commit indication always equals
rep(h)), where (commit history) h is a uniquely defined
sequence of requests. Indeed, by Step Z4/Q3, in order to
commit a request a client needs to receive identical digests
of some history h′ and identical reply digests from all 3f +1
replicas including at least 2f +1 correct ones. By Step Z3 of
ZLight (reps., Q2 of Quorum), a digest of the reply sent by a
correct replica is D(rep(h′). Hence, h′ is exactly a commit
history h and is uniquely defined due to our assumption of
collision-free digests.

Moreover, since a correct replica executes an invoked
request before sending a RESP message in Step Z3 (resp.,
Q2), it is straightforward to see that if req is committed with
a commit history hreq, then req is in hreq .

Validity. For any request req to appear in a commit or
abort history, at least f + 1 replicas must have sent a history
(or a digest of a history) containing req to the client (see Step
Z4/Q3 for commit histories, and Step P3 for abort histories).
Hence, at least one correct replica appended req to its local
history. By Step Z3/Q2, the correct replica rj appends req
to its local history only if rj receives a REQ message with
a valid MAC from a client. This is, in turn, present only
if some client invoked req, or if req is contained in some
verified (valid) init history.

Moreover, by Step Z3/Q2, no replica executes the same
request twice (since every replica maintains tj [c]). Hence,
no request appears twice in any local history of a correct
process, and consequently, no request appears twice in any
commit history. In the case of abort histories, no request
appears twice by construction (see Step P3 Sec. B.5).

Termination. By assumption of a quorum of 2f+1 correct
replicas and fair-loss links: (1) correct replicas eventually
receive the PANIC message sent by correct client c (in Step
P1) and (2) c eventually receives 2f +1 abort messages from
correct replicas (sent in Step P2). Hence, if correct client c

panics, it eventually aborts invoked request req, in case c
does not commit req beforehand.

To prove Commit and Abort Ordering we first prove the
following Lemma.

Lemma 1. Let rj be a correct replica and LHreq
j the state

of LHj upon rj executes req. Then, LHreq
j remains a prefix

of LHj forever.

Proof. A correct replica rj modifies its local history LHj

only in Step Z3/Q2 by sequentially appending requests to
LHj . Hence, LHreq

j remains a prefix of LHj forever.

Commit Order. Assume, by contradiction, that there are
two committed requests req (by benign client c) and req′ 6=
req (by benign client c′) with different commit histories
hreq and hreq′ such that neither is the prefix of the other.
Since a benign client commits a request only if it receives
in Step Z4/Q3 identical digests of replicas’ local histories
from all 3f + 1 replicas, there must be a correct replica rj
that sent D(hreq) to c and D(hreq′) to c′ such that h(req)
is not a prefix of hreq′ nor vice versa. A contradiction with
Lemma 1.

Abort Order. First, we show that for every committed re-
quest req with the commit history hreq and any ABORT
message m sent by a correct replica rj containing local his-
tory LHm

j , hreq is a prefix of LHm
j . Assume, by contra-

diction, that there are request req′, correct replica rj′ and
ABORT message m′ such that the above does not hold.
Then, since a benign client needs to receive identical history
digests from all replicas to commit a request (Step Z4/Q3),
and since rj′ stops executing new requests before sending
any ABORT message (Step P2), rj′ executed req before
sending m′. However, by Lemma 1, hreq′ is a prefix of
LHm′

j′ — a contradiction.
By Step P3, a client that aborts a request waits for 2f + 1

ABORT messages including at least f + 1 from correct
replicas. Since any commit history hreq is a prefix of every
history sent in an ABORT message by any correct replica (as
shown above), at least f + 1 received histories will contain
hreq as a prefix, for any committed request req. Hence,
by construction of abort histories (Step P3 Sec. B.5) every
commit history hreq is a prefix of every abort history.

Init Order. By the clarifications of Step Z3/Q2 and Step
P2 given in Section B.6, every correct replica must initialize
its local history (with some valid init history) before sending
any RESP or ABORT message. Since any common prefix
CP of all valid init histories is a prefix of any particular
init history I , CP is a prefix of every local history sent
by a correct replica in an RESP or ABORT message. Init
Order for commit histories immediately follows. In the case
of abort histories, notice that at least out of 2f + 1 ABORT
messages received by a client on aborting a request in Step
P3, at least f + 1 are sent by correct processes and contain

local histories that have CP as a prefix. Hence, by Step P3,
CP is a prefix of any abort history.

ZLight Progress. Recall that ZLight guarantees to com-
mit clients’ requests if: there are no replica/link failures and
Byzantine client failures. We assume that the message pro-
cessing at processes takes negligible time and that clients
set the timer T triggered in Step Z1 to 3∆. Then, to prove
Progress, we prove a stronger property that no client exe-
cutes Step P1 and panics (consequently no client ever aborts
and Progress follows from Termination).

Assume by contradiction that there is a client c that panics
and denote the first such time by tPANIC . Since no client is
Byzantine, c must be benign and c invoked request req at
t = tPANIC − 3∆. Since no client panics by tPANIC all
replicas execute all requests they receive by tPANIC . Then,
it is not difficult to see, since there are no link failures, that:
(i) by t+∆ the primary receives req and take Step Z2 and (ii)
by time t+ 2∆ < tPANIC the replicas take Step Z3 for req.
Since the primary is correct all replicas execute all requests
received before tPANIC in the same order (established by
the sequence numbers assigned by the primary). Hence, by
t + 3∆ = tPANIC , c receives 3f + 1 identical replies (Step
Z4), commits req and never panics. A contradiction.

Quorum Progress. Recall that Quorum guarantees to
commit clients’ requests only if:

• there are no replica/link failures,
• no client is Byzantine, and
• there is no contention.

We assume that the message processing at processes takes
negligible time and that the timer T triggered in Step Z1
to 2∆. Like in the proof of ZLight Progress, we prove a
stronger property that no client executes Step P1 and panics.

Assume by contradiction that there is a client c that panics
and denote the first such time by tPANIC . Since no client is
Byzantine, c must be benign and c invoked request req at t =
tPANIC−2∆. Since no client panics by tPANIC all replicas
execute all requests they receive by tPANIC . Then, it is not
difficult to see, since there are no link failures, that by time
t + ∆ < tPANIC all replicas receive req and take Step Q2.
Since there is no contention and all replicas are correct, all
replicas order all requests in the same way and send identical
histories to the clients. Hence, by t + 2∆ = tPANIC , c
receives 3f +1 identical replies (Step Q3), commits req and
never panics. A contradiction.

C.2 Chain
In this Section, we prove that Chain implements Abstract
with Progress equivalent to that of ZLight.

We denote the predecessor (resp., successor) set of the
replica rj , by

←−
Rj (resp.,

−→
Rj). We also denote by Σlast the

set of the last f + 1 replicas in the chain order, i.e., Σlast =
{rj ∈ Σ : i > 2t}. In addition, we say that correct replica rj

executes req at position pos if snj = pos when rj executes
req.

Before proving Abstract properties, we first prove two
auxiliary lemmas. Notice also that Lemma 1, Section C.1,
extends to Chain as well.

Lemma 2. If correct replica rj executes req (at position sn,
at time t1), then all correct replicas sj , 1 ≤ j < i execute
req (at position sn, before t1).

Proof. By contradiction, assume the lemma does not hold
and fix rj to be the first correct replica that executes req (at
position sn), such that there is a correct replica rx (x < j)
that never executes req (at position sn); we say rj is the
first replica for which req skips. Since CHAIN messages are
authenticated using CAs, rj executes req at position sn only
if rj receives a CHAIN message with MACs authenticating
req and sn from all replicas from

←−
Rj authenticate req and

sn, i.e., only after all correct replicas from
←−
Rj execute req

at position sn. If rx ∈
←−
Rj , rx must have executed req

at position sn — a contradiction. On the other hand, if
rx /∈ ←−Rj , then rj is not the first replica for which req skips,
since req skips for any correct replica (at least one) from

←−
Rj

— a contradiction.

Lemma 3. If benign client c commits req with history h
(at time t1), then all correct replicas in Σlast execute req
(before t1) and the state of their local history upon executing
req is h.

Proof. To prove this lemma, notice that correct replica rj ∈
Σlast generates a MAC for the client authenticating req
and D(h′) for some history h′ (Step C3): (1) only after rj
executes req and (2) only if the state of LHj upon execution
of req equals h′. Moreover, by Step C3, no correct replica
executes the same request twice. By Step C4, a benign client
(resp., replica) cannot commit req with h unless it receives
a MAC authenticating req and D(h′) from every correct
replica in Σlast. Hence the lemma.

Well-formed commit indications. By Step C4, in order to
commit a request a client needs to receive MACs authen-
ticating LHDigest = D(h′) for some history h′ and the
reply digest from all replicas from Σlast, including at least
one correct replica. By Step C3, a digest of the reply sent by
a correct replica is D(rep(h′). Hence, h′ is exactly a commit
history h and is uniquely defined due to our assumption of
collision-free digests.

Moreover, since a correct replica executes an invoked
request before sending a CHAIN message in Step C3, it is
straightforward to see that if req is committed with a commit
history hreq , then req is in hreq.

Validity. For any request req to appear in a abort (resp.,
commit) history h, at least f +1 replicas must have have sent

h (resp., a digest of h) in Step P2 (resp., Step C3) such that
req ∈ h. Hence, at least one correct replica executed req.

Now, we show that correct replicas execute only requests
invoked by clients. By contradiction, assume that some cor-
rect replica executed a request not invoked by any client and
let rj be the first correct replica to execute such a request
req′ in Step C3 of Chain. In case j < f + 1, rj executes
req′ only if rj receives a CHAIN message with a MAC from
the client, i.e., only if some client invoked req, or if req is
contained in some valid init history. On the other hand, if
j > f + 1, Lemma 2 yields a contradiction with our as-
sumption that rj is the first correct replica to execute req′.

Moreover, by Step C3, no replica executes the same re-
quest twice (every replica maintains tj [c]). Hence, no request
appears twice in any local history of a correct process, and
consequently, no request appears twice in any commit his-
tory. In the case of abort histories, no request appears twice
by construction (see Step P3(ii) Sec. B.5).

Termination. See the proof of Termination for ZLight/Quorum
(Sec. C.1).

Moreover, to see that a committed request req must be
in its commit hreq, notice that a client needs to receive
the MAC for the same local history digest D(hreq) from
all f + 1 from Σlast including at least one correct replica
rj . By Step C3, rj executes req and appends it to its local
history LHj before authenticating the digest of LHj ; hence,
req ∈ hreq.

Commit Order. Assume, by contradiction, that there are
two committed request req (by benign client c) and req′ 6=
req (by benign client c′) with different commit histories hreq
and hreq′ such that neither is the prefix of the other. By
Lemma 3, there is correct replica rj ∈ Σlast that executed
req and req′ such that the state of LHj upon executing these
requests is hreq and hreq′ , respectively. A contradiction with
Lemma 1 (recall that this lemma extends to Chain as well).

Abort Order. Assume, by contradiction, that there is com-
mitted request reqC (by some benign client) with commit
history hreqC

and aborted request reqA (by some benign
client) with commit history hreqA

, such that hreqC
is not a

prefix of hreqA
. By Lemma 3 and the assumption of at most

f faulty replicas, all correct replicas (at least one) from Σlast
execute reqC and their state upon executing reqC is hreqC

.
Let rj ∈ Σlast be a correct replica with the highest index ind
among all replicas in Σlast. By Lemma 2, all correct repli-
cas execute all the requests in hreqC

at the same positions
these requests have in hreqC

. In addition, a correct replica
executes all the requests belonging to hreqC

before sending
any ABORT message in Step P2; indeed, before sending any
ABORT message, a correct replica must stop further execu-
tion of requests. Therefore, for every local history LHj that
a correct replica sends in an ABORT message, hreqC

is a
prefix of LHj .

Finally, by Step P3, a client that aborts a request waits
for 2f + 1 ABORT messages including at least f + 1 from
correct replicas. By construction of abort histories (Step P3)
every commit history, including hreqC

is a prefix of every
abort history, including hreqA

, a contradiction.
Init Order. The proof is identical to the proof of ZLight/Quorum

Init Order.
Progress. Chain guarantees to commit clients’ requests

under the same conditions as ZLight, i.e., if: there are no
replica/link failures and Byzantine client failures. Assuming
that the message processing at processes takes negligible
time, it is sufficient that clients set the timer T triggered in
Step C1 to (3f+2)∆. Then, Progress of Chain is very simple
to show, along the lines of ZLight Progress (Sec. C.1).

