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CONTENTS 1

Summary

Photoprocesses are ubiquitous in nature, science, and engineering. The understanding as well as the op-

timization of photochemical and photophysical properties of molecular systems requires computational

tools that are able to describe the dynamical evolution of the system in electronically excited states.

Ab Initio Molecular Dynamics (AIMD) based on Density Functional Theory (DFT) has become an

established tool for elucidating mechanisms of chemical reactions that occur in the electronic ground

state. However, to describe photoprocesses by AIMD, an underlying electronic-structure method that

is able to treat excited states is necessary. This complicates the description of these processes because

in the past this implied the use of computationally expensive wavefunction-based methods, which in

addition are not straightforward to use.

Time-Dependent Density Functional Theory (TDDFT) provides an in principle exact description of

electronically excited states, although in practice, approximations have to be introduced. Compared to

wavefunction-based methods, TDDFT is computationally less demanding and is relatively straightfor-

ward and easy to use. Recently, TDDFT nuclear gradients have become available and allow to carry out

AIMD in excited states.

In this thesis a TDDFT-based AIMD method that is able to account for non-adiabatic effects is

developed and implemented. The non-adiabatic couplings are computed by means of a Kohn-Sham

orbital based reconstruction of the many-electron wavefunction for ground and excited states. The non-

adiabatic scheme is based on the fewest switches trajectory surface hopping (SH) method introduced by

Tully.

The method is applied to describe decay processes, such as fragmentation or isomerization, that

occur upon photoexcitation of the molecules protonated formaldimine and oxirane. In the case of proto-

nated formaldimine, the results of the TDDFT-SH method are in good agreement with SH simulations

based on the state-averaged complete active space (SA-CASSCF) method, both with respect to the ob-

served reaction mechanisms and the excited state life times. In the case of oxirane, the TDDFT-SH

simulations confirm the main experimental results and provide an additional refinement of the postu-

lated reaction mechanism.

The accuracy of TDDFT is investigated with respect to different issues that are especially impor-

tant for the proper description of photoprocesses. These aspects include the accuracy of non-adiabatic
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coupling (NAC) vectors, the description ofS1-S0 conical intersections, and the description of locally ex-

cited states in systems where charge transfer (CT) states are present, that are affected by the well-known

CT failure of TDDFT.

Concerning the NAC vectors, a qualitative agreement with SA-CASSCF is found, although mag-

nitudes are underestimated by TDDFT/PBE. Regarding the description of conical intersections to the

ground state, we find as expected that TDDFT in the adiabatic approximation (ALDA) is not able to

predict an intersection that is strictly conical. However, we find that TDDFT is able to approximate

a conical intersection that has a similar shape as the one predicted by SA-CASSCF. For an electron

donor-bridge-acceptor molecule it is shown that the CT failure of TDDFT can also considerably affect

properties of non-CT states. The use of TDDFT using conventional exchange-correlation functionals is

thus not recommended for the description of such systems. Using the second-order approximate coupled

cluster (CC2) method in conjunction with a high quality basis set, an accurate and balanced description

of both locally excited and CT states can be made. The use of CC2 with large basis sets for AIMD

simulations is however still computationally unaffordable for larger systems.

TDDFT is still in its infancy and several attempts to cure some of its defiencies have already been

made. These attempts mainly concern improvements of the approximations of the exchange-correlation

functionals and associated TDDFT kernels. The TDDFT-SH method that has been developed in this

thesis can in principle be applied in combination with any approximation for the exchange correlation

functional, provided that nuclear gradients for this approximation are available and the computational

cost remains acceptable. In this way, the method developed here is able to directly profit from the ongo-

ing improvements in the active research field of exchange-correlation functionals and kernels.

key words: TDDFT, Tamm-Dancoff approximation, CC2, non-adiabatic molecular dynamics, non-

adiabatic couplings, surface hopping, conical intersection, charge transfer failure, oxirane, formaldimine,

donor-bridge-acceptor, photoisomerization, ring-opening, photoinduced electron transfer.



Zusammenfassung

Photoprozesse sind allgegenwärtig in Natur, Wissenschaft und Ingenieurwesen. Für das Verständ-

nis sowie die Optimierung von photochemischen und photophysikalischen Eigenschaften molekularer

Systeme sind öfters rechengestützte Methoden notwendig, die die dynamische Evolution des Systems

beschreiben können.

Ab Initio Molekular Dynamik (AIMD), basierend auf Dichtefunktionaltheorie, ist eine etablierte

Methode zur Erforschung von Mechanismen von Prozessen, die im elektronischen Grundzustand stat-

tfinden. Zur Beschreibung von Photoprozessen durch AIMD muss jedoch eine Methode verwendet wer-

den die in der Lage ist elektronisch angeregte Zustände zu beschreiben. Dies kompliziert die Beschrei-

bung dieser Prozesse, denn in der Vergangenheit implizierte dies die Verwendung von rechenaufwendi-

gen, auf Wellenfunktionen basierenden Methoden, die nicht einfach anzuwenden sind.

Zeitabhängige Dichtefunktionaltheorie (TDDFT) liefert eine im Prinzip exakte Beschreibung von

elektronisch angeregten Zuständen, die in der Praxis jedoch Näherungen erfordert. Im Vergleich zu

Methoden basierend auf Wellenfunktionen ist TDDFT weniger rechenaufwendig und relativ einfach

zu benutzen. Erst seit kurzem, sind nukleare Gradienten für TDDFT verfügbar und ermöglichen die

Anwendung von AIMD in angeregten Zuständen.

In dieser Promotionsarbeit wird eine AIMD Methode entwickelt und implementiert, die auf linear

response TDDFT basiert ist und nicht-adiabatische Effekte berücksichtigt. Die nicht-adiabatischen Kop-

plungen werden anhand einer Vielelektronen Wellenfunktion von Grundzustand und angeregten Zustän-

den berechnet, die auf der Basis von Kohn-Sham Orbitalen rekonstruiert wurde. Das nicht-adiabatische

Schema basiert auf derFewest Switches Surface Hopping(SH) Methode, die von Tully eingeführt wurde.

Die Methode ist in der Lage Prozesse wie Fragmentierung und Isomerisierung zu beschreiben, die nach

der elektronischen Anregung der Moleküle Oxiran und Formaldiminium Kation erfolgen. Im Falle des

3
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Formaldimininium Kations sind die Resultate der TDDFT-SH Methode bezüglich des Reaktionsmech-

anismus sowie der Lebensdauer des angeregten Zustandes in guter Übereinstimmung mit Simulationen

die auf der State-Averaged Complete Active Space (SA-CASSCF) Methode basieren. Im Falle von Oxi-

ran bestätigen die TDDFT-SH Simulationen die Hauptergebnisse der Experimente und geben zusätzlich

Informationen zu dem postulierten Reaktionsmechanismus.

Ausserdem wird die Genauigkeit von TDDFT in anbetracht verschiedener Aspekte untersucht, die

speziell wichtig sind um Reaktionen in angeregten Zuständen zu beschreiben. Zu diesen Aspekten

zählt die Genauigkeit von nicht-adiabatischen Kopplungsvektoren, die Beschreibung von konischen

Verschneidungen, sowie die Beschreibung von lokal angeregten Zuständen, die beeinflusst sind von der

Gegenwart von Elektronentransferanregungen (CT-Anregungen), die von TDDFT fehlerhaft beschrieben

werden.

Die Beschreibung der Kopplungsvektoren stimmt qualitativ überein mit Ergebnissen der SA-CASSCF

Methode, wobei jedoch die Beträge der Vektoren von TDDFT/PBE unterschätzt werden. Wie er-

wartet, ist adiabatische TDDFT nicht in der Lage exakt konische Verschneidungen zum Grundzus-

tand vorherzusagen. Jedoch können Verschneidungen näherungsweise konisch beschrieben werden, die

der Form von Verschneidungen beschrieben mit SA-CASSCF ähneln. Anhand eines Elektronendonor-

Brücke-Akzeptormolekül wird gezeigt, dass der CT Fehler von TDDFT die Beschreibung von lokal

angeregten Zuständen entscheidend verfälschen kann. Es ist somit nicht empfohlen, TDDFT mit den

konventionellen Austausch-Korrelations-Funktionalen (xc-Funktionalen) zur Beschreibung solcher Sys-

teme zu benutzen. Die Second-Order Approximate Coupled Cluster (CC2) Methode in Verbindung mit

Basissätzen von guter Qualität ist jedoche in der Lage, lokale sowie CT Anregungen gleich gut und

mit hoher Genauigkeit zu beschreiben. Die Anwendung dieser Methode in AIMD Simulationen ist auf

diesem Niveau jedoch noch zu rechenaufwendig für grössere Systeme.

Jedoch ist TDDFT eine relative junge Methode und einige Versuche zur Behebung dieser Fehler

wurden schon gemacht. Diese Versuche betreffen zumeist die Verbesserung der Näherungen im xc-

Funktional und dem damit verbundenen TDDFT Kern. Die TDDFT-SH Methode, die in dieser Pro-

motionsarbeit entwickelt wurde, kann im Prinzip mit jeder beliebigen Näherung für das xc-Funktional

angewendet werden, vorrausgesetzt dass nukleare Gradienten verfügbar sind und der Rechenaufwand

angemessen bleibt. Auf diese Weise ist die hier entwickelte Methode in der Lage von den laufenden
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Verbesserungen im Feld der xc-Funtionale direkt zu profitieren.

Schlüsselwörter: Zeitabhängige Dichtefunktionaltheorie, Tamm-Dancoff Näherung, CC2, nicht-

adiabatische Molekulardynamik, Surface Hopping, konische Verschneidung, Ladungstransfer-Fehler,

Oxiran, Formaldimin, Donor-Bridge-Acceptor, Photoisomerisierung, Ring-Öffnung, photoinduzierter

Elektronentransfer.
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Chapter 1

Introduction

Photoprocesses are physical and chemical processes that involve absorption or emission of visible or ul-

traviolet light [1]. They may be further classified as either photochemical or photophysical depending on

the kind of process (Fig. 1.1), but such a distinction might not always be clearly defined. In photochem-

ical reactions a molecule A is transformed into a chemically different molecule B, so photochemical

reactions usually involve the making and/or breaking of chemical bonds. Typical examples are photoin-

duced fragmentation or polymerisation reactions. In contrast, photophysical processes do not transform

a molecule into a chemically different species. They might transform a molecule into another state of the

same species, or simply involve absorption or emission of light, decay, and energy transfer phenomena.

Fluorescence and phosphorescence are examples of photophysical processes. Some processes might be

included in one or the other group, depending on whether one might define the reaction product as a new

chemical species or not. Intramolecular photoinduced electron transfer reactions or photoisomerization

reactions are examples of processes that might be assigned to either branch.

Photoprocesses are abundant in nature and have a large impact on the organization of life on earth.

Photosynthesis in plants [3] is probably the most well known example of a photoreaction. In photosyn-

thesis sun light is converted into chemical energy that is used to synthesize biomolecules. This occurs

in a very specific manner requiring a precise fine tuning of the photochemical properties of biochro-

mophores. Other examples of photoprocesses in living organisms are the process of vision, and chemi-

luminescence and phosphorescence phenomena in insects and fishes. However, the exposure to light

can also damage biomolecules, which can have fatal consequences for a living organism [4–6]. This

7
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Absorption of light

Electronic excitation

Dissipation mechanisms

Radiative                                                      Radiationless

(1) Fluorescence
(2) Phosphorescence

Light → Light
hν → hν’

Physical
(1) Internal conversion
(2) Intersystem crossing

Light → Heat
hν → Q

Chemical
(1) Singlet chemistry
(2) Triplet chemistry

Light → Chemistry (+ Heat)
hν → ΔG (+Q)

Photophysics                                                                Photochemistry
 

Net  effect:

Figure 1.1: Possible decay pathways for a photoinduced process, according to Ref. [2].
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is not surprising considering that most degradation and transformation reactions of the atmosphere are

initiated by the absorption of light [7].

Industrial applications of photochemistry include chemical synthesis, and increasingly also modern

technologies such as photovoltaic, optical switches, and light driven molecular motors [8, 9] have their

basis in photophysical principles.

The scientific understanding of photoprocesses in nature as well as the optimization of photochem-

ical properties of molecules in nano science requires accurate computational tools and physical models

to describe these processes.

The central requirement for such theoretical tools is their ability to describe ground and excited state

potential energy surfaces with high accuracy. Furthermore, the accurate description of the dynamical

behavior of the system is of special interest in photochemistry. While ground state reactions can often

be described properly by a minimum energy pathway that is constructed by examination of minima and

transition states along the reaction coordinate, this is not the case for photoreactions, which are char-

acterized by a high excess energy and often occur far from equilibrium conditions [10]. Finally, much

importance lies in the ability to describe radiationless non-adiabatic transitions, which are electronic

transitions that are coupled to the movement of the nuclei. Research in theoretical chemistry over the

last number of decades, has shown that these kind of transitions are “the rule rather than the exception”

in photoprocesses [11] and often determine reaction rates.

Molecular dynamics is a tool to model physical and chemical processes on an atomic level in real

time. Ab Initio Molecular Dynamics (AIMD) [12] usually refers to a mixed quantum and classical form

of MD. In this model, the nuclear motion is described classically as the motion of point charges with

a given mass, whereas the potential energy surface is obtained by a quantum mechanical electronic

structure method. The advantage of this approach is that no predefined force-field is required, because

the nuclear forces are computed “on the fly” as derivatives of the total potential energy.

AIMD in the electronic ground state is well established [12,13] and usually relies on Density Func-

tional Theory (DFT) as quantum mechanical method to describe the electrons. DFT is computationally

less expensive than most wavefunction based methods, but can only be applied for the electronic ground

state. For this reason, non-adiabatic excited state simulations usually imply wavefunction based elec-

tronic structure methods ( [14] and references therein), such as Multi-Configurational Self-Consistent



10 Introduction

Field (MCSCF) methods. Such methods can usually be applied by specialists only because the choice

of the kind and number of configurations that must be included is not trivial. An inappropriate choice

of the active configurations can bias the evolution of the system. Moreover, the computational expense

grows fast with the size of the system and can get intractable for larger molecules.

As alternative to these approaches, special extensions of ground state DFT such as the multiplet-

sum method [15, 16] or the Restricted Open-Shell Kohn-Sham (ROKS) approach provide approximate

descriptions of excited states, that are however limited either to special symmetries or to a small number

of excited states. For instance the ROKS method [17] provides a description of the first excited state and

has been applied within a non-adiabatic dynamics scheme [18].

However, during the last 10 years, Time-Dependent Density Functional Theory (TDDFT) [19] has

become a popular method for static calculations of electronically excited states [20]. The main advantage

of this theory is that it provides in principle an exact description of electronically excited states for a

reasonable computational cost. In contrast to MCSCF methods, the application of TDDFT does not

require any information about the chemistry of the system. Recently, TDDFT nuclear gradients have

been implemented in several public domain and commercial computer codes and thus applications to

excited state MD have become feasible.

The aim of this thesis is to explore the possibility to use TDDFT for the modeling of non-adiabatic

photodynamical processes. The first objective is the development of a non-adiabatic AIMD method

based on TDDFT [21]. The second topic, is the application of the developed method to different chemi-

cal systems and to assess the accuracy of TDDFT. Although being in principle an exact theory, in practice

the use of TDDFT requires unavoidable approximations. These approximations can eventually lead to

a decrease in accuracy and sometimes to a qualitatively incorrect description. To gauge the accuracy of

the obtained results they are compared to predictions of other theoretical approaches and experimental

data.

In Chapter 2, theoretical principles of molecular dynamics are summarized. Subsequently, different

ground and excited state electronic structure methods are reviewed (Chapter 3). In Chapter 4, a non-

adiabatic MD approach based on the surface hopping method and TDDFT is developed and applied to

a model system. The next Chapter investigates the accuracy of non-adiabatic coupling vectors that were

used in the surface hopping approach. In Chapter 6 the TDDFT-SH method is applied to the excited state
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reactions of oxirane and compared to experimental data, with a special focus on the description of conical

intersections by TDDFT. The last application (Chapter 7) investigates the photophysical properties of

an electron donor-acceptor molecule. This study employs TDDFT and Second-Order Approximate

Coupled Cluster (CC2) calculations, and compares the performance of the two methods. The last chapter

(Chapter 8) provides a summary and outlook.
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Chapter 2

Basic Principles of Non-Adiabatic

Molecular Dynamics

This chapter reviews some of the basic concepts that have been found to be useful for the understanding

and modeling of photoprocesses. For more detailed information the reader is referred to textbooks, re-

view articles, and the original articles that cover theses aspects in more detail. For example derivations

of the Born-Oppenheimer (BO) approximation [22], the BO expansion [23], and the theory of non-

adiabatic couplings can be found in the first article [24] of the textbook on conical intersections [11] and

elsewhere [25, 26]. Aspects on the topological properties of potential energy surfaces may be found in

textbooks on photochemistry and photophysics [1,2,25]. Born-Oppenheimer and non-adiabatic molec-

ular dynamics methods are the subject of several review articles [12,27–29].

2.1 Born-Oppenheimer Expansion and Non-Adiabatic Couplings

The electronic Hamiltonian is usually defined as

Ĥe = V̂NN + T̂e + V̂Ne + V̂ee , (2.1)

whereV̂NN denotes the nuclear-nuclear repulsion,T̂e is the kinetic energy of the electrons,V̂Ne denotes

the attraction between nuclei and electrons, andV̂ee is the electron-electron repulsion. The solutions of

13
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the time-independentelectronicSchrödinger equation

Ĥe(R, r)Φi(R, r) = Vi(R)Φi(R, r), (2.2)

define the adiabatic electronic statesΦi(R, r) and their eigenvaluesVi(R). Here,R andr refer to the

entire set of the nuclear and electronic coordinates, respectively.

By adding the nuclear kinetic energy operatorT̂N to Ĥe, we may define the total Hamiltonian of a

molecular system

Ĥ = T̂N + V̂NN + T̂e + V̂Ne + V̂ee . (2.3)

The eigenfunctionsΦk of the electronic Schrödinger equation form a complete orthonormal basis and

thus the time-independent total wavefunction of the total molecular systemΨ(R, r) can be described as

linear combination of the adiabatic states

Ψ(R, r) =
∑

i

Φi(R, r)χi(R) . (2.4)

This equation is called the BO expansion and constitutes an exact expression in the limit of including an

infinite number of all adiabatic states. Inserting (2.4) into the Schrödinger equation of the total system

Ĥ(R, r)Ψ(R, r) = EΨ(R, r) , (2.5)

multiplying byΦ∗
j from the left and integrating over the electronic coordinates we arrive at an expression

that can be used to determine the coefficientsχi in the BO expansion [24]

[T̂N + Vi(R)]χi(R)−
∑

Λ̂jiχi(R) = Eχj(R) . (2.6)

The dynamical interaction between the nuclear and electronic motion is described by the non-adiabatic

coupling term

Λ̂ji = δjiT̂N − 〈Φj(R)|T̂N |Φi(R)〉 . (2.7)

Using the usual expression for the nuclear kinetic operatorT̂N = − 1
2M∇2

R, with the average nuclear
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massM [24], the non-adiabatic coupling operator can be rewritten as

Λ̂ji =
1

2M
[2dji · ∇R +Gji], (2.8)

with the derivative non-adiabatic coupling vectordji defined as

dji(R) = 〈Φj(R)|∇RΦi(R)〉 (2.9)

and the scalar non-adiabatic coupling termGji defined as

Gji(R) = 〈Φj(R)|∇2
RΦi(R)〉 (2.10)

2.2 Born-Oppenheimer Approximation

Let us assume that due to the slow motion of heavy nuclei, the much lighter electrons immediately adjust

when nuclear positions are changed. In this case the total wavefunction is separable and can be written

as a product of the nuclear and the electronic wavefunction, leading to a simplified version of (2.4):

Ψ(R, r) = Φi(R, r)χi(R) . (2.11)

Using this expression, the equation for the nuclear motion corresponding to (2.6) reads

[T̂N + Λ̂ + V̂ (R)]χ(R) = Eχ(R) , (2.12)

where indicesi have been dropped because only one adiabatic state is under consideration. The BO

adiabatic approximation is obtained by further simplification whereΛ̂ is set to zero, i.e.,

[T̂N + V̂ (R)]χ(R) = Eχ(R) . (2.13)

SinceΛ̂ scales inversely with the average nuclear massM (2.8) the BO adiabatic approximation can

be expected to be valid for systems with large nuclear masses. To illustrate more precisely the limits

in which the adiabatic approximation is valid, we consider an alternative expression for the derivative
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couplings. Applying the gradient to the electronic Schrödinger equation (2.2), multiplying from the left

with Φ∗
k and integrating over the electronic coordinates we obtain [27]

dkj =
〈Φk|∇RĤe(R)|Φj〉
Ej(R)− Ek(R)

. (2.14)

From this expression it is evident that the derivative coupling vanishes for large energy gaps therefore

making the adiabatic approximation valid when adiabatic states are well separated from one another.

For small energy gaps on the other hand, one cannot expect the adiabatic approximation to be valid.

2.3 Potential Energy Surfaces

For each set of fixed nuclear coordinatesR of a system there is an infinite number of solutions for the

electronic Schrödinger equation (2.2). Solving this equation for a given number of adiabatic states at

all possible nuclear positionsR defines the manifold of adiabatic potential energy surfaces (PESs) of a

system. The dimensionality of this hypersurface depends on the number of internal nuclear degrees of

freedom (DOF) of the system, which amounts to3N − 6 in case of a polyatomic nonlinear molecule

containingN atoms. As schematically shown in Fig. 2.1, the minima (b) and transition states (c) on

the PESs indicate possible reaction pathways. Special importance is attributed to points or regions on

this hypersurface that connect two or more surfaces and mediate radiationless transitions (d, e). These

regions, denoted asfunnels, can further be distinguished into two types. If a funnel has two or more

surfaces touching one another (e) they are calledconical intersectionswhereas in regions where two

surfaces come close to one another without touching (d) they are usually referred to asavoided crossings.

Funnels provide decay pathways to the ground state PES and proceed orders of magnitude faster than

decay processes involving emission (fluorescence (f) and phosphorescence (g)).

2.4 Semiclassical Non-Adiabatic Molecular Dynamics

To describe the evolution of a chemical system in time, one has to solve the time-dependent Schrödinger

equation at a fully quantum mechanical level

ĤΨ(R, r, t) = i
∂

∂t
Ψ(R, r, t). (2.15)
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Figure 2.1: Schematic representation of ground and excited state potential energy surfaces. The grey
surfaces stand for singlet states and the dark surface indicates a triplet state. a) singlet excitations,
b) energetic minimum, c) saddle point, d) avoided crossing, e) conical intersection, f) fluorescence,
and g) phosphorescence. The labels were added to the picture taken from Ref. [1] with permission of
V. Bonăcić-Koutecký.
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However, due to the high computational cost, a full quantum mechanical solution is only possible for

systems containing a few atoms. The number of DOFs and thus the computational cost can be decreased

using classical or semiclassical approximations to describe the system evolving in time. In classical

molecular dynamics (MD) a system is described by propagating only the nuclear DOFs in time using

Newton’s equation of motion. This level of description is useful for large systems and can be carried out

on the nanosecond to microsecond time scale. Bond breaking and chemical reactions, however, can not

be described simply through classical MD because the electronic structure is completely ignored.

A better alternative to describe chemical reactions evolving in time is the semiclassical approxima-

tion, which relies on a partitioning of the system into a classical and a quantum part. The classical

part contains the slow DOFs while the quantum mechanical part contains the fast DOFs. In the fol-

lowing development, the conventional partitioning into classical and quantum parts will be used, that is

the classical part refers to nuclear DOFs and the quantum part describes the electronic motion. Other

partitionings might also be useful depending on the nature of the system.

One possibility of a semiclassical approximation is the mean-field Ehrenfest method that is based on

a ansatz for the total time-dependent wavefunctionΨ(R, r, t) that consists of a product of the slow and

fast DOFs, described byχ(R, t) andψ(R, r, t), respectively,

Ψ(R, r, t) = ψ(r, t)χ(R, t)exp(i/2π
∫
〈Ψ|H|Ψ〉R,rdt) (2.16)

Substituting this ansatz into the time-dependent Schrödinger equation (2.15) and some further trans-

formations [27] lead to Time-Dependent Self-Consistent Field (TDSCF) equations, which describe the

motion of the fast DOFs in an average field of the slow DOFs and vice versa. Using the division of the

Hamiltonian of (2.1) the TDSCF equations read

i
∂

∂t
ψ = T̂e + 〈χ|V̂NN + V̂Ne + V̂ee|χ〉 (2.17)

i
∂

∂t
χ = T̂N + 〈ψ|Ĥe|ψ〉 (2.18)

Finally the Ehrenfest method is achieved by taking the classical limit for nuclei in (2.17) leading to the

two central equations

F = MR̈ = −∇R〈ψ|Ĥe|ψ〉 (2.19)
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i
∂

∂t
ψ(r, t) = Ĥeψ(r, t) (2.20)

The first expression is used to propagate the nuclei, while the second one describes the electronic motion

in the field of the nuclei. Using the Hellmann-Feynman theorem, (2.19) can be written in a more suitable

way, if ψ is an exact eigenfunction ofHe. Then

F = −〈ψ|∇RĤe|ψ〉 . (2.21)

If we assume that at timet0 the system is in a pure adiabatic state [ψ(R, r, t0) = Φk(R, r)], by

propagating according to (2.20) it will evolve into a superposition of adiabatic states at later times

ψ(R, r, t) =
∑

k

Ck(t)Φk(R, r) . (2.22)

In many chemical reactions such an admixture of adiabatic states is physically unrealistic because no

clearly defined chemical species can be associated with such a mixed state. In addition, the nuclear forces

may be averaged over completely different species leading to unphysical nuclear forces and therefore to

incorrect trajectories.

If we recover the BO approximation and propagate the system on a purely adiabatic stateΦk (2.21),

we might have a good description of the nuclear motion and are able to identify a clear chemical species.

For a wide range of chemical problems this treatment might provide an accurate description, but it

neglects non-adiabatic effects.

The surface hopping (SH) method has been developed to overcome the problems of Ehrenfest and

BO descriptions. In SH the slow DOFs are always propagated on a pure adiabatic PES, but non-adiabatic

effects are incorporated by allowing transitions between the adiabatic states. To derive the working

equations of the SH method we expand the time-dependent wavefunction in terms of adiabatic states

according to (2.22). Substituting this ansatz into the time-dependent Schrödinger equation and further

manipulations [27] yield a first order differential equation for the expansion coefficients

iĊk(t) =
Nad∑
j=0

Cj(t)[Vkj − iṘ · dkj ]. (2.23)
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The elements of the time-dependent density matrix are given by the coefficients

akj = CkC
∗
j (2.24)

where the diagonal elements define the populations of the adiabatic states and the off diagonal elements

are known as the coherence terms. Thus equation (2.23) describes the evolution of the state populations

under the influence of the non-adiabatic coupling that enters by the derivative coupling vectordkj , previ-

ously defined in (2.9). Note that the scalar couplings (2.10) do not enter (2.23), because the coefficients

Ci(t) only depend on time and not on nuclear coordinates in contrast to theχ(R, t) in the BO expansion

(2.4).

SH methods differ in the way the probabilities for switching PES is evaluated. Tully [30] developed

a way to compute a switching probability that minimizes the number of surface hops but represents the

correct statistical distribution of the trajectories (“fewest switches criterion”). Taking this requirement

into consideration, the probability of changing adiabatic states in the time interval∆ reads

gk,j(t,∆) = max

(
0,−2

∫ t+∆

t
dτ
<[C̃j(τ)C̃∗

k(τ)(Ṙ · djk)(τ)]
C̃k(τ)C̃∗

k(τ)

)
. (2.25)

A trajectory is obtained by propagating the nuclei on an adiabatic surface. At each time step the

hopping probability (2.25) is evaluated and compared to a number randomly chosen from the interval

θ ∈ [0, 1]. If θ > gk,j the system switches from adiabatic statek to j, and the forces are evaluated for

the new electronic state until another surface hop occurs. An ensemble of trajectories generated in this

way reflects the statistical distribution of the different reaction branches [30].



Chapter 3

Electronic Structure Methods

In this chapter the basic concepts of a few ground and excited state electronic structure methods that

were used in this thesis are presented. More extensive information and derivations of the methods

can be found in the following references. The wavefunction based approaches, Hartree-Fock (HF),

Configuration Interaction (CI), Multi-Configurational Self-Consistent Field (MCSCF), and the Coupled

Cluster (CC) method are described in detail in the book of Szabo and Ostlund [31] and the more recent

book of Helgaker, Jørgensen and Olsen [32]. In addition, approximate CC methods and Linear Response

Coupled Cluster (LR-CC) theory is reviewed in an article by Christiansen [33] but for a more detailed

description the reader is referred to the original literature [34]. Density functional theory (DFT) is

subject of many textbooks [35–38]. Several reviews about Time-Dependent Density Functional Theory

(TDDFT) have been published [39, 40] and recently, also a textbook on TDDFT appeared [41]. A

comparison between single-reference excited-states methods based on HF and DFT can be found in a

recent review of Dreuw and Head-Gordon [42].

Modern electronic structure methods aim to solve as exactly as possible the time-independent elec-

tronic Schrödinger equation (2.2) using a non-relativistic Hamiltonian (2.3). Most wavefunction based

methods, like HF, CI, MCSCF are based on the variational principle. In these methods the total energy

is obtained by minimization of the expectation value of the Hamiltonian, i.e.,

E = min
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(3.1)

Variational methods have the advantage that the resultant energy is always an upper bound of the true

21
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ground-state electronic energy. This is also true for exact DFT, which is also based on the variational

principle. However, the approximations made for the exchange-correlation can lead to total energies

that are not necessarily an upper bound of the true energy. In contrast CC methods are usually not

formulated in a variational way but solve a projected Schrödinger equation. Some excited state methods

like the Time-Dependent Hartree-Fock (TDHF), linear response TDDFT (LR-TDDFT), and LR-CC use

the linear response of a reference state to a perturbation to obtain energies and properties of excited

states.

3.1 The Hartree-Fock Approximation

One of the simplest approximations for solving the stationary Schrödinger equation for aN -electron

system is provided by Hartree-Fock (HF) theory. The approximation consists of treating the interaction

between one electron with the remainingN -1 electrons, represented as a mean field. This is done

by approximating the many electron ground-state wavefunctionΨ0 by an antisymmetrized product of

non-interactingspin orbitalsχ(xi) = φ(r)σ(s), with σ(s) = α(s), β(s), wherexi collects spatial

coordinatesr and spin coordinatess of electroni. An antisymmetrized product changes sign if any of

the two electrons are interchanged. This property is necessary because of the fermionic nature of the

electrons. In practice such anN -electron wavefunction is constructed by ordering the orbitals in aSlater

determinantΦSD, i.e.,

Ψ0 ≈ ΦSD(x1,x2, ....xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN (x1)

χ1(x2) χ2(x2) · · · χN (x2)
...

...
...

...

χ1(xN ) χ2(xN ) · · · χN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.2)

For simplicity, let us consider a closed shell system with doubly occupied spatial orbitalsφi(r). In this

case we can neglect the spin partσ(s) from the following development (see Chapter 3.4 of Ref. [31]).

According to the variational principle, minimization of the electronic energy using this ansatz provides
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an upper bound for the ground-state energy within the HF approximation. The HF energy reads

EHF = min〈ΦSD|Ĥe|ΦSD〉 = 2
N/2∑

i

〈φi|ĥ|φi〉+
N/2∑
ij

[2(ii|f̂H |jj)− (ij|f̂H |ji)] , (3.3)

with the one-electron operatorĥi containing the kinetic energy operator and the Coulomb interaction

between the electron and the nuclear chargesZA at positionsRA

ĥi = −1
2
∇2

i −
∑
A

ZA

|ri −RA|
(3.4)

and the Hartree kernel describes the electron-electron interactions

f̂H = f̂H(r, r′) =
1

|r− r′|
(3.5)

The electron repulsion integrals on the right hand side of (3.3) are written in the Mulliken notation

(rs|f̂ |pq) =
∫ ∫

φ∗r(r)φs(r)f̂(r, r′)φ∗p(r
′)φq(r′)drdr′ (3.6)

Minimization is usually done by solving the one-electron HF equations in a self-consistent manner

f̂iφi(r) = εiφi(r) , (3.7)

wheref̂ is the closed-shell Fock operator containing the Coulomb and exchange operatorsĴ andK̂

f̂i = ĥi +
N/2∑

j

[
2Ĵj − K̂j

]
, (3.8)

K̂j(r)φi(r) =
[ ∫

dr′
φ∗j (r

′)φi(r′)
|r− r′|

]
φj(r) , (3.9)

Ĵj(r)φi(r) =
[ ∫

dr′
φ∗j (r

′)φj(r′)
|r− r′|

]
φi(r) . (3.10)
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εi are the orbital energies. In the initial ansatz (3.2), HF does not account for electron correlation. The

difference betweenEHF of a system and its true energyE0 defines thecorrelation energy

EC = E0 − EHF . (3.11)

3.2 The Time-Dependent Hartree-Fock Method

The Time-Dependent HF method (TDHF) provides an extension of the HF method to describe elec-

tronically excited states. In analogy to ground-state HF, TDHF assumes that the time-dependent many

electron state can be approximated by an SDΦSD(r̃, t) of time-dependent orbitalsφi(r, t). Consider the

time-dependent electronic Schrödinger equation

Ĥ(t)Ψ(r̃, t) = i
∂

∂t
Ψ(r̃, t) (3.12)

with a time-dependent electronic Hamiltonian̂H(r̃, t) = Ĥe(r̃) + V̂ (r̃, t), containing a time-dependent

single particle potential̂V (r̃, t), for instance an oscillating electromagnetic field. The vectorr̃ collects

all the spatial coordinates of the individual electrons. Substitution of a time-dependent SD yields the

equivalent time-dependent Schrödinger equation formulated for non-interacting electrons:

F̂ (r̃, t)ΦSD(r̃, t) = i
∂

∂t
ΦSD(r̃, t) , (3.13)

whereF̂ (r̃, t) is defined as

F̂ (r̃, t) =
∑

i

f̂i(r) + V̂ (r̃, t) (3.14)

In the time-dependent Fock operatorF̂ the Coulomb and exchange operators, (3.10), (3.9) are defined

using orbitalsφi(r, t), that also depend on time. To obtain the TDHF equations, linear response (LR)

time-dependent perturbation theory is applied to solve (3.13). Therefore one assumes that at timet = 0

the system is described by a time-independent SD. If a small perturbationV̂ (r, t) is turned on, the time-

dependent response of the orbitals can be assumed to be sufficiently described by the linear part of the
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response. This treatment yields the non-Hermitian eigenvalue equation [42]

 A B

B A


 XI

YI

 = ωI

 +1 0

0 −1


 XI

YI

 , (3.15)

also known as the LR-TDHF equations in the random phase approximation (RPA). The matrix elements

of A andB are given by

Aia,jb = δi,jδa,b (εa − εi) + 2
(
ia|f̂H |jb

)
−
(
ij|f̂H |ba

)
(3.16)

Bia,jb =
(
ia|f̂H |bj

)
−
(
ib|f̂H |aj

)
, (3.17)

wherei andj refer to occupied orbitals, anda andb to unoccupied ones. The response vectorsXI and

YI can be used to interpret the excited state by means of singly excited determinants.

A simplification of (3.15) can be achieved by settingB = 0, leading to the simpler Hermitian

eigenvalue problem known as the Tamm-Dancoff approximation (TDA)

AXI = ωIXI . (3.18)

It can be shown that this equation yields the excitation energies equivalent to those obtained by the

variational Configuration Interaction Singles (CIS) method [42].

3.3 The Configuration Interaction Method

In Configuration Interaction [31] the ansatz for the many electron wavefunction reads

|ΨCI〉 = c0|ΦHF〉+
∑

cra|Φr
a〉+

∑
crs
ab|Φrs

ab〉+
∑

crst
abc|Φrst

abc〉+ ... (3.19)

= c0|ΦHF〉+
∑

cS |S〉+
∑

cD|D〉+
∑

cT |T 〉+ ...

where|ΦHF〉 is the HF ground state and|Φr
a〉,|Φrs

ab〉,|Φrst
abc〉, ... refer to singly, doubly, triply, ..., excited

determinants, constructed from the optimized HF orbitals. The sums in (3.19) run over all possible

excitations of the corresponding order. This ansatz leads to an exact representation of the many electron
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wavefunction, provided that all possible determinants are included. The CI method consists of finding

the coefficientsci in ansatz (3.19), that minimize the expectation value of the total energy

ECI = min
c0,cS ,...

〈ΨCI|Ĥe|ΨCI〉
〈ΨCI|ΨCI〉

(3.20)

When all excitations in a given basis set are included, the method is known asfull CI (FCI). Because

the number of determinants increases rapidly with each order of excitation, FCI calculations are com-

putationally very demanding and can only be carried out for systems containing a few atoms. However,

since the method can in principle provide exact results, it is often used as benchmark. In practice, the

FCI expansion is usually truncated at a certain order of excitation. For instance, the CIS method only

includes singly excited determinants, while the CISD and CISDT method include single and double

excitations, and single, double, and triple excitations, respectively. Truncation of the CI expansion leads

to a description which is not size-extensive.

In the CIS method for excited states the ansatz for the many electron state includes only singly

excited determinants

|ΨCIS〉 =
∑
ai

cia|Φi
a〉 . (3.21)

Minimization of expression (3.20) using ansatz (3.21) yields the singlet excitation energies

∑
ai

〈Φb
j |Ĥ|Φa

i 〉 = ECIS

∑
ia

cai δijδab . (3.22)

The excitation energies in CIS are defined relative to the HF ground state

ωCIS = ECIS− EHF . (3.23)

ωCIS can also be obtained by solving the eigenvalue problem of TDHF in the TDA (3.18) [43].
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3.4 Multi-Configurational Self-Consistent Field Method

Multi-Configurational Self-Consistent Field (MCSCF) methods are related to the CI method because

they also use a multi-determinantal ansatz to describe the many electron wavefunction:

|ΨMCSCF〉 =
∑

k

ck|Φk〉 , (3.24)

wherek is a general index denoting all chosen excited determinants. While CI uses fixed HF orbitals and

optimization only concerns the expansion coefficients,ci in (3.19), the MCSCF method also minimizes

the energy in conjunction with an optimization of the orbitalsφi, that enterΦk

EMCSCF = min
ck,φi

〈ΨMCSCF|Ĥe|ΨMCSCF〉
〈ΨMCSCF|ΨMCSCF〉

. (3.25)

This leads to higher accuracy with the same number of basis functions than in CI. The Complete Active

Space Self-Consistent Field (CASSCF) method is a special version of the MCSCF method, in which a

chemically active space is defined. The active space contains a limited number of occupied and unoccu-

pied orbitals. The determinantsΦk refer to all possible configurations that are obtained by distributing

the electrons of the active occupied orbitals within the active space.

Excited state energies of states with different symmetry than the ground state can be obtained by

restricting the active space in such a way that the resulting determinantsΦk have the same symmetry as

the state of interest.

The state averaging (SA) method, provides a way to obtain simultaneously the energies of different

states that have the same symmetry. In the SA-CASSCF approach an energy function is minimized that

consists in a sum of non-interacting orthonormal configurationsΨi

ESA =
∑

i

wi〈ΨSA
i |Ĥ|ΨSA

i 〉 (3.26)

that are weighted bywi. The orbitals are simultaneously optimized for several electronic states and are

thus not optimal for each electronic state [32]. Therefore the obtained ground state energyESA-CASSCF
0
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is an upper bound to the conventional CASSCF energy

ECASSCF
0 ≤ ESA-CASSCF

0 . (3.27)

3.5 Coupled Cluster Methods

The coupled cluster (CC) ansatz is based on the FCI ansatz (3.19), but has the advantage that it provides a

size-extensive description even at truncated level and converges faster to the FCI limit than do truncated

CI methods. To derive the CC ansatz we may write the FCI ansatz in form of a product [32]

|ΨFCI〉 = |ΨCC〉 =

[∏
ai

(1 + X̂a
i )

] ∏
a>b,i>j

(1 + X̂ab
ij )

 ...|ΦHF〉 . (3.28)

whereX̂a
i , X̂ab

ij , ... are excitation operators times an expansion coefficientcµ, using the notation of

second quantization [32] they read

X̂a
i = cai â

†
aâi (3.29)

X̂ab
ij = cab

ij â
†
aâ

†
bâiâj .

Note that the coefficientscµ differ from the coefficientsck in the CI ansatz (3.19). By using a Taylor

expansion of the exponential, (3.28) can be transformed leading to the CC ansatz for the wavefunc-

tion [32]:

|ΨCC〉 = exp(T̂ )|ΦHF〉 , (3.30)

where the cluster operator of aN electron system is defined as

T̂ = T̂1 + T̂2 + T̂3 + T̂4 + ...+ T̂N =
∑

µ

tµτ̂µ . (3.31)

The excitation operatorŝτµ and their associated cluster amplitudestµ correspond to a given degree of

excitation, for instance single, double or triple excitations. In the notation of second quantization the
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cluster operators for singles and doubles,T̂1 andT̂2, are given by

T̂1 =
∑
ai

tai â
†
aâi =

∑
ai

tai τ̂
a
i (3.32)

T̂2 =
1
4

∑
aibj

tab
ij â

†
aâiâ

†
bâj =

∑
aibj

tab
ij τ̂

ab
ij . (3.33)

The faster convergence to the FCI limit in case of truncation arises from the fact that even if series

(3.31) is truncated at a given excitation level, the CC ansatz still contains contributions from all FCI

determinants through the indirect, ordisconnectedclusters. To illustrate this, we write the exponential

ansatz in form of the expansion in which the excitation levels are ordered in a different way than before

exp(T̂ )|ΦHF 〉 =
N∑
i

Ĉi|ΦHF 〉 , (3.34)

where

Ĉ0 = 1 (3.35)

Ĉ1 = T̂1 (3.36)

Ĉ2 = T̂2 +
1
2
T̂ 2

1 (3.37)

Ĉ3 = T̂3 + T̂1T̂2 +
1
6
T̂ 3

1 (3.38)

Ĉ4 = T̂4 + T̂1T̂3 +
1
2
T̂ 2

2 +
1
2
T̂ 2

1 T̂2 +
1
24
T̂ 4

1 . (3.39)

For instance, if we only include excitations up tôT2, a part of theĈ4|ΦHF 〉 determinant is included

through the disconnected̂T2 and T̂1 excitations that appear in (3.39). The commonly used truncation

levels areT̂ = T̂1 for CCS,T̂ = T̂1 + T̂2 for CCSD, andT̂ = T̂1 + T̂2 + T̂3 for CCSDT.

Because of the non-linear parametrisation of the Coupled Cluster model (3.28), variational opti-

mization of the wavefunction leads to complicated functions and can only be performed for very small

systems [32]. In an alternative approach the Coupled Cluster energy is obtained by projection onto the

HF reference state

ECC = 〈ΦHF|Ĥ exp(T̂ )|ΦHF〉 . (3.40)
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Therefore the CC method cannot be considered as variational. The cluster amplitudes are obtained by

projection onto the excited determinantsµ

〈µ| exp(−T̂ )Ĥ exp(T̂ )|ΦHF〉 = 0 . (3.41)

The number of equations determined by (3.41) is equal to the number of connected clusters and thus

depends on the truncation level of the CC approximation.

Using perturbation theory, excitations of higher order than the actual truncation level can be esti-

mated, leading to the second-order approximate CC models, CC2 and CC3. CC2 provides an approxi-

mation for CCSD, while CC3 approximates CCSDT. In contrast to non-iterative perturbative approaches

like MP2 or CCSD(T), the CC2 and CC3 models can be used to obtain frequency dependent properties

through linear response time-dependent perturbation theory and are therefore suited to treat electroni-

cally excited states [33].

3.6 Kohn-Sham Density Functional Theory

In density functional theory (DFT) the central quantity is the electronic (spin) densityn(x, y, z), that

depends only on 3 spatial coordinates plus a spin coordinate in the case of spin polarized DFT. This pro-

vides a considerable simplification compared to wavefunction based methods, in which theN -electron

wavefunction depends on 3×N spatial plusN spin coordinates. The two Hohenberg-Kohn (HK) the-

orems [44], provide a way to determine the properties of a system only on the basis of its electron

density.

The first theorem states that the external potentialVext of a system is (up to a constant) uniquely

determined by the ground-state densityn0. SinceĤ depends onVext, it depends also on the density and

therefore the true electronic ground state and all its properties are determined byn0.

n0 ⇒ {N,ZA,RA} ⇒ Ĥ ⇒ Ψ0 ⇒ E0 . (3.42)

Thus the ground-state energyE0 can be written as a functional ofn0,

E0[n0] = ENe[n0] + T [n0] + Eee[n0] (3.43)
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that can be split into a system dependent partENe, defined by the positionsRA and chargesZA of the

nuclei through the external potentialVext, and a system independent part, containing the kinetic energy

of the electronsT [n] and the electron-electron interactionEee[n]. The system independent functional is

called theuniversalor HK functional

F [n] = T [n] + Eee[n] . (3.44)

The second HK theorem provides a way to determine the true ground-state densityn0 of a system.

Based on the variational principle, it states that the trial densityñ, that minimizes the ground-state energy

functionalE0, is equal to the true ground-state densityn0 of the system. Therefore, any densityñ, that

satisfies certain boundary conditions, provides an upper bound of the true ground-state energy

E[ñ] =
∫
Vext(r)ñ(r)dr + F [ñ] ≥ E0 = E[n0] . (3.45)

Provided that we know the expression for the universal functional we are in principle able to search for

the ground-state energy, by minimizingE[ñ] in some way. Still, we do not know the exact dependence

of the electronic kinetic energy on the density and so no exact relationship between the non-classical

electron-electron interaction and the density is known.

The Kohn-Sham (KS) approach [45] provides a way of evaluating the largest parts of the unknown

terms. In this approach,T [n] andEee[n] are split each into two parts

T [n] = TS [{φi}] + TC [n] (3.46)

Eee[n] = J [n] + Encl[n] . (3.47)

TS [{φi}] denotes the electronic kinetic energy of a non-interacting reference systemi andEncl stands

for the non-classical electron-electron interaction terms. The electrons of the non-interacting system are

described by orbitalsφi, satisfying
N∑
i

|φi(r)|2 = n(r) , (3.48)

where it is assumed that the density of the reference systemn is equal to the true densityn0 of the
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system (n = n0). TC is defined as the difference between the kinetic energy of the interacting system

andTS and arises due to the interaction of the electrons including all quantum effects. The advantage of

this splitting is that by introducing non-interacting orbitalsφi that integrate ton, TS can be determined

in the same way as in HF theory

TS [φi] = −1
2

∑
i

〈φi|∇2|φi〉 (3.49)

The termJ [n] in the second equation is just the classical Coulomb energy

J [n] =
1
2

∫ ∫
n(r)n(r′)
|r− r′|

drdr′ (3.50)

andEncl is the non-classical contribution of the electron-electron interaction energy. The remaining

quantitiesEncl[n] andTC [n] are still unknown. However, the KS approach relies on the assumption that

these two quantities are rather small compared to the other terms and that they can be approximated in

some way. By defining theexchange correlationfunctionalExc[n]

Exc[n] = TC [n] + Encl[n] , (3.51)

the HK functional can be rewritten as

F [n] = TS [{φi}] + J [n] + Exc[n] . (3.52)

Provided we have an approximation forExc, the ground-state energyE0 can be found by minimizing

the functional

E0[n] = ENe[n] + TS [φi] + J [n] + Exc[n] (3.53)

= −
∑

i

∫ ∑
A

ZA

|RA − r|
|φi(r)|2dr

−1
2

∑
i

〈φi|∇2|φi〉

+
1
2

∑
i

∑
j

∫ ∫
|φi(r)|2

1
rij
|φj(r′)|2drdr′ + Exc[n] .

Similarly to HF theory, minimization ofE0 can be carried out by solving self-consistently a set of
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equations, for non-interacting electrons moving in an effective potentialVeff

[−1
2
∇2 + Veff (r)]φi(r) = εiφi(r) (3.54)

that yields the optimal non-interacting orbitals. The difference with HF theory lies in the form of the

effective potential

Veff (r) = Vxc(r) +
∫

n(r′)
|r′ − r|

dr′ −
∑
A

ZA

|RA − r|
(3.55)

with

Vxc =
δExc[n]
δn

. (3.56)

The optimized orbitalsφi of (3.54), are calledKohn-Shamorbitals and differ from the HF orbitals.

The remaining task consists in finding a good approximation for the exchange-correlation term. At

present, a large variety of xc-functionals exist relying on different assumptions. The major approaches

are outlined here. The first and simplest approximation is based on the xc-expression for the homoge-

neous electron gas which has been computed exactly by Quantum Monte-Carlo. This approach is usually

denoted as the local density approximation (LDA), as it is local in sense thatELDA
xc [n(r)] depends only

n(r). In the generalized gradient approximation (GGA) the expression is refined and depends onn(r)

and its gradient∇n(r) (EGGA
xc [n(r),∇n(r)]). Hybrid approaches mix a GGA functional to some extent

cX with exact (“Hartree-Fock”) exchangeEX
x

Ehybrid
xc = cXE

X
x + (1− cX)EGGA

x + EGGA
c (3.57)

The three approaches described here are often referred to asconventionalxc-functionals. Further infor-

mation on xc-functionals can be found for instance in Chapter 6 of Ref. [37].

3.7 Time-Dependent Density Functional Theory

3.7.1 The Time-Dependent Kohn-Sham Equations

In analogy to the first HK theorem of ground-state DFT, the Runge-Gross theorem [19] states that

there exists a one-to-one mapping between the time-dependent one-body densityn(r, t) and the time-
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dependent external potentialVext(r, t) plus a spatially constant purely time-dependent functionC(t).

Up to a phase factorα, the time-dependent wavefunction is then determined by the initial stationary

wavefunctionΨ(t0) and the time-dependent densityn(r, t)

Ψ(t) = Ψ[n,Ψ(t0)] exp[−iα(t)] (3.58)

In the original formulation of Runge and Gross, an analog to the second HK theorem for the time-

dependent case was derived by making the Dirac-Frenkel action stationary. However, this formalism

was proved to violate the causality principle. Van Leeuwen proposed a different formalism based on the

Keldysh formalism [46,47].

By introducing again a fictitious system with non-interacting electrons in orbitalsφi(r, t) we can

write down the time-dependent KS equations

[−1
2
∇2 + Veff (r, t)]φi(r, t) = i

∂

∂t
φi(r, t) (3.59)

where

Veff (r, t) = Vext(r, t) +
∫

n(r′, t)
|r− r′|

dr′ + Vxc(r, t) (3.60)

Usually applications of TDDFT imply theadiabaticapproximation (ALDA) in which the exchange-

correlation potential is approximated as

Vxc[n](r, t) ≈ δExc[nt]
δnt(r)

= Vxc[nt](r) (3.61)

wherent, denotes the density evaluated at one particular timet. The xc-potential is thus independent of

the time evolution of the density but depends only on the density at that particular time. This approxi-

mation assumes that the xc-potential instantaneously follows changes in the charge density, neglecting

all kinds of retardation effects.

3.7.2 Linear Response TDDFT

If the system is perturbed by a weak electric field at timet = 0, the evolution of the density can be

described by propagating the time-dependent KS equations. The Fourier transform of the time dependent
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dipole moment in response to a delta function impulse yields the optical absorption of the system.

However, assuming that the perturbation is weak we can also apply linear response theory, which is

done by most quantum chemistry codes. This treatment has the advantage that it is formulated on the

basis of pure ground state properties. If we apply a perturbationvappl(r, t) to the system, linear response

TDDFT (LR-TDDFT) consists in evaluating the first order change of the densityδn, which is related to

the linear response of the density matrixδP (ω) of the KS reference system:

δn(r) =
all orbitals∑

ij

φi(r)δPijφj(r) (3.62)

Thegeneralized susceptibilityof the non-interacting reference system reads

χij =
fi − fj

ω − (εj − εi)
, (3.63)

whereεi are the energies of the orbitals andfi their occupation numbers.

The generalized susceptibility connects the first order change of the effective potentialδveff
ij (ω)

with the first order change of the density matrix:

δPij(ω) =
fi − fj

ω − (εi − εj)
δveff

ij (ω) (3.64)

Here,δveff
ij (ω) contains the frequency dependent perturbationvappl(ω) and the linear response of the

SCF potentialδvSCF
ij , which in turn, can be evaluated byδP (ω) and the coupling matrixKij ,

δvSCF
ij =

∑
kl

Kij,kl(ω)δPkl (3.65)

The coupling matrix is defined as

Kij,kl = 2(ij|fH |kl) + (ij|fXC |kl), (3.66)

and is determined by purely ground state properties through the Hartree kernelfH (3.5) and the xc-

kernel, defined as

fXC(r, r′) =
δ2EXC [n]
δn(r)δn(r′)

, (3.67)
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when the ALDA is used.

Assuming that the perturbation takes the form of an oscillating time-dependent electric field,δP (ω)

can be used to compute the tensor components of the frequency dependent dynamic polarizability. Ex-

citation energies are obtained as the poles of the dynamic polarizability. Determination of these poles

and thus of the excitation energies can be done by solving the following matrix equations, also known

as the Casida equations [20]

 A B

B A


 XI

YI

 = ωI

 +1 0

0 −1


 XI

YI

 , (3.68)

where the matricesA andB are defined as

Aia,jb = δi,jδa,b (εa − εi) + 2 (ia|fH |jb)

− cX (ij|fH |ab)

+ (1− cX) (ia|fX |jb)

+ (ia|fC |jb)

Bia,jb = 2 (ia|fH |bj)− cX (ib|fH |aj)

+ (1− cX) (ia|fXC |bj)

+ (ia|fC |bj) . (3.69)

The two matrices have been defined for a general hybrid XC-functional (Eq. 3.57) with an amountcX

of exact exchange, wherefX andfC are the GGA exchange and correlation kernels, defined in analogy

to (3.67). By settingcX = 1 and neglecting the term containinĝfC , we recover the TDHF equa-

tions (3.17).

In the same way the TDA is achieved in TDHF by setting the matrixB = 0, also TDDFT-TDA can

be obtained. The TDDFT-TDA provides a simplification of the eigenvalue problem and has been shown

to give similar results as the full LR-TDDFT treatment for most closed shell systems at equilibrium ge-

ometries. In contrast to the TDA to TDHF, which can also be derived by the CIS method, no other route

exists in deriving the TDDFT-TDA. The connections between TDHF, CIS, TDDFT, and TDDFT-TDA

are schematically summarized in Fig. 3.1. TDDFT-TDA has even been shown to give more reasonable
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Figure 3.1: Connection between the different excited state methods based on HF and DFT. Picture
according to Ref. [42].

results in regions where the LR-TDDFT treatment exhibits triplet or singlet instabilities [48, 49]. How-

ever, one should keep in mind that TDHF and TDDFT both obey the Thomas-Reiche-Kuhn rule for the

oscillator strengths, which is not the case for CIS and TDDFT/TDA [20].
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Chapter 4

Trajectory surface hopping within linear

response TDDFT

Abstract

A fewest switches trajectory surface hopping algorithm based on linear response time-dependent density

functional theory is developed and implemented into the plane waveab initio molecular dynamics pack-

age CPMD. A scheme to calculate non-adiabatic couplings using a multi determinantal approximation

of the excited state wavefunction is introduced. The method is applied to the study of the photorelaxation

of protonated formaldimine, a minimal model of the rhodopsin chromophore retinal. A good agreement

of the structural and dynamic behavior is found with respect to state averaged multiconfiguration self

consistent field based trajectory surface hopping.

4.1 Introduction

Ab initio molecular dynamics (AIMD) [13] has become an established tool to study physical and chemi-

cal processes in condensed matter physics and molecular sciences. Because of its modest computational

cost, Kohn-Sham (KS) density functional theory (DFT) [44] is currently the preferred electronic struc-

ture method for AIMD. Most DFT-AIMD simulations are performed in the ground state, but recently

also excited state dynamics has become available.

Several time-independent KS DFT methods, like for instance∆SCF or the restricted open shell KS

39
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(ROKS) [17] approach, have been proposed to approximate excited state energies (for a review see [20,

39]) and forces [17, 50]. Although these methods perform well in certain cases, the assumptions made

are difficult to justify in general [20,39]. In this work, we use time-dependent DFT (TDDFT) [19,20,39]

which corresponds to an exact reformulation of time-dependent (TD) quantum mechanics. Within linear

response (LR) theory, TDDFT provides a treatment of electronically excited states, which is exact up to

first order [20]. Excitation energies [48,51] as well as excited state nuclear forces can be derived in this

framework [52–54].

Originally formulated in the Born-Oppenheimer (BO) approximation, TDDFT based AIMD can

only be successfully applied to adiabatic processes, where nuclear and electronic motion are decou-

pled. However, when nuclear and electronic degrees of freedom are strongly coupled (non-adiabatic

(NA) processes), several electronic states are necessary to properly describe nuclear motion. Scattering

processes and a large number of photochemical reactions belong to the group of NA processes. To over-

come the limitation of AIMD to adiabatic processes a complete quantum description of both electrons

and nuclei (multicomponent DFT [55]) should be applied. However, this level of accuracy is only suited

for the study of very small systems, while computationally more promising methods are based on a

semi-classical approach, in which nuclei are treated as classical particles. Semiclassical NA AIMD [28]

schemes either use a mean field (Ehrenfest) approximation [56] for the joined electron-nuclear dynam-

ics or make use of trajectory surface hopping (TSH) technique [30]. Advantages and disadvantages of

both methods have been discussed extensively in the literature [57]. In particular, the TSH approach is

preferable when reactions pass regions of close lying electronic states but end up in a state, which is

well described by a single BO potential energy surface (PES).

The TSH technique requires the computation of the NA coupling (NAC) termσkj = Ṙ · dkj = Ṙ ·

〈Φk(r;R(t))|∇RΦj(r;R(t))〉 between two electronic statesk, j. r andR denote collective electronic

and nuclear coordinates, respectively anddkj is the NAC vector. Within DFT, difficulties to calculate

NACs arise from the fact that the many electron wavefunctions for the adiabatic states are not available.

In the first NA DFT-AIMD method based on ROKS [18], NACs are obtained from orbital velocities

of the fictitious electron dynamics of the Car-Parrinello scheme. Finite difference schemes based on

KS orbitals or single KS Slater determinants (SDs) can be used if the excited state configuration is

sufficiently well described by a single SD [50,58]. Recently, several alternative approaches to compute
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NACs within DFT have been proposed [54,58,59].

In this letter we combine thefewest switchesTSH scheme [30] with LR-TDDFT AIMD [52]. The

method is applied to the study of the photophysics of protonated formaldimine (CH2NH2
+), a minimal

model for the chromophore of the visual photoreceptor rhodopsin. Compared to existing DFT TSH

methods, namely the ROKS based TSH [18] and the TD-KS TSH method of Craig et al. [50], an im-

portant improvement consists in the use of theoretically rigorous excited state PESs and nuclear forces.

In the method of Craig et al. [50], total energies are approximated as expectation values of KS-SDs,

and excited state wavefunctions are taken simply as singly excited SDs. Therefore the nuclear forces

in their approach are only very approximative. In contrast, our approach uses LR-TDDFT to calculate

both, excited state energies and forces, increasing considerably the accuracy and reliability of the PESs.

The use of LR-TDDFT also allows the inclusion of an in principle unlimited number of excited states,

overcoming one of the major limitations of ROKS AIMD, which is capable to treat only the lowest lying

excited state. Therefore the method can be applied to the study of systems with a dense manifold of ex-

cited states. The NAC term is computed by finite differences using a multi determinantal approximation

of the excited state configuration as proposed by Casida [20]. Since excited states are in general not well

described by a single SD, we expect a clear improvement of the quality of the computed NACs.

4.2 Theory and Implementation

In TD perturbation theory the response of the density to a periodic perturbation with frequencyω and

amplitudeδV ± can be expressed by means of the LR orbitals{φ±j }, defined by the coupled KS equa-

tions [60]. Excitation energiesωk can be found by solving the non-Hermitian eigenvalue problem

No∑
ij

(HKSδij − εij)|φ±j 〉+ δV SCF (±ω)|φi〉 = ∓ωk|φ±i 〉. (4.1)

KS orbitals{φi} and Lagrange multipliersεij are determined previously in a ground state calculation.

No is the number of occupied orbitals,HKS is the KS Hamiltonian andδij is the Kronecker delta.

δV SCF (±ω) represents the response of the effective potential to the first order change in the electronic

density. It is composed of the Hartree plus the exchange-correlation kernel and is determined self con-

sistently via the LR orbitals. The kernel corrects the KS orbital energy differences to the true excitation
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energies. In the Tamm-Dancoff approximation (TDA) [48, 52] the linear response associated with the

orbitals{φ+} is neglected and Eq. (4.1) can therefore be approximated by a Hermitian eigenvalue prob-

lem, with good accuracy [48,52].

According to the assignment ansatz by Casida [20], the expansion coefficientsckov for the configura-

tion of the excited statek

|Φk(r;R)〉 ≈
No∑
o=1

No+Nv∑
v=No+1

ckovâ
†
vâo|Φ0(r;R)〉

=
No∑
o=1

No+Nv∑
v=No+1

ckov|Φv
o(r;R)〉, (4.2)

are obtained by projecting the LR orbitals on a subset ofNv unoccupied KS orbitals{φv}

ckov =
√
εv − εo
ωI

〈φ−o |φv〉. (4.3)

In Eq. (4.2),âi is the annihilation operator acting on KS orbitali and indiceso, v refer to occupied and

unoccupied space, respectively. The ground state wavefunctionΦ0(r;R) is taken to be the single SD of

the occupied KS orbitals,|Φ0〉.

Following Tully [30], we derive afewest switchesTSH algorithm based on LR-TDDFT quantities.

We expand the TD many electron wavefunctionΨ(r ,R, t) as a linear combination of the stationary

KS-SDs

|Ψ(t)〉 = C0(t)|Φ0〉+
∞∑

j=1

Cj(t)
∑
o,v

cjo,v|Φv
o〉. (4.4)

Substituting this ansatz into the TD Schrödinger equation, one can derive a first order differential equa-

tion for the expansion coefficientsCj(t)

i~Ċk(t) =
Nad∑
j=0

Cj(t){Vkj − i~(t)σkj}, (4.5)

where the equalityσkj = 〈Φk|
∂Φj

∂t 〉 = Ṙ · dkj was used. The expansion is truncated atNad adiabatic

states. In the adiabatic representation the matrixVkj = 〈Φk|H|Φj〉 is diagonal and theVjj can be
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replaced by relative energies̃Vjj = Vjj − 〈Φ0|H|Φ0〉 [61], hereH refers to the Hamiltonian of the

interacting system. ThẽVjj can be interpreted as the TDDFT excitation energiesωj , which simplifies

Eq. (4.5) into

i~ ˙̃Ck(t) = C̃k(t)ωk − i~
Nad∑
j=0

C̃j(t)σkj . (4.6)

Note that this substitution transforms theCj(t) into a new set of coefficients̃Cj(t), which are used to

calculate the switching probability [61]. The NAC termσkj can be directly approximated by the finite

differences

σkj |t+∆/2 =
1

2∆
[〈Φk(r;R(t))|Φj(r;R(t+ ∆))〉 −

〈Φk(r;R(t+ ∆))|Φj(r;R(t))〉]. (4.7)

Eq. (4.7) is evaluated using the expansion in Eq. (4.2) for the statesΦk andΦj , taken at subsequent

classical time steps t and t+∆. The switching probabilitygkj between statesk and j in the interval

[t, t+ ∆] is finally computed from the solutions of Eq. (4.6)

gk,j(t,∆) ≈ −2
∫ t+∆

t
dτ
<[C̃j(τ)C̃∗

k(τ)σjk(τ)]
C̃k(τ)C̃∗

k(τ)
, (4.8)

whereσjk(τ) is obtained by linear interpolation.

The algorithm was implemented into the plane wave code CPMD [62] using the recently imple-

mented LR-TDDFT scheme for the calculation of excited state energies and nuclear forces [52]. At

each time step, an electronic spectra calculation provides the eigenvaluesωk of all included adia-

batic states and the corresponding many electron wavefunctions according to Eqs. (4.2) and (4.3).σkj

is calculated from Eq. (4.7) using the overlap matrix between the KS orbitals at timet and t + ∆

〈φi(r;R(t))|φj(r;R(t + ∆))〉. TheC̃k(t) are propagated by integration of Eq. (4.6) using a standard

Runge-Kutta 4th order algorithm, andgkj is evaluated at each time step via Eq. (4.8). In a Monte-Carlo

step a random number from[0; 1] is compared togk,j . If the random number is smaller thangkj the sys-

tem switches PES and the nuclear forces are taken from the new statej, while theC̃j are continuously

propagated. In order to conserve total energy, the ionic velocities are rescaled isotropically if a switch

is accepted. For the case in which the trajectory hits an intersection point and the NAC is undefined, a
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switch between adiabatic surfaces is forced following the electronic character of the current state and

interchanging the labels of thẽCj of the two involved states. This scheme does not include spin-orbit

coupling and therefore it is not able to describe intersystem crossings.

4.3 Results

As an application of the described method, we studied the photorelaxation process of the protonated

Schiff base CH2NH2
+, the smallest model compound of rhodopsin chromophore. The mechanism of

the light induced cis-trans isomerization in retinal has been subject of many experimental and theoretical

studies [63]. In CH2NH+
2 , the second excited singlet state (S2: π − π∗) exhibits an oscillator strength

orders of magnitude larger than the one of the first excited singlet state (S1: σ − π∗). Photoexcitation

promotes the system mainly into S2 and the following relaxation involves at least 3 states, S2, S1 and

S0. The aim of our study is to test the implemented scheme, in particular its capability to include several

excited states, and to identify the main reaction pathways. A complete statistical description of all

possible reaction branches on the other hand is beyond the scope of this work. The quality of our results

is checked against reference data obtained from high level wavefunction based methods [64,65].

All calculations employ the PBE exchange-correlation functional [66]. Further details are given

in reference1 If not specified differently, dynamics were performed in the microcanonical ensemble

(NVE). In order to investigate the effect of heat dissipation, we also carried out some simulations in the

NVT ensemble using a Nosé-Hoover thermostat. An ensemble of 20 starting geometries, taken from a

Boltzmann distribution at 300 K, was excited into S2. The ionic degrees of freedom were propagated

with a time step of 10 a.u. (0.241 fs) whereas for the propagation of theC̃j a time step of 10−5 a.u. was

used. Starting in the Franck-Condon region, the system loses potential energy, resulting in a fast increase

of temperature up to 3000 K. In most trajectories, relaxation to the ground state occurs after 30–100 fs,

but also trajectories with excited state lifetimes longer than 200 fs were found (Fig. 4.1). For a typical

trajectory the time evolution of the energies of the relevant electronic states and their state populations

are shown in Fig. 4.2. The S2 lifetimes typically range from 10 up to 50 fs, whereas S1 lifetimes are

1Calculations employ norm conserving pseudopotentials [67] and a cutoff of 70 Ry for the plane wave basis set. The
simulations were carried out using an isolated cubic box with an edge of 8 Å. In order to converge the description of the
relevant excited states, a total of 8 excites states were included in the calculations. In addition to the 6 occupied states 8 virtual
KS orbitals were computed, leading to a total of 48 excited SDs.
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Figure 4.1: Potential energy surfaces of a swarm of 10 trajectories. The state where nuclear forces were
taken from (—) and S0 (- -) are shown. Red and blue colors stand for S2 and S1 respectively, whereas
black indicates that the system has relaxed into S0. Most trajectories relax to S0 within 100 fs.

Figure 4.2: Evolution of the state populations (upper panel) and of the potential energy surfaces (lower
panel) S0 (—), S1 (– –), S2 (– ·) and S3 (· ·) together with some characteristic molecular structures for
a typical trajectory. The state that drives the dynamics is shown in red. The main structural change in
S2 during the first 10 fs is a CN bond elongation (C cyan, N blue). After 6 fs the system enters the
avoided crossing region between S2 and S1. Population is transferred until a switch to S1 is accepted
after 10 fs. In S1, the geometry at N changes from planar to pyramidal. After 40 fs the system reaches
the intersection between S1 and S0 (*) and relaxes to S0.
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found to be in the range 10–100 fs. The ratio of the lifetimes qualitatively agree with the ones obtained

using a state averaged multiconfiguration self consistent field (SA-MCSCF) TSH approach [65]. For

comparison, we also computed the NAC terms for some geometries of the trajectory using the complete

active space self consistent field (CASSCF) method [68]2 The relative magnitudes of the CASSCF NACs

are consistent with the NACs obtained by LR-TDDFT. Typical structural changes following excitation

are the CN bond elongation in the first 10 fs and subsequent pyramidalization of the nitrogen center (see

molecular structures in Fig. 4.2). These geometrical changes are identical to the ones reported in the

SA-MCSCF study [65].

Different forces in the excited states as well as the excess kinetic energy, accumulated during the

relaxation process, trigger different reaction channels. If the system is cooled down to 300 K upon

S1→S0 transition, we find that half of the trajectories isomerize around the CN bond. Without thermo-

stat, the kinetic energy is sufficiently high to allow multiple rotations around the CN bond. Another

possible reaction channel is intramolecular proton transfer, leading to CH3NH+ which remains stable

in S1 for several tens of fs. After thermalization at 300 K in S0, the proton is transferred back, lead-

ing eventually to an isomerized product. Some trajectories also exhibit the experimentally observed H2

abstraction [69].

4.4 Conclusion

In summary, we have developed and implemented a new TSH scheme based on LR-TDDFT, which

makes use of a multideterminantal approximation of the excited states for the computation of the NACs.

The presented method benefits from a formally exact description of excited state energies and nuclear

forces at the LR-TDDFT level. The relatively low computational costs allows the study of relatively

large systems and multiple trajectories. Furthermore, the number of excited states included in the NA

dynamics is in principle unlimited. We have applied this method to the photorelaxation of the retinal

model compound CH2NH2
+. The relative magnitudes of the NAC terms compare well to NACs obtained

by CASSCF. Observed lifetimes and structural relaxation are also in remarkably good agreement with

wavefunction based methods.

2We computed the full non-adiabatic coupling vectorsdk,j between the2nd and1st excited states at a CASSCF level of
theory. A (6,5)-active space and the cc-pVTZ basis set were used. The coupling terms were calculated using the ionic velocities
from the CPMD trajectory according toσk,j = Ṙ · dk,j .
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Chapter 5

LR-TDDFT Calculation of Non-Adiabatic

Coupling Vectors

Abstract

Non-adiabatic coupling (NAC) transition matrix elements have recently been computed by Time-Dependent

Density Functional Theory (TDDFT) within surface hopping dynamics [Phys. Rev. Lett., 98, 023001,

2007] using Casida’s assignment ansatz for the excited states. Here, we use the same principle com-

bined with a finite difference scheme to compute the full derivative NAC vectors. We evaluate their

accuracy by means of a comparison to wavefunction based methods. The scheme is applied to compute

vectors couplingS1/S0 andS2/S1 states for a few organic model compounds. Comparison with vectors

computed by the Complete Active Space Self-Consistent Field (CASSCF), confirms a good qualitative

agreement regarding the directions of the vectors. However in general, TDDFT underestimates their

magnitudes when compared with CASSCF, but this is not related to the found underestimation of the

energy gap by TDDFT. Therefore it is suggested that the underestimation of the magnitudes of the NAC

vectors is due to the differences in the density distributions resulting from CASSCF and TDDFT. In

addition, within the finite difference scheme the influence of the size of the nuclear displacement on the

accuracy of the NAC vectors is evaluated.

49



50 Non-Adiabatic Coupling Vectors

5.1 Introduction

Because of the large difference between nuclear and electronic masses, most quantum chemical meth-

ods assume a separation between the motion of electrons and nuclei (Born-Oppenheimer approxima-

tion) [22]. This assumption leads to a considerable simplification to solve the electronic structure prob-

lem; the time-independent Schrödinger equation is solved using an electronic Hamiltonian parametri-

cally dependent on the positions of the nuclei. Solution of this problem yields the adiabatic statesΦk,

which often provide a useful picture to explain, e.g., reaction dynamics. Nevertheless many chemical

problems do not fall in the regime where nuclei and electrons can be considered to be decoupled. For

those cases, the non-adiabatic coupling (NAC) that accounts for the coupling between the motion of

nuclei and electrons is non-negligible. Most photoreactions pass through regions of the potential en-

ergy surface (PES), such as conical intersections (CXs) or avoided crossings, in which non-adiabatic

effects are sizeable or crucial. Semiclassical methods that have been developed to describe these type of

processes make use of thederivative NAC vector

dkj = 〈Φk(r;R(t))|∇RΦj(r;R(t))〉 (5.1)

to correct for non-adiabatic effects. For instance in surface hopping (SH) dynamics [30], NAC matrix

elementsσkj = Ṙ · dkj are used to evaluate transition probabilities between adiabatic states, and ionic

velocities are scaled along the direction of the NAC vector after surface hops in order to conserve the

total energy. NAC vectors are also used to locate special points on the potential energy surface (PES),

such as CXs [70].

Approximate excited state DFT methods, based on the Slater transition state density [71, 72] and

restricted open-shell Kohn-Sham theory [17], have been used to compute NAC vectors [58, 73]. In

the last decade, time-dependent density functional theory (TDDFT) [19] has been used increasingly to

describe excited states. The extension of TDDFT to non-adiabatic processes creates the need to compute

NACs on this level of theory. To our knowledge, Chernyak and Mukamel were the first to use TDDFT to

compute NACs, which was based on a density matrix formulation of TDDFT [74]. Later, Baer proposed

a method to compute NAC vectors by real time propagation [59]. A scheme within linear response

(LR)-TDDFT via implicit differentiation has been proposed by Doltsinis and Kosov [54]. Within the
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TDDFT-SH dynamics we have introduced a method to compute NAC matrix elements [21], based on

Casida’s ansatz for the assignment of the excited states [20]. A more direct but similar procedure using

LR-TDDFT has been published at the same time by Sugino [75] and co-workers.

In the present study, we use again the Casida ansatz to compute the full NAC vectors by TDDFT. This

is done via a finite difference (FD) scheme similar to the one proposed by Billeter [58]. The aim of this

paper is to assess the quality of NAC vectors obtained from TDDFT and to compare them to the results

of state-average complete active space self consistent field method (SA-CASSCF) calculations. We

have also evaluated the influence of the displacement parameterε in the FD calculations, as it provides

information for the choice of a computationally efficient the time step in TDDFT-SH dynamics without

compromising the accuracy of the NAC elements. NAC vectors cannot be measured experimentally

and therefore the only possible validation is a comparison to other theoretical methods, for which we

have chosen SA-CASSCF. However, NAC vectors computed with CASSCF are not necessarily more

accurate than TDDFT, because CASSCF depends strongly on the chosen active space and moreover it

is only able to include static electron correlation, neglecting dynamic correlation effects. The reason

for this choice is that SA-CASSCF is widely used as underlying electronic structure method in SH

dynamics [14]. In addition, to date, SA-CASSCF seems to be the only method that provides NACs in a

standard computation, as implemented in a few electronic structure codes [14,68,76].

5.2 Method

Our scheme to compute NAC vectors is based on the LR-TDDFT formulation of Hutter [52], applied

within the Tamm-Dancoff approximation [48] (TDA). The TDA has been shown to give similar results

as full LR-TDDFT for equilibrium geometries of closed shell systems [48,52].

In this formulation, the response of the ground state electronic density to a periodic perturbation

with frequencyω and amplitudeδV is expressed by means of the LR orbitals{φ1
j} [60]. The excitation

energiesωk are computed solving the Hermitian eigenvalue equations of TDDFT in the TDA,

No∑
ij

(ĤKSδij − εij)|φ1
j 〉+ δVSCF (ω)|φi〉 = ωk|φ1

i 〉 . (5.2)

Kohn-Sham (KS) orbitals{φi} and Lagrange multipliersεij are determined previously in a ground
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state calculation.No is the number of occupied orbitals,̂HKS refers to the KS Hamiltonian andδij to

the Kronecker delta.δVSCF (ω) represents the response of the effective potential to the first order change

in the electronic density induced by a perturbation proportional toeiωt. The excited state wavefunction

can be described using the Casida ansatz in which the LR orbitals{φ1} are projected on a subset ofNv

unoccupied KS orbitals{φv}. This procedure yields the expansion coefficientsck

ckov = 〈φ−o |φv〉 (5.3)

for the expansion of the excited state in terms of singly excited KS determinants [77],

|Φk(r;R)〉 ≈
No∑
o=1

No+Nv∑
v=No+1

ckov|Φv
o(r;R)〉, (5.4)

where|Φv
o(r;R)〉 = â†vâo|Φ0(r;R)〉 is a singly excited KS Slater determinant. Using expression (5.4)

and approximating the ground state wavefunction by a single closed shell KS Slater determinant we have

the required approximations for the adiabatic states to compute the NAC vector (5.1). To apply the FD

scheme proposed in Ref. [58], we need only to solve (5.2), (5.3), and (5.4) for different sets of nuclear

coordinates, generated by Cartesian displacementsεα, α = x, y, z, around the reference geometry:

〈Φk|
∂

∂RI,α
|Φj〉 ≈ dε,I,α

kj =
〈Φk|Φε,I,α

j 〉s+ − 〈Φk|Φ−ε,I,α
j 〉s−

2ε
, (5.5)

s± =

 1 if 〈Φk|Φ±ε,I,α
j 〉 > 0

−1 if 〈Φk|Φ±ε,I,α
j 〉 < 0

Here k, j label the two electronic states of interest and the indexI runs over all atoms. Using the

derivative operator in (5.5) defined in Cartesian coordinates does not ensure the NAC vector to be trans-

lationally invariant. To achieve translational invariance we correctdkj using

dI,α
kj = 〈Φk|

∂

∂RI,α
|Φj〉 −

1
Natoms

∑
I′,α

〈Φk|
∂

∂RI′,α
|Φj〉 (5.6)

as proposed in Ref. [73].
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5.3 Computational Details

Molecular geometries were optimized using DFT/PBE as implemented in the TURBOMOLE pack-

age [78] and the TZVP basis set [79]. Convergence criteria for the nuclear gradients were set to 10−3 a.u.

Optimizations were done imposing the highest possible symmetry point group of the given molecule,

that is,C2v for H2O and CH2NH+
2 , andCs for thymine. All TDDFT calculations also employ the PBE

functional [66] and make use of the TDA [48,52]. NAC vectors were computed for the optimized ground

state equilibrium geometries.

The TDDFT-FD scheme described above (5.5) was implemented in the plane waveab initio package

CPMD [62] based on the TDDFT implementation of Hutter [52]. The criteria for the convergence of the

wavefunctions was set to 10−6 a.u. In expansion (5.4), four virtual orbitals were included in the case of

water, whereas for CH2NH+
2 and thymine, eight orbitals were included. A plane wave cutoff 70 Ry was

sufficient to converge excitation energies for all test molecules. We use pseudopotentials of the Troullier-

Martins type [67] to integrate out the effects of core electrons. Molecules are placed in the center of

orthorhombic supercells while the Poisson equation is solved for isolated systems. The box dimensions

for both, H2O and CH2NH+
2 measure 12×12×10 Å3. For thymine a box of dimensions 14×14×10 Å3

is used. Nuclear displacementsε are varied between to 0.005 and 0.500 Bohr (1 Bohr≈ 0.5292 Å).

SA-CASSCF calculations were done with the programm GAUSSIAN03 [68]. To obtain the NAC

vectors we use the routine for the optimization of conical intersection geometries. All CASSCF calcu-

lations employ the 6-31+G** [80, 81] basis set. We use a 6-electron, 6-orbital active space [CAS(6,6)]

for H2O and CH2NH+
2 . For thymine a 8-electron, 6-orbital active [CAS(8,6)] is used. Equal weights for

all states were applied for the state averaging procedure.

The comparison of NAC vectors computed by different methods is based on the following quantities.

The lengthL of the vector is defined as

L =
√∑

I

∑
α

d2
I,α (5.7)

Applying the Hellman-Feynman theorem to (5.1), yields the well-known expression for the NAC

vector that is inversely proportional to the energy gap∆E = Ej(R)−Ek(R) between the two adiabatic



54 Non-Adiabatic Coupling Vectors

states

dkj =
〈Φk|∇RHel|Φj〉
Ej(R)− Ek(R)

(5.8)

Equation (5.8) indicates that the lengths of the NAC vectors strongly depend on the excitation ener-

gies predicted by the particular electronic structure method. To decouple the lengths of the vectors from

the energy gap and achieve a somewhat more objective evaluation criteria, we also report thescaled

lengthL′ of the vectors defined as

L′ = ∆E
√∑

I

∑
α

d2
I,α (5.9)

The root mean square deviation (RMS) between two vectorsd andd′ is evaluated as

RMS =
1

3Natoms

√∑
I

∑
α

(dI,α − d′I,α)2. (5.10)

In the following we will only report the RMS between the energy scaled vectors. To measure the

deviation between the directions of two vectors we define the correlationC

C =
∑

I

d′I · dI

|d′I | · |dI |
(5.11)

5.4 Results

For all of the TDDFT NAC vectors reported here, we refer to vectors that have been corrected for trans-

lational invariance according to (5.6). For the water molecule, CASSCF is able to reproduce accurately

the experimental first excitation energy of 7.4 eV, while TDDFT underestimates it by about 0.8 eV. Re-

garding the directions of theS1-S0 NAC vectors (Fig. 5.1), both methods agree qualitatively, which is

also reflected by the correlation of 1.00 for most values ofε (Table 5.1). However, CASSCF predicts the

lengths of the NAC vector to be about 10 times larger than TDDFT, although theS1-S0 gap is consider-

ably larger in CASSCF than in TDDFT. Because of the inverse relationship (5.8), one would expect the

contrary behavior, so the divergence of the magnitudes becomes even larger if one considers the scaled

vectors. Regarding the effect of the finite nuclear displacement on the magnitude of the NAC, we see

that the length of the vectors diminishes at displacements of 0.1 Bohr and larger, whereas the correlation

is basically not affected by changingε.
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Figure 5.1:S1-S0 NAC vectors of H2O computed by CASSCF (left) and TDDFT (right). The lengths
of the NAC vectors as shown is proportional to their actual magnitudes.

Method ∆E ε L L′ RMS C

TDDFT-FD 6.261 0.005 0.0325 0.0075 0.0251 0.9998
0.010 0.0325 0.0075 0.0251 1.0000
0.020 0.0325 0.0075 0.0251 1.0000
0.100 0.0316 0.0073 0.0252 1.0000
0.200 0.0302 0.0069 0.0253 1.0000

CAS(6,6) 7.437 - 0.3031 0.0844 (ref) (ref)
experimenta 7.4 - - - - -

Table 5.1:S1-S0 NAC vectors of H2O computed by TDDFT and CASSCF.a Experimental value was
taken from Ref. [82].ε is given in Bohr;L, L, and RMS are given in Bohr−1; ∆E is given in eV.

For CH2NH+
2 we computed not only the coupling betweenS1 and the ground state, but also the NAC

vector between the two excited statesS2 andS1. CASSCF overestimates the first singlet excitation en-

ergy (Table 5.2) by about 0.7 eV with respect to the high-level ab initio value, while TDDFT again

underestimates the energy by about 0.8 eV. In contrast, the energy gap betweenS2 andS1 is overesti-

mated by more than 1.8 eV by TDDFT, whereas it is better described by CASSCF, which underestimates

the gap by only 0.2 eV. Comparing the qualitative appearance of the NAC vectors (Fig. 5.2), it is evident

that the two methods CASSCF and TDDFT agree well in the qualitative description of the nuclear mo-

tion associated with the transitions between bothS2-S1 andS1-S0. In both cases, the associated mode

can be characterized as a twist around the N-C bond. Also with respect to the relative magnitudes both

methods agree, and predict theS2-S1 coupling to be much larger than theS1-S0 coupling. Regarding the

absolute lengths (Table 5.2), TDDFT predicts about 10% smaller couplings than CASSCF in the case

of S1-S0. In the case ofS2-S1, TDDFT underestimates the length by 30%. If we consider the scaled

vectors, the underestimation rises up to 30 % for theS1-S0 coupling and turns into an overestimation of

about 25% in the case ofS2-S1, due to the much largerS2-S1 gap in TDDFT.

The displacement parameter exhibits the same trend as in the case of water, and displacements larger
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Figure 5.2: NAC vectors of CH2NH+
2 computed by CASSCF (left) and TDDFT (right).

than 0.1 Bohr lead to a drop in the lengths of the vectors. For the direction of theS1-S0 vectors we see

a good correlation between CASSCF and TDDFT, whereas for theS2-S1 coupling a special behavior

is encountered: for some values ofε, the correlation drops to≈ 0.7. This is due to the very small

vector components at the carbon and nitrogen atoms, which lead to a C-N stretching (only marginally

visible in Fig. 5.2). By excluding the vector components of carbon and nitrogen, a correlation of 1.00

between CASSCF and TDDFT can be found for all values ofε. These vector components are absent in

the CASSCF vectors for the equilibrium geometry investigated here, and the TDDFT vectors computed

at smallest displacement of 0.005 Bohr do not exhibit these components either. However, it has been

shown that also within CASSCF, this stretching mode occurs by approaching theS2-S1 conical inter-

section [65]. This divergence shows how sensitive the magnitude of the NAC vectors are to the shape of

the PES.

For thymine, TDDFT underestimates theS1 excitation energy by more than 1 eV, whereas CASSCF

agrees within 0.4 eV of the experimental value (Table 5.3). The underestimation of TDDFT could be due

to the partial charge transfer character of the transition [83], indicated by the different spatial distribution

of donor and acceptor orbitals (Fig. 5.4). This reasoning is confirmed by the fact that we find a higher
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States Method ∆E ε L L′ RMS C

S1-S0 TDDFT-FD 7.505 0.005 0.2945 0.0812 0.0086 1.0000
0.010 0.2945 0.0812 0.0086 1.0000
0.020 0.2942 0.0811 0.0086 1.0000
0.100 0.2916 0.0804 0.0097 0.9976
0.200 0.2743 0.0757 0.0106 0.9970

CAS(6,6) 9.095 - 0.3367 0.1125 (ref) (ref)
MR-CISD+Qb 8.35 - - - - -

S2-S1 TDDFT-FD 2.556 0.005 2.0669 0.1941 0.0334 0.9999 ( 1.0000 )
0.010 2.0656 0.1940 0.0334 0.6791 ( 1.0000 )
0.020 2.0602 0.1935 0.0332 0.7071 ( 1.0000 )
0.100 1.9053 0.1790 0.0298 0.7771 ( 1.0000 )
0.200 1.5747 0.1479 0.0225 0.8333 ( 1.0000 )

CAS(6,6) 0.632 - 2.2591 0.0525 (ref) (ref)
MR-CISD+Qb 0.82 - - - - -

Table 5.2: NAC vectors of CH2NH+
2 computed by TDDFT and CASSCF.b The multireference config-

uration interaction singles and doubles, corrected for size extensivity (MR-CISD+Q) result taken from
Ref. [65]. The values forC given in parenthesis refer to the correlation where vectors on carbon and
nitrogen were excluded in the evaluation. For units see caption of Fig. 5.1.

excitation energy of 4.4 eV if the hybrid PBE0 functional is used. However, for the sake of comparison

we will only report NACs computed by PBE here.

TheS1-S0 NAC vectors of CASSCF and TDDFT are shown in Fig. 5.3. As in the previous two

cases, CASSCF predicts overall stronger coupling betweenS1 andS0 (Table 5.3), regardless of the

energy gap. The overestimation amounts to approximatly 15 and 40% for the unscaled and scaled

lengths, respectively. At the positions of most atoms the directions of the NAC vectors correlate well

but the relative lengths vary between the two methods. For atom N6 (Fig. 5.3), we find the TDDFT

NAC vectors pointing in the opposite direction than the CASSCF vector. This divergence as well as

the differences in the relative magnitudes are indicated by the different orbitals that constitute the major

component of theS0-S1 electronic transition according to the two methods (Fig. 5.4). Large differences

in the correlations are found for the components located on the methyl group (C3, H12-14) and H10,

leading to a very weak correlation between CASSCF and TDDFT NAC vectors of 30-60%. The lengths

of these vectors are at the limit of the accuracy of the method and their directions deviate largely within

the TDDFT computations with different values forε. To explain the small magnitudes of the vector

components on these atoms, we consider the orbitals that constitute the dominant transition as shown in

Fig. 5.4. According to CASSCF and TDDFT the amplitudes of the orbitals on these atoms are both very
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Figure 5.3:S1-S0 NAC vectors of thymine computed by CASSCF (left) and TDDFT (right). The lengths
of the NAC vectors as shown is proportional to their actual magnitudes.

small, leading to a small overlap and thus to small components of the NAC vectors. The exclusion of

the vectors on atoms C3, H12-14, and H10, due to their very small magnitudes, leads to an increase of

the correlation of up to 70%, and the results are also less sensitive to the choice ofε. Due to the opposite

direction of the vector located on atom N6 a better agreement cannot be obtained. As in the previous

cases, the absolute lengths of the TDDFT-FD vectors are no longer reliable at displacements larger than

0.1 Bohr.

Method ∆E ε L L′ RMS C

TDDFT FD 3.463 0.005 0.2563 0.0331 0.0040 0.4206 (0.5289)
0.010 0.2384 0.0308 0.0035 0.5103 (0.5300)
0.020 0.2287 0.0296 0.0032 0.6480 (0.6881)
0.100 0.1671 0.0216 0.0022 0.5796 (0.7256)
0.200 0.1163 0.0150 0.0016 0.3110 (0.7262)
0.500 0.0549 0.0071 0.0014 0.0483 (0.3614)

CAS(8,6) 5.083 - 0.2700 0.0504 (ref) (ref)
experimentc 4.5-4.7 - - - - -

Table 5.3:S1-S0 NAC vectors of thymine computed by TDDFT and CASSCF.c Experimental value
taken from Ref. [84]. The values forC given in parenthesis were evaluated excluding C3, H12-13, and
H10, according to the numbering defined in Fig. 5.3. For units see caption of Fig. 5.1.

5.5 Conclusions

In the case of the three model systems investigated here, the excitation energies computed with CASSCF

are in better agreement with experiment or with high-levelab initio calculations than when calculated

using TDDFT/TDA using the PBE functional. With the exception of theS2 state of CH2NH+
2 , TDDFT
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Figure 5.4: Comparison between CASSCF and KS orbitals of thymine. Left: Major single particle
transition contributing toS1 according to CASSCF. Right: Major single particle transition contributing
to S1 according to TDDFT. The lengths of the NAC vectors as shown is proportional to their actual
magnitudes.

systematically underestimates the excitation energies by≈0.8-1.8 eV. In contrast, CASSCF gives quite

accurate excitation energies, exhibiting deviations from the given reference values of less than 0.8 eV.

The performance of TDDFT could probably be improved using other approximations for the exchange-

correlation functional. Hybrid or asymptotic corrected functionals are both likely to improve the quality

of the TDDFT excitations energies.

Concerning the calculation of the NAC vectors, for the small molecules H2O and CH2NH+
2 we find

a very good correlation for the direction of the vectors computed with CASSCF and TDDFT. In the

case of thymine, the correlation is worse, but the descriptions of the collective molecular displacement

associated to the non-adiabatic transitions are nevertheless in good agreement with one another.

The agreement between the two methods is worse for the lengths of the NAC vectors. In all cases,

CASSCF predicts stronger NACs betweenS1-S0 surfaces than TDDFT. On average the difference of

the NAC vector magnitudes amounts to 10-40% (see Tables 5.2 and 5.3), but in the case of water, it

becomes larger. For this molecule we measured a ratio of 10:1 between the CASSCF and TDDFT NAC

vectors.

Surprisingly, the discrepancies in the magnitudes of the vectors cannot be straightforwardly associ-

ated with differences in the energy gaps between the surfaces of interest. On the contrary, the energy
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gap is always found to be larger in CASSCF than in TDDFT, in the case of theS1-S0 couplings. This

leads to even larger differences between the rescaled NAC vectors (5.8). In only the case of theS2-S1

coupling can the large magnitude of the CASSCF vector be explained by the small CASSCF energy gap.

We conclude therefore that the difference in the length of the NAC vectors measured with TDDFT and

CASSCF is more likely related to a difference of the orbital overlaps than to a difference in energy gaps.

Regarding densities, a larger delocalization of the KS orbitals compared to stronger localization of

the orbitals in CASSCF might be the reason for the differences in the relative lengths of the vectors

and is indicated by the spatial extent of the thymine orbitals shown in Fig. 5.4. However, the shape

of the PES might also influence the couplings for the present examples as we have seen in the case of

theS2-S1 coupling of CH2NH+
2 , where at the equilibrium geometry the N-C stretching mode could not

be observed on the CASSCF level whereas it has been found for other geometries which are probably

closer to theS2-S1 conical intersection [65].

Regarding the sensitivity of the NAC vectors to the displacement parameter, we find that for most

systems the lengths of the NAC vectors decrease for values ofε larger than 0.1 Bohr. On average, the best

correlation between CASSCF and TDDFT results is found for values between 0.02 – 0.1 Bohr. In the

case of the on-the-fly calculation of the NAC vectors during non-adiabatic TDDFT-SH dynamics [21]

we therefore suggest to take classical time steps in such a way that atomic displacements (2ε) are within

0.04 and 0.2 Bohr.

The influence of different exchange-correlation functionals on the TDDFT NACs remains to be

investigated and a comparison with NACs obtained fromab initio methods that includes dynamic corre-

lation is also desirable.

The finite difference scheme has been found to be not optimal, because the displacements are difficult

to control. An improvement could be introduced in TDDFT-SH dynamics if NACs are computed by

analytic gradient methods. However, as a first approximation a qualitatively correct description of the

coupling between nuclear and electronic motion can also be achieved within the present approach.

We gratefully thank Salomon Billeter for explanations and discussions.



Chapter 6

Mixed Time-Dependent

Density-Functional Theory/Classical

Trajectory Surface Hopping Study of

Oxirane Photochemistry

Abstract

We present a mixed time-dependent density-functional theory (TDDFT)/classical trajectory surface hop-

ping (SH) photochemical dynamics study of oxirane ring opening. Previous preparatory work limited to

the symmetric CC ring-opening pathways of oxirane concluded that the Tamm-Dancoff approximation

(TDA) is important for improving the performance of TDDFT away from the equilibrium geometry.

This observation is supported by the present TDDFT TDA/SH calculations which successfully confirm

the main experimentally-derived Gomer-Noyes mechanism for the photochemical CO ring opening of

oxirane and, in addition, provide important state-specific information not easily accessible from experi-

ments. In particular, we find that, while one of the lowest two excited states is photochemically relatively

inert, excitation into the other excited state leads predominantly to rapid ring opening,cyclic-C2H4O→
•CH2CH2O•. This is followed by hopping to the electronic ground state where hot (4000 K) dynamics

leads to further reactions, namely•CH2CH2O•→ CH3CHO→ •CH3 + •CHO and CH4 + CO. We note

61
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that, in the dynamics, we are not limited to following minimum energy pathways and several surface

hops may actually be needed before products are finally reached. The performance of different func-

tionals is then assessed by comparison of TDDFT and diffusion Monte Carlo potential energy curves

along a typical TDDFT TDA/SH reaction path. Finally, although true(S0, S1) conical intersections are

expected to be absent in adiabatic TDDFT, we show that the TDDFT TDA is able toapproximatea

conical intersection in this system.

6.1 Introduction

Since the introduction of linear response (LR) equations [20,85,86] for time-dependent density-functional

theory (TDDFT) [19, 41], LR-TDDFT (usually referred to as just TDDFT) has become, with few ex-

ceptions [83], the single-reference method of choice for extracting information about electronic excited

states of medium and large-sized molecules. As such, TDDFT has become a standard part of the pho-

tochemical modelers’ toolkit as evinced by several recent papers [87–98]. While TDDFT is formally

exact, its accuracy is limited in practice by the need to use approximate functionals [99]. Nevertheless

TDDFT is for some purposes computationally more than competitive with other tools in the photochem-

ical modelers’ toolkit. This is why TDDFT is often used to predict absorption spectra, to optimize

excited-state geometries needed for modeling fluorescence spectra, and to examine the beginning and

end of photochemical reactions. In contrast, many questions surround the use of TDDFT in the in be-

tween region where the ground and excited state become energetically degenerate or nearly degenerate

and biradicals (or biradicaloïds) are formed as bonds are broken. This is precisely the region where

traditional wisdom says that multireference methods, such as CASSCF, are required. Relatively little is

known about how TDDFT works or how rapidly TDDFT fails in approaching this region, hence the need

to troubleshoot TDDFT for photochemical applications. This troubleshooting is further complicated by

the possibility of different types of photochemical reaction mechanisms [1], some of which may prove

more problematic than others. Thus a realistic assessment of TDDFT for a given photochemical reaction

involves studying not just the local quality of electronic potential energy surfaces (PESs) but predicting

entire reaction mechanisms. One way to do this is the “pathway method” in which minimum energy

pathways (MEPs) are mapped out on excited state PESs between the initial Franck-Condon points ob-

tained by vertical excitations and minima or conical intersections. However a better way is to carry
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out photochemical dynamics since, unlike thermal reactions, photochemical reactions often have excess

energy and so need not follow MEPs, and surface hopping depends on dynamical details and not just

energy. Once the physically relevant pathways have been determined, the quality of TDDFT with dif-

ferent functionals can be assessed for a given photochemical reaction. We report just such a study of

oxirane photochemical ring opening where we find TDDFT to give a remarkably good description of

the physically relevant parts of the important PESs.

Some of the ground work for this article has been layed by a previous article that we shall refer to

as Oxirane I (Ref. [49]). The objective of Oxirane I was to troubleshoot TDDFT as a potential method

for ab initio molecular photodynamics calculations, using oxirane as a simple example where “TDDFT

ought to work.” The quality of TDDFT for calculating vertical excitation spectra and potential energy

curves along symmetric CC ring opening pathways was investigated by comparison with experiments

and with high-quality quantum Monte Carlo (QMC) results. Well-known problems of TDDFT [99],

including the artificially low ionization threshold [100], problems due to lack of explicit two-electron

excitations [101, 102], and triplet (and singlet) instabilities [103], were treated in detail. No charge

transfer excitations were encountered, so the well-known underestimation of charge transfer excitations

in TDDFT [83] was not a concern. The main difficulty encountered with TDDFT turned out to be

the triplet instability problem which could be largely circumvented by using the Tamm-Dancoff ap-

proximation (TDA) [48]. Since conventional wisdom suggests that symmetric ring-opening should be

governed by the Woodward-Hoffman rules, con- and disrotatory ring opening were also investigated.

However experimental investigations indicate that photochemical ring opening of oxirane most likely

proceeds via asymmetric breaking of the COσ bond, which is probably best investigated via a mixed

quantum/classical surface hopping (SH) trajectory treatment.

Semiclassical trajectory SH methods [27, 30, 56] have been used extensively to study photochem-

ical processes [18, 104–115]. The potential energy surfaces (PESs) used in these studies are either

experimentally-derived fit functions or are calculated on-the-fly using a semiempirical orab initio

electronic structure method.Ab initio molecular dynamics (AIMD) is based upon the calculation of

forces using parameter-freeab initio quantum chemical methods such as the complete active space self-

consistent field (CASSCF) method. While CASSCF calculations with a suitably chosen active space can

provide a chemically satisfying description of the bond making and breaking, the choice of the active
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space is nontrivial and cannot be automized and CASSCF calculations rapidly increase in expense as

the molecules treated grow in size. For this reason it is highly desirable to explore other computation-

ally simpler approaches such as time-dependent density-functional theory (TDDFT) for applications in

photochemical AIMD [28].

The basic technology needed to carry out TDDFT/SH calculations is just becoming available. A

prerequisite is the availability of TDDFT excited-state nuclear gradients, which have now been imple-

mented in many quantum chemistry programs [52–54, 116–119]. In particular, the implementation of

TDDFT TDA analytic gradients in the Car-Parrinello molecular dynamics code CPMD [52] has lead

to a few mixed TDDFT TDA/classical dynamics studies of electronic excited states [120–122] albeit

without SH. Important pioneering work by Craig, Duncan, and Prezhdo [50] did incorporate SH into

a crude form of TDDFT obtained by neglecting the exchange-correlation kernel. Consequently neither

the excitation energies nor the associated forces could be considered accurate. This deficiency has only

recently been corrected by the work of Tapavicza, Tavernelli, and Röthlisberger [21] who implemented

Tully’s fewest switches (FS) SH algorithm [30] finally permitting full TDDFT/SH calculations.

In the next section, we briefly review the TDDFT/SH method. The results of oxirane TDDFT/SH

calculations are given in Sec. 6.3 where a detailed picture emerges of how the photochemical ring open-

ing of oxirane takes place, in very good agreement with the mechanism previously proposed by Gomer

and Noyes [123]. Having determined the principle photochemical mechanism predicted by TDDFT,

we are in an excellent position to evaluate the real importance along this path of varying the density

functional and this is done in Sec. 6.4.

An important debate which arose during the preparation of Oxirane I and of this work concerns the

question of the existence of conical intersections in TDDFT. Levine, Ko, Queeneville, and Martinez

have made a good case against the existence of true conical intersections in TDDFT [102], casting doubt

on the utility of TDDFT for photochemical modeling. For this reason, we examine the critical region

of the oxirane potential energy surfaces in Sec. 6.5 and report our finding of an approximate TDDFT

conical intersection.

Section 6.6 summarizes and concludes.
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6.2 Theoretical Methods

The primary theoretical methods used in this paper are TDDFT, TDDFT/SH, QMC, and CASSCF. The

excited-state QMC methodology used in this paper has been previously presented in Oxirane I and

Refs. [124–126]. The CASSCF is now well-established part ofab initio quantum chemistry and its

description can be found in appropriate textbooks [32]. The basic principles of TDDFT have also been

reviewed in Oxirane I and more detailed information can be obtained from a recent textbook [41]. In

contrast, the TDDFT/SH method [21] is still very recent and plays a central role in this paper. As such

it merits presentation here.

In this AIMD approach, the quantum wave packet or ensemble of wave packets describing the nu-

clear degree of freedom is replaced by an ensemble of classical trajectories, corresponding to different

reaction paths and hence giving information about reaction products and corresponding relative yields.

Most of the time the trajectories are propagated classically on either an excited-state or on the ground-

state Born-Oppenheimer (BO) PES, but non-BO dynamics is also allowed to occur via special nonadi-

abatic SH techniques when PESs become energetically quasidegenerate. Two SH techniques are used

here, namely the phenomenological Landau-Zener (LZ) theory [127–130] and Tully’s fewest switches

(FS) theory [27, 30, 56]. While the FS theory is more rigorous than the LZ approach, neither theory

is completely rigorous since neither theory is able to take into account the transition between quantum

decoherence and coherence as PESs converge and diverge, nor do they take into account Berry phase

effects which occur in the neighborhood of conical intersections. Perhaps more importantly the LZ and

FS theories were developed in an era when conical intersections (CXs) were felt to be rare and so were

designed with avoided crossings (ACs) in mind. A more modern picture is that surface hopping occurs

by passing through CXs or perhaps through seams where surfaces cross. This is why modern practice

dictates that these regions be referred to as funnels in the absence of further characterization (see for

example Ref. [1] p. 22). Neither LZ nor FS theory really applies at the points of surface crossing, but

this does not normally pose an obstacle to practical calculations. An exception isS0 → S1 SH which

we chose to make irreversible for reasons discussed in Sec. 6.5. Despite these caveats, we expect our

TDDFT TDA/SH calculations to give qualitatively correct reaction mechanisms and order of magnitude

estimates of reaction rates.

The LZ theory is in principle only valid for AC-like situations. These may arise either as a true AC
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due to remixing of near-lying diabatic states or as effective ACs seen by a trajectory passing near but not

through a CX. In practice, switching probabilities are determined purely on the basis of the form of the

PES. This means that LZ theory can be applied as soon as PESs have been generated by adding TDDFT

excitation energies to DFT ground state energies. SH only occurs at special points along a trajectory

which correspond to a minimum in the energy difference,∆Eadia, between two adiabatic states. At

these points the switching probability is evaluated as [131],

P LZ
I,J = exp

(
−

π2∆E2
adia

h(d|∆Edia|/dt)

)
, (6.1)

where the rate of change of the diabatic energy difference,∆Edia, is evaluated as in Ref. [131] as the

maximum of the rate of change of the adiabatic energy difference as the AC is approached.

The LZ scheme is easier to program and is somewhat less expensive than the FS method which will

now be described. However no direct account is taken of the nature of the two electronic states.

Tully’s theory [30] does take into account the nature of the electronic states. In this approach the

nuclear coordinates,R(t), are propagated classically, while the electronic wave function satisfies the

equation,

Ĥel(R(t))Ψ(r, t) = i~
∂

∂t
Ψ(r, t) . (6.2)

The electronic wave functionΨ(r, t) is a function of the electron coordinates,r. Equation (6.2) is solved

by expanding,

Ψ(r, t) =
∑

I

ΨI(r;R(t))CI(t) , (6.3)

where the BO statesΨI(r;R(t)) satisfy the usual equation,

Ĥel(R(t))ΨI(r;R(t)) = EI(R(t))ΨI(r;R(t)) . (6.4)

|CI(t)|2 can be interpretted as the population of stateI at timet. Inserting Eq. (6.3) into Eq. (6.2) yields

an equation for theCI(t), namely

i~ĊI(t) = EICI(t)− i~
∑
J

σI,J(t)CJ(t) , (6.5)



6.2. Theoretical Methods 67

where the nonadiabatic coupling (NAC) matrix elements are defined by

σI,J(t) =
∫

Ψ∗
I(r;R(t))

∂

∂t
ΨJ(r;R(t)) dr

= 〈I(t)| ∂
∂t
J(t)〉 . (6.6)

In practice, we compute NAC matrix elements directly via the finite difference scheme,

σI,J(t) =
〈I(t)|J(t+ ∆t)〉 − 〈I(t+ ∆t)|J(t)〉

2∆t
. (6.7)

Following Tully’s recipe [30], a hop from stateI to stateJ is made if and only if,

ζ < gI,J(t,∆t) , (6.8)

whereζ ∈ [0, 1] is a random number and,

gI,J(t,∆t) = −2
∫ t+∆t

t

<[CJ(τ)C∗
I (τ)σJI(τ)]

CI(τ)C∗
I (τ)

dτ . (6.9)

Unlike LZ theory, the FS method requires NAC elements which must somehow be extracted from

TDDFT. This problem has already been reviewed in some detail in Appendix A of Oxirane I where it

is concluded that, at least, the NAC between the ground and excited states can be calculated formally

exactly within LR-TDDFT. Recently, several implementations to compute NACs within TDDFT were

published [21, 59, 74, 75]. The approach [21] used in the present work adapts Casida’s assignment

ansatz [20] for the adiabatic excited states,

ΦK(r;R) =
Nocc∑
i=1

Nocc+Nvirt∑
a=Nocc+1

cKiaΦa
i (r;R) , (6.10)

whereΦa
i = â†aâiΦ0 is a singly excited Kohn-Sham (KS) determinant, and the ground state wavefunction

is approximated by the closed shell single KS Slater determinant. This is sufficient to be able to calculate

the NACs via Eq. (6.7). Note that no restriction is placed on the indicesI andJ so that neither need be

the ground state.
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Figure 6.1: Mechanism proposed by Gomer and Noyes [123].

6.3 TDDFT/SH Dynamics

In 1950, based upon what was known experimentally at the time, Gomer and Noyes postulated the

mechanism shown inFig. 6.1 for the photochemical ring opening of oxirane. This mechanism was

confirmed experimentally by Kawasaki, Ibuki, Iwasaki, and Takezaki in 1973 [132]. However it is only

a rather rough mechanism in the sense that it is not state specific. That is, it does not explain which

electronic states are responsible for the reaction (nor why these states should be responsible), the nature

of the funnel where the reaction passes from the excited states to the ground state, nor which parts of

the reaction occur on the ground state surface. Our TDDFT/SH simulation can answer the question of

whether or not TDDFT predicts the same mechanism and will provide state specific information. We

will not be able to run the simulation long enough to obtain quantitative information about reaction

yields, but the simulation will suggest likely products.

We will restrict our simulation to reactions initiated in the two lowest excited states. Simulation

conditions are thus comparable to those of the photolysis experiment of Kawaski, Ibuki, Iwasaki, and

Takezaki [132] since the experimental photon energies (0.67-6.95 and 7.11 eV) can be expected to pop-

ulate only the lowest excited states of oxirane. According to Oxirane I and further analysis given in

Subsec. 6.4.2, these are Rydberg-type1B1(n, 3s) and1B1(n, 3pz) states. Both transitions have signifi-

cant oscillator strength. A dark1A2(n, σCC∗) state could also conceivably enter into the photochemical

reaction through nonadiabatic coupling with the other two states, but this will be included automatically

in our simulation. The orbitals in question are shown inFig. 6.2.
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Figure 6.2: Ground state orbitals obtained using the PBE functional at the equilibrium geometry: a)
HOMO [b1(n)], b) LUMO [a1(3s)], c) LUMO+1 [a1(3pz)], and d) LUMO+2 [b2(σ∗)].

6.3.1 Computational Details

The TDDFT/SH simulations are carried out using the CPMD code [52, 62] and the implementation

described in Section 6.2 and Ref. [21]. We use a plane wave basis (PW) with a cutoff of 70 Ry and

norm-conserving pseudopotentials of Troullier and Martins [67]. We employ the isolated system module

in CPMD, which allows us to study an isolated molecule within periodic boundary conditions, placing

the molecule at the center of a cubic box of 11×11×11 Å3. We always employ the PBE functional [66].

Starting geometries and nuclear velocities are taken from a Boltzmann ensemble at 300 K generated

by ground state BO molecular dynamics (MD) in the NVT ensemble using a Nosé-Hoover thermostat.

Following the Franck-Condon approximation, the TDDFT/SH simulation is initiated by vertical excita-

tion into either the1(n, 3s) (S1) or 1(n, 3pz) (S2 or S3) states. A timestep between 5 and 10 a.u. (1 a.u.

= 0.024 fs) was used to propagate the classical degrees of freedom, while the time step to integrate the

electronic degrees of freedom [Eq. (6.5)] was 10−4 times smaller. The MD simulations are performed

in the microcanonical (NVE) ensemble.

About 30 SH trajectories of each LZ and FS type with different starting geometries were generated

and initiated in the1(n, 3pz) state. Five of these geometries were also initiated in the1(n, 3s) state

to perform both LZ and FS SH dynamics. This is too few trajectories to give a complete statistical

description of all possible events, but we believe it allows us to identify the main reaction channels,

predict reaction products, and to give an estimate about the time scale of the fragmentation reactions.

One MD step takes about 9 min on 8 AMD Opteron 240 processors, so typically an excited state MD

takes about 18 hours for 60 fs if a timestep of 10 a.u. is used.
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Figure 6.3: (A) Cut of potential energy surfaces along reaction path of a LZ (- -) and a FS (–) trajectory
(black, S0; blue, S1; green,S2; magenta,S3). Both trajectories were started by excitation into the
1(n, 3s) (S1) state, with the same geometry and same initial nuclear velocities. The running states of the
LZ and the FS trajectory are indicated by the red crosses and circles, respectively. (B) State populations
(black, S0; blue, S1; green,S2; magenta,S3) andS1 → S2 FS hopping probability (dashed) as a
function of time for the FS trajectory shown in (A).
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6.3.2 Results

Kasha’s rule [133] suggests that the first excited triplet (T1) or singlet (S1) is the most likely candidate

for the initiation of a photochemical reaction. Since we are neglecting spin orbit coupling here, Kasha’s

rule implies that we should expect the reaction to begin from theS1 state which in our simulation is the

1(n, 3s) state (Subsec. 6.4.2). The results of a typical simulation initiated in the11B1(n, 3s) state is

shown inFig. 6.3. The result of the LZ algorithm is that no reaction occurs during the first 320 fs and

the system preserves the electronic character of the1(n, 3s) state even at crossings to the1(n, 3pz) state.

The FS algorithm does lead to a reaction, but only after the character of the running state changes from

1(n, 3s) to 1(n, 3pz) state due to mixing betweenS1 andS2. Thus the1(n, 3s) state is a nonreactive

channel, consistent with the nonbonding character of the orbital (Fig. 6.2). However the1(n, 3s) state

acts like an energy reservoir which can be tapped by the reactive1(n, 3pz) state via mixing of the

states. In their study of the photochemistry of oxirane, Bigot, Sevin, and Devaquet [134] suggested that

unreactive Rydberg states could act as just such an energy reservoir for reactive valence states. Perhaps

surprisingly, Kasha’s rule has given an incorrect description of our simulation since the state which

is initially S1 is the unreactive channel. This is because Kasha’s rule (which was initially based upon

fluorescence studies) is for slow-enough reactions that radiationless relaxation has time to quench higher

excited states. In the present case, the only mechanism for quenching the higher states is via SH and this

does eventually lead to geometries where1(n, 3pz) is theS1 state.

Figure 6.4shows the main result obtained when the initial excitation is to the21B1(n, 3pz) state. In

contrast to the previous case, now it is the FS algorithm that leads to longer reaction times than does the

LZ algorithm, but both lead to rapid CO ring opening terminated by SH to the ground state at a CCO

angle in the range 107-118◦. The electronic reason for the rapid CO ring opening is shown inFig. 6.5

where the change in the orbital character is followed along a LZ trajectory. In the beginning of the

trajectory (Fig. 6.5a), the active state is best characterized as1(n, 3pz), whereas later (b,c,d) the active

state is best characterized as1(n, σ∗CO). While the3pz andσ∗CO orbitals share many qualitative simi-

larities and one is easily and continuously changed into the other, the change from Rydberg to valence

character helps to explain the rapid fall in energy of the active state and serves as an excellent illustration

of the danger of assuming that Rydberg orbitals are too unreactive to be important for photochemistry.

The conversion of potential energy into classical kinetic energy of the nuclei leads to a dynamically hot
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Figure 6.4: (A) Cut of potential energy surfaces along reaction path of a LZ (- -) and a FS (–) trajectory
(black, S0; blue, S1; green,S2; magenta,S3). Both trajectories were started by excitation into the
1(n, 3pz) (S1) state, with the same geometry and same initial nuclear velocities. The running states of
the LZ and the FS trajectory are indicated by the red crosses and circles, respectively. The geometries
of the LZ trajectory are shown at time a) 0, b) 10, and c) 30 fs. (B) State populations (black,S0; blue,
S1; green,S2; magenta,S3) as a function of time for the FS trajectory shown in (A).
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Figure 6.5: Change of character of the active state along the reactive LZ trajectory, shown in Fig. 6.4.
Snapshots were taken at times a) 2.6, b) 7.4, c) 12.2, and d) 19.4 fs. For a) and b) the running state
is characterized by a transition from HOMO to LUMO+1, while for c) and d) it is characterized by a
HOMO-LUMO transition due to orbital crossing. HOMO remains all the time the oxygen nonbonding
orbital.

molecule, that undergoes further reactions in the ground state, as will be discussed later.

As mentioned above and shown in greater detail inFig. 6.6, FS leads to longer reaction times than

does the LZ algorithm when the initial excitation is into the1(n, 3pz) state. Thus the LZ algorithm leads

to reaction times on the order of 20-40 fs, while the FS algorithm leads to reaction times on the order

of 50-100 fs. The reason for this will now be explained. LZ SH tends to switch close to or at points

of surface crossing. Thus in Fig. 6.4, the LZ SH probabilities are typically about 99% in theS2 → S1

funnel region, so that basically all LZ trajectories switch adiabatic surface at this point. Unlike LZ SH,

which is characterized by switching probabilities at isolated times, the FS SH algorithm is characterized

by finite switching probabilities during nontrivial time intervals (Figs. 6.3B and 6.4B). This means, as

can be clearly seen in Fig. 6.4A, that FS trajectories can SH before the funnel region and then recross

to the original adiabatic state. In this example the system irreversibly jumps to the reactive state at

the second passage through the funnel. This is the case in about half of the trajectories starting in the

1(n, 3pz) state in Fig. 6.6B, while other trajectories need to pass the funnel region 3 or 4 times. Thus

surface recrossing is the reason that reaction times are longer for the FS than for the LZ algorithm.

Had we used the pathway approach we would have followed minimum energy pathways and not

seen the rich phenomenology and its impact on time scales resulting from SH between the1(n, 3s)

and1(n, 3pz) states. We would also not have seen certain other reactions which, though less probable,

nevertheless occur. Thus oxygen abstraction was observed in one LZ trajectory (marked with * in

Fig. 6.6A). This reaction always occurs upon1(n, 3pz) excitation if simulations are started from the C2v
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Figure 6.6: A swarm of 10 trajectories, starting in the1(n, 3pz) state (black,S0; blue,S1; green,S2;
magenta,S3; red, running state). (A) LZ SH. The trajectory marked with an asterisk corresponds to the
oxygen abstraction reaction. The other trajectories all lead the unsymmetric CO bond rupture. (B) FS
SH. In the trajectory marked with an asterisk, the molecule is trapped in the unreactive1(n, 3s) state.
The other trajectories all lead the unsymmetric CO bond rupture.
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Figure 6.7: Fragmentation to•CH3 and•CHO. PES of the running state and its time average are shown
in red and black, respectively. IfS0 is not the running state, it is shown in blue. Structures were taken at
times a) 31 fs, b) 56 fs, c) 72 fs, d) 122 fs, and e) 214 fs. CC distances (Å) are indicated.

symmetric ground state geometry instead of a structure from the 300 K Boltzmann distribution. The

reason for this finding might be the symmetric forces along both CO bonds, inducing a simultaneous

rupture of both bonds forming oxygen and ethylene. In another exceptional trajectory, this time using

the FS algorithm, (* in Fig. 6.6B), we find the contrary case of a molecule trapped in the unreactive

state for about 200 fs, although it was initialized in the reactive state. In none of the trajectories, was the

CC bond breaking observed as an initial step in the photochemistry, though we did find 2 trajectories in

which the1(n, σ∗CC) state was temporarily populated in the first 10 fs after excitation.

Having described excited-state reactions, we will now focus on reactions occurring after the system

has relaxed to the ground state. According to the calculations described above, by far the dominant

process occurring in the excited state is CO bond rupture and CCO ring opening until the intersection

geometry whereS0 andS1 meet. At this point, much of the nuclear potential energy has been turned

into kinetic energy and dynamical temperatures are around 4000 K. The first thing observed is a proton

shift to give acetaldehyde [(3) in Fig. 6.1]. Thus our TDDFT/SH calculations fully validate the Gomer-

Noyes mechanism up to this step and give the additional information that the proton shift is occurring

in the ground electronic state (Fig. 6.7c). After this point, the molecule still has enough excess kinetic

energy to undergo further reaction and we observe two different scenarios. The first is decomposition

to CH•3 and CHO• (Fig. 6.7) while the second is formation of CH4 and CO (Fig. 6.8). Which of these
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Figure 6.8: Formation of CH4 and CO (colors as in Fig. 6.7). Structures were taken at times a) 32, b)
70, c) 474, d) 1151, e) 1705, and f) 1792 fs.

two occurs depends on having just the right combination of internal motion. If the CC bond breaks

irreversibly, without transferring a second proton, we observe the reaction to CH•
3 and CHO•. Since

this bond rupture requires surmounting an energy barrier, it does not always occur. Very often, we only

observe large fluctuations of the CC bond distances, but the bond stays intact for several hundreds of

femtoseconds (Fig. 6.8c,d). In the other scenario, the CC bond breaks and a second proton is transferred

at this state, so that CH4 and CO are formed. While this scenario is less frequent than that forming CH•
3

and CHO•, the reaction to form CH4 and CO from acetaldehyde is exothermic. The energetic order of

the minimum and transition state geometries of the hot molecule reactions (see time averaged surfaces

in Figs. 6.7 and 6.8) are consistent with the order obtained in recent elaborate computational studies,

mapping the ground state PES of the decomposition of CH3CHO andc-C2H4O [135–137].

Our simulation was set up to permit comparison with the photolysis experiment of Kawaski, Ibuki,

Iwasaki, and Takezaki [132]. Although there are some more recent studies of the decomposition of

oxirane, they have focused on thermal rather than photoinduced decomposition [138–140]. Consistent

with our prediction, Kawasakiet al. detect CH•3 and CHO• as the main photoproduct [(4) in Fig. 6.1].

However, while we have only observed oxygen abstraction once in our simulation, Kawasakiet al. find

oxygen abstraction to be the dominant result at higher photon energies. This discrepancy between our

simulations and their experimental results may be because the experiment was carried out at low temper-

ature while our simulations were carried out from an ensemble of structures equilibrated at 300 K. This
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hypothesis is consistent with the fact that oxygen abstraction occurs always upon excitation of the opti-

mal ground state. Another conceivable contribution to the observed discrepancy between our simulation

and the experiment is that our initial ensemble was a 300 K classical Boltzman ensemble. Going from

this to the corresponding quantum ensemble is expected to decrease the probability of observing struc-

tures near classical turning points by increasing the probability of observing the symmetric equilibium

structure. As remarked earlier such symmetric structures favor oxygen abstraction.

To summarize the results of this section, our TDDFT/SH simulation validates the experimentally-

derived Gomer-Noyes mechanism for the photochemical ring-opening of oxirane. At the same time, we

have learned much about the role of the1(n, 3pz) state as reactive channel and the role of the1(n, 3s)

state as an unreactive channel which can serve as an energy reservoir. We have discussed other rare re-

actions and which parts of the reaction occur when the dynamically-hot molecule returns to the ground

state. These latter steps are consistent with the experimental observations of Kawasakiet al. who de-

tected CH•3 and CHO• as the main photolysis products.

6.4 Functionals

Oxirane I presented a detailed analysis of the behavior of TDB3LYP, TDLDA, and TDLDA TDAC2v

potential energy curves compared against the results of high-quality diffusion Monte Carlo (DMC) cal-

culations. The analysis was facilitated by the high symmetry constraint. The closely-related conrota-

tory and disrotatory CC ring opening potential energy surfaces were also presented and the relation to

Woodward-Hoffmann theory was discussed. Oxirane I is however open to the criticism that the photo-

chemical ring opening reaction proceeds via CO, rather than CC, bond breaking. Assessing the behavior

of different types of TDDFT calculations along a more realistic pathway could conceivably lead to dif-

ferent conclusions, either the discovery of new problems or perhaps the discovery that the problems

discovered in Oxirane I are less severe than expected. Thanks to the results of our TDDFT/SH calcu-

lations we are in a position to do just this. In particular, after briefly revisiting the vertical excitation

spectrum (Subsec. 6.4.2) to examine the effects of functionals not treated in Oxirane I, we will take a

careful look at the diversity of behavior possible for different types of TDDFT calculations for a typical

1(n, 3pz)-initiated LZ ring-opening trajectory up to the point of SH toS0.
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6.4.1 Computational Details

QMC results are obtained with the program package CHAMP [141]. We use scalar-relativistic energy-

consistent Hartree-Fock pseudopotentials and the corresponding cc-TZV basis [142] augmented with

polarizations and diffuse functions as discussed in Oxirane I. The wave function is of the Jastrow-

Slater type and consists of a three-body Jastrow factor multiplied by a CASSCF(4,5) determinantal

component. All Jastrow and determinantal parameters are optimized within variational Monte Carlo by

energy-minimization, using a weighted average scheme with equal weights if the excited state is not the

lowest in its symmetry. For the computation of the21B1 and21A1 vertical excitations at the optimalC2v

ground state geometry, we average over the state of interest and the lower state of the same symmetry.

For the geometries along a typical photochemical reaction path with no symmetry, we average over the

lowest three states. The trial wave function is then used in diffusion Monte Carlo (DMC), and all QMC

results presented in this work are from DMC calculations. See Oxirane I [49] for further details on our

QMC calculations.

The TDDFT single-point calculations are performed using either a plane wave (PW) basis and the

CPMD code [52,62] or a localized basis and TURBOMOLE [78,86].

PW calculations are performed in the same way as in the previous section, except that the box size

was increased to 30×30×30 Å3. We use two different xc-functionals, the local density approximation

(LDA) in the parameterization of Vosko, Wilk, and Nusair [143] and the generalized gradient functional

of Perdew, Becke, and Ernzerhof (PBE) [66]. The TDDFT calculations using these functionals are de-

noted as TDLDA and TDPBE, respectively. For comparison TDLDA single point calculations were also

carried out as post-SCF calculations using two different asymptotically-correct exchange-correlation

model potentials, namely that of van Leeuwen and Baerends (LB94) [144] and the state-average orbital-

dependent potential (SAOP) [145]. We use the notation TDLDA/LB94 or TDLDA/SAOP to designate

a post-SCF TDLDA calculation where the SCF part of the calculation was carried out respectively with

the LB94 or SAOP xc-potential.

The TDDFT spectra computed with TURBOMOLE are obtained using an aug-cc-pVTZ localized

Gaussian basis set [146, 147]. Within TURBOMOLE, we use the PBE xc-functional [66] and the hy-

brid xc-functional PBE0 [148], which replaces 25% of PBE exchange by Hartree-Fock exchange. The

TDDFT calculations using this functional are denoted as TDPBE0.
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Table 6.1: DMC and experimental excitation energies (eV). DMC energies were computed for the PBE-
optimized ground stateC2v symmetric structure. Assignment of the experiment are our own.

DMC Assignment Expt.
7.51± 0.02 11B1[b1(n), a1(3s)] 7.24a,b,c

7.62± 0.03 21B1[b1(n), a1(3pz)] 7.45b

8.06± 0.02 11A2[b1(n), b2(σ∗)]
8.64± 0.02 21A1[b1(n), b1(3px)] 7.88a, 7.89b

a Ref. [149],bRef. [150],cRef. [151].

6.4.2 Vertical Excitation Energies

Although the vertical excitation spectrum was discussed in some detail in Oxirane I, only a few func-

tionals were considered. The discussion of the vertical excitation spectrum is here extended to a wider

range of functionals. The primary comparison in Oxirane I for the vertical excitation spectrum was the

experimental absorption spectrum. Here we take the results of our DMC calculations.

Table 6.1compares the results of our DMC calculations against the experimentally-observed excita-

tion energies. Our calculations imply that the two lowest experimental energies probably correspond to

the lowest two1B1 DMC states, which we describe in orbital terms as1(n, 3s) and1(n, 3pz) (Fig. 6.2).

A definite assignment of the two lowest experimental energies would require a more sophisticated model

that takes into account vibronic effects [152–154]. This is especially true since we now know that we are

in the presence of a photochemically active species where vibronic coupling is likely to be important.

These vibronic effects are of course absent in our TDDFT calculations, for which the DMC calculations

are the proper point of comparison, rather than experiment.

Table 6.2compares TDDFT spectra calculated in the TDA with the DMC results. The TDLDA and

TDPBE lead to excitation energies which are underestimated by over 1 eV. An important source of diffi-

culty is the now well-understood phenomenon [100] that the TDDFT ionization threshold lies at minus

the energy of the highest occupied molecular orbital (HOMO). Since the asymptotic fall off of the LDA

and GGA exchange-correlation potentials is exponential rather than as the correct1/r, the TDDFT ion-

ization potential is underestimated by about 4 eV (compare the value of−εHOMO given in the footnotes

of Table 6.2 with the experimental ionization potential of 10.57 eV [155].) The first three calculated

TDLDA and TDPBE excitation energies are just below−εHOMO. This is expected to lead to bound but

underestimated excitations, which does indeed seem to be the case. One way to improve the asymptotic
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Table 6.2: TDDFT/TDA excitation energies (ω), deviations from corresponding DMC value (∆ =
ωTDDFT − ωDMC), oscillator strengths (f ) and assignment. Computations were carried out using a
plane wave basis, except for the TDPBE0 calculations where the aug-cc-pVTZ basis was used.

ω (eV) ∆ (eV) f Assignment
TDLDA a

5.902 -1.61 0.00416 11B1[b1(n), a1(3s)]
6.321 -1.30 0.00065 21B1[b1(n), a1(3pz)]
6.330 -1.71 0.00000 11A2[b1(n), b2(σ∗)]
6.343 0.00029 31B1

6.932 0.00185 21A1

TDPBEb

5.772 -1.738 0.00381 11B1[b1(n), a1(3s)]
6.191 -1.869 0.00000 11A2[b1(n), b2(σ∗)]
6.211 -1.409 0.00043 21B1[b1(n), a1(3pz)
6.244 0.00050 31B1

6.265 0.00194 21A1

TDPBE0c

6.903 -0.607 0.023 11B1[b1(n), a1(3s)]
7.277 -0.343 0.013 21B1[b1(n), a1(3pz)]
7.338 -0.722 0.000 11A2[b1(n), b2(σ∗)]
7.492 0.016 21A1

7.892 0.000 21A2

TDLDA/SAOP
7.985 0.48 0.00986 11B1[b1(n), a1(3s)]
8.093 0.47 0.00094 21B1[b1(n), a1(3pz)]
8.451 0.39 0.00000 11A2[b1(n), b2(σ∗)]
8.511 0.00004 21A1

8.565 0.00096 31A1

TDLDA/LB94
7.597 0.09 0.00748 11B1[b1(n), a1(3s)]
7.712 0.09 0.00266 21B1[b1(n), a1(3pz)]
8.076 0.02 0.00000 11A2[b1(n), b2(σ∗)]
8.280 0.00170 21A1

8.305 0.00170 31A1

aFor the LDA,−εHOMO = 6.330 eV.
bFor PBE,−εHOMO = 6.217 eV.

cFor PBE0,−εHOMO = 7.913 eV.
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behavior of the exchange-correlation potential, and thus to shift−εHOMO up in energy, is by introducing

some amount of Hartree-Fock exchange. It was demonstrated in Oxirane I through explicit results with

the B3LYP functional that hybrid functionals can lead to a significant improvement in TDDFT energies.

This is also seen with the TDPBE0 functional in the present work, which has increased−εHOMO by

about 1.6 eV compared to either the LDA or PBE approximations and reduces the error in the excitation

energies to about half that found with the TDLDA or the TDPBE. However the biggest improvement

seen in Table 6.2 is due to the use of the explicitly asymptotically-corrected functionals SAOP and LB94

which lead to−εHOMO of 11.01 and 11.84 eV [156] in reasonable agreement with the experimentally

observed ionization potential of about 10.57 eV. In fact, the TDLDA/LB94 excitation energies are in

excellent agreement with the DMC energies and the TDLDA/SAOP excitation energies are also accept-

able. As we shall see, the superiority of these potentials is less clear when we look at entire potential

energy curves.

6.4.3 Potential Energy Curves

We now turn our attention to how different TDDFT approaches behave along a typical reaction path.

Geometries were taken every 2.4 fs from one of the fast relaxing LZ SH trajectories of Subsec. 6.3

initiated in the reactive1(n, 3pz) state reflecting the main features of the fast decay channel. Snap shots

of the trajectory are shown in Fig. 6.4. Since the main motion of the molecule is the opening of the CCO

angle, we have chosen to measure the progress of the reaction, not by time, but by the CCO angle.

Figure 6.9compares PESs of TDPBE/LR, TDPBE/TDA PESs, and DMC. An unphysical cusp was

found in Oxirane I in theC2v ring-opening curve for the11A1 surface at the point where the CC bond

breaks. At this point a triplet instability was observed in the13B2 state and a near singlet instability

was observed in the11B2 state at similar bond distances. WhileB2 states are too high in energy to

be important for the present study, the corresponding initial singlet states for CO bond breaking is the

11B1(n, 3pz) state. Unless the TDA is made, a singlet instability is indeed observed for this state.

We can understand the difference between full LR and TDA results in more detail by using the same

two-orbital model for a hypothetical1(i, a) transition used in Oxirane I. In this model, the LR singlet

excitation energy is,

ωLR =
√

(εa − εi)[(εa − εi) + 2(ai|2fH + f↑,↑xc + f↑,↓xc |ai)] , (6.11)
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Figure 6.9: Comparison of the DMC (dashed, triangles) PES, TDPBE/TDA (circles), and TDPBE/LR
(squares). Also shown are the PBES0 curve (black, circles), the HOMO-LUMO gap (εLUMO − εHOMO,
red), and the TDPBE ionization threshold at (−εHOMO, dotted, open circles). The (TD)PBE calculations
were carried out with TURBOMOLE using the aug-cc-pVTZ basis. Black,S0; blue,S1; green,S2.

and the corresponding TDA singlet excitation energy is,

ωTDA = (εa − εi) + (ai|2fH + f↑,↑xc + f↑,↓xc |ai) . (6.12)

Here theεr are orbital energies and

(pq|f |rs) =
∫ ∫

ψ∗p(r)ψq(r)f(r, r′)ψ∗r (r
′)ψs(r′) drdr′ , (6.13)

wheref can be either the Hartree kernel,

fH(r1, r2) = 1/r12 , (6.14)

or the xc-kernel,

fσ,τ
xc (r1, r2) =

δ2Exc[ρ↑, ρ↓]
δρσ(r1)δρτ (r2)

. (6.15)

It follows that,

ω2
TDA − ω2

LR = (ai|2fH + f↑,↑xc + f↑,↓xc |ai)2 ≥ 0 , (6.16)
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so that TDA excited states should lie above the corresponding LR quantities. This is indeed what is

seen in Fig. 6.9. The integral over the kernels is typically small and positive. This means that the

S0 → S1 excitation energy is given roughly by the HOMO→ LUMO gap, also shown in Fig. 6.9.

However Fig. 6.9 also shows that the difference between corresponding TDA and LR curves grows

for S1 as the CCO angle increases. (This difference is even more dramatic for theS2 state.) This is

consistent with the previously noted change in orbital character. In the beginning of the ring opening,

the 1(n, 3pz) excitation has primarily Rydberg character and the integral over kernels is small because

the3pz orbital is diffuse. However as the ring opening progresses, theS1 states takes on more and more

1(n, σ∗CO) valence character. This leads to a larger value of the integral over the kernels, and hence to

a larger difference between the corresponding TDA and LR energies. Equation (6.11) shows that the

LR singlet excitation energy actually become imaginary when the HOMO-LUMO gap (red curve in

Fig. 6.9) passes through zero at about 105◦ and becomes negative. (Imaginary excitation energies are

not shown in the Figure.) This is a singlet instability. In contrast [Eq. (6.12)], the corresponding TDA

singlet excitation energies are real positive or negative numbers. The problem of imaginary excitation

energies was extensively discussed in Oxirane I in the context of singlet and triplet instabilities where it

was recommended to circumvent the problem by using the TDA.

Let us now turn our attention to how the TDPBE and QMC potential energy curves compare. In

Fig. 6.9 DMC values forS1 andS2 are above−εHOMO at small CCO angles, and fall below the ionization

threshold at angles larger than≈ 70-80◦. According to our previous remarks about TDDFT having an

artificially low ionization threshold [100], we should expect better agreement between the TDPBE and

DMC calculations when the true excitation energy is below the−εHOMO predicted by PBE. Exactly

this is reflected by our calculations, where DMC values are above the ionization threshold predicted

by PBE, the discrepancy between DMC and TDPBE curves is considerably larger than at higher CCO

angles, where DMC excitation energies fall below−εHOMO. This difference diminishes dramatically for

theS1 state as the CCO angle opens and on the whole the TDPBE/TDA and QMC calculations come

into relatively good agreement.

Hybrid functionals help to circumvent the problem of low-lying ionization thresholds because−εHOMO

increases with the amount of Hartree-Fock exchange (see Table 6.2). Consequently, the TDPBE0 curves

in Fig. 6.10are closer to the QMC curves for CCO angles below about 70◦. However, at larger CCO
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Figure 6.10: Comparison of the PESs of TDPBE/TDA (circles) and TDPBE0/TDA (squares). Also
shown are the PBE (black, circles) and PBE0 (black, squares)S0 curves, and the PBE (red, circles)
and PBE0 (red, squares) HOMO-LUMO gap (εLUMO − εHOMO, red). The (TD)PBE and (TD)PBE0
calculations were carried out with TURBOMOLE using the aug-cc-pVTZ basis. DMC results (dashed)
are also shown. Black,S0; blue,S1; and green:S2.

angles the PBE0 ground state potential energy curve overestimates more and more the DMC ground

state curves, while pure PBE predicts aS0 potential energy curve similar to DMC. The overestimation

of S0 by PBE0 and the slightly higher excitation energies by TDPBE0 leads to excited state curves that

are too high in energy and also too flat compared to DMC. The overestimation of theS0 curve by the

hybrid PBE0 functional at large CCO angles is consistent with the idea that increasing the amount of

Hartree-Fock exchange leads to increasing difficulties describing electron correlation effects present in

the CO bond breaking region. The good performance of PBE in describing theS0 PES leads to TDPBE

curves that compare better to DMC than does TDPBE0, at large CCO angles, while TDPBE0 curves are

superior to TDPBE when DMC values are above−εHOMO.

We will now investigate how the asymptotically-corrected functionals perform along the reaction

path. The TDLDA/LB94 and TDLDA/SAOP curves are qualitatively very similar, therefore we only

discuss the PES obtained by TDLDA/SAOP which is shown together with the DMC curves inFig. 6.11.

Perhaps surprisingly the TDLDA/SAOP curves appear to have roughly the same strengths and weak-

nesses as the TDPBE0 method. That is, it compares well with the QMC results at small bond angles but

the quality steadily decreases as the CCO angle opens.

Questions of accuracy aside, neither the TDPBE0 nor the TDLDA/SAOP is well-adapted for pho-
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Figure 6.11: Comparison of the TDPBE/TDA (circles) and TDLDA/SAOP (solid) PES to DMC
(dashed). Also shown is the TDPBE ionization threshold (dotted). Black,S0; blue,S1; green,S2.

todynamics calculations. Within a PW basis the hybrid TDPBE0 functional is computationally too ex-

pensive for carrying out a large number of on-the-fly calculations. The problem with the TDLDA/SAOP

method is somewhat different. TDLDA/SAOP analytic gradients are the sum of analytic gradients of

the LDA ground state energy and analytic gradients of the TDLDA/SAOP excitation energy. Bypassing

the philosophical problem of whether or not exchange-correlation potentials and kernels calculated with

different functionals should be mixed in a single calculation, TDLDA/SAOP gradients are simply not

yet available. Thus it makes sense to continue carrying out future TDDFT SH dynamics calculations

using the PBE functional. Based upon the preceding analysis, we know that at least the order of initial

states is reasonably consistent with DMC. The fact that in the Franck-Condon region the deviation be-

tween TDPBE and DMC is maximal is worrisome in so far as dynamics starts slowly and so the reaction

spends a significant amount of time near the initial geometries. However, as the reaction progresses,

it also speeds up and enters a region where the TDPBE excited-state curves and the PBE ground-state

curve compare relatively well with the corresponding QMC curves.

6.5 Conical Intersections in TDDFT

How conical intersections (CXs) are described in TDDFT has become something of an issue in the

photodynamics community. The purpose of this section is to address these concerns both in general and
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also in the specific context of our oxirane calculations.

It is useful to begin with a brief review of what is meant by a CX. The potential energy surface of a

molecule withf internal degrees of freedom is anf -dimensional hypersurface in an(f+1)-dimensional

hyperspace. If two surfaces just cross without seeing each other, the seam where the surfaces intersect

is an(f − 1)-dimensional hyperline. This is because one degree of freedom must be used in the seam

space to maintain the constraint that the two surfaces have the same energy,EI(R) = EJ(R). However

surfaces whose energies are generated by diagonalizing a hamiltonian matrix,H, must not only satisfy

the constraint thatEI(R) = EJ(R) but also thatHI,J(R) = 0. This means that two degrees of

freedom are actually used up to form a CX, which is an(f − 2)-dimensional hyperpoint. (A more

explicit mathematical argument is given in Appendix 6.7.)

Up until the 1990s, CXs between molecular electronic excited states were generally thought of as

something rare and largely unimportant. In 1992, Bernardi, Robb, and Olivucci undertook an ambitious

project focusing on a systematic investigation of basic organic chromophores and were able to demon-

strate low-lying CXs with structures related to the observed photoproducts (see Ref. [157] for a review).

This was an important observation because photoreactions need fast routes to pass from excited reactants

to ground-state products before other mechanisms such as fluorescence or radiationless relaxation kick

in and return the reactants to their ground states. CXs can provide one such fast route and photochemical

models should also provide a proper description of CXs.

Unfortunately not all electronic structure methods can correctly describe CXs. For example, typical

(S0, S1) CXs for organic reactions are often described as biradicaloids and biradicals are notoriously

difficult to describe with a single reference theory. In fact, it is believed that CXs should not normally

exist at the configuration interaction singles (CIS) level when the ground state is a closed-shell singlet

because the fact that the matrix elements between the ground and excited states are zero (H0,I = 0) is

a consequence of Brillouin’s theorem rather than a constraint that has to be enforced (Appendix 6.7.)

Note that exceptions can occur in systems such as H3 when the ground state is not a closed-shell singlet.

[In that case, the electron repulsion integrals which make the state energy difference different from the

orbital energy difference vanish (Appendix 6.7.)]

Although Brillouin’s theorem does not hold for DFT, there is something very similar in TDDFT.

Excited states do not see the ground state surface because excited-state energies are generated by adding
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TDDFT excitation energies to ground-state energies, so there are no matrix elements between the

ground- and excited-states to zero out. This is the fundamental argument put forth in a recent article

by Levine, Ko, Quenneville, and Martínez [102]. (Other articles from the Martínez group which discuss

TDDFT with respect to excited state dynamics are Refs. [158–161].) They suggest that TDDFT should

generally behave like CIS so that seams should be observed rather than CXs. This is backed up by an

explicit calculation on H2O. Where surfaces do cross, the TDDFT surfaces showed a too rapid energy

variation compared with CASSCF. In particular this too rapid variation is observed in the vicinity of the

CX in H3. Thus, at first glance, TDDFT seems to be incapable of giving even a qualitatively correct

description of conical intersections.

Since this contention seems to be in blatant contradiction with our finding that TDDFT/SH dynamics

gives a qualitatively reasonable description of oxirane photochemistry, we decided to take a closer look

at CXs in oxirane. Unfortunately we do not have a TDDFT algorithm for finding CXs. So,faute de

mieux, we calculated TDDFT PESs in the CASSCF branching coordinates around the CASSCF CX.

Our results and analysis are presented below.

6.5.1 Computational Details

GAUSSIAN03 [68] was used to search for the CX, to generate branching coordinates, and generate the

points needed to plot the PESs. CASSCF calculations were carried out using an active space generated

by 4 electrons distributed in 5 orbitals and the 6-311G** basis set [162, 163]. Since the two states of

interest have the same symmetry, our CASSCF(4,5) calculation was of the state-average type to prevent

variational collapse with equal weights forS0 andS1. At the CX between statesI andJ , the two

branching coordinates, namely the derivative coupling (DC) vector,

h(I,J)
q = C†

I

∂H

∂q
CJ , (6.17)

and the unscaled gradient difference (UGD) vector,

g(I,J)
q = C†

I

∂H

∂q
CI −C†

J

∂H

∂q
CJ (6.18)
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Figure 6.12: Cs symmetry CASSCF conical intersection structure. The DC vector (a) corresponds to a
sort of twisting in opposing directions of the CO and the CH2 group to which it is joined. The UGD (b)
vector corresponds to the opening of the CCO angle while maintainingCs symmetry.

are computed. The grid used to plot the PES around the CX was generated from these vectors as

q = mg + nkh , (6.19)

wherem andn vary from -5 to +5 in integer steps, andk is just a scaling factor that we set to 0.1 in

order to assure smooth changes of the geometry.

CIS and TDPBE/TDA calculations are carried out using TURBOMOLE [78, 86] using the aug-cc-

pVTZ basis [146,147]. PESs were plotted using the same grid of geometries as in the CASSCF case.

6.5.2 Results

It is worth emphasizing that a CX is an(f−2)-dimensional hyperpoint. In oxirane,f = 18 so the CX is

16-dimensional. We found two qualitatively different CASSCF CX geometries and there are undoubt-

edly infinitely more. However we will focus on theCs-symmetry structure shown inFig. 6.12since this
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is close to the geometry found in our TDDFT/SH calculations at the point of SH.Figure 6.13shows

the CASSCFS0 andS1 PESs in the branching coordinates (Fig. 6.12) around this geometry. Degener-

acy lifting occurs in both directions, confirming that this is indeed a CX. A selection of representative

geometries is shown inFigure 6.14.

Mechanistically this CX structure should correspond to a resonance hybrid involving two types of

resonance structures found in the literature for excited-state ring-opening reactions and shown as2 in

Fig. 6.1. The biradicaloid structure is typical for breaking aσ bond, while the zwitterion represents

charge transfer. It might be thought that planarity of the CCH2 group could be used as a criterion to

judge which of these two structures is most important. According to elementary valence shell electron

replusion (VESPR) theory, the CCH2 group should be planar in the zwitterion structure. The planarity of

the CCH2 group in the biradicaloid structure is less clear, however Herzberg and Shoosmith have shown

experimentally that the•CH3 radical is planar [164, 165] (this and additional evidence is reviewed in

Ref. [166]). Thus the planarity of the CCH2 group in the CX cannot be used to decide whether the

biradicaloid or zwitterion structure is most important. Indeed there seem to be contributions of both in

our CASSCF calculations.

Since biradicaloids are exactly the case where we expect to need explicit 2-electron excitations, we

do not expect CIS to give a good description of this CX. Shown in Fig. 6.13 are the CISS0 andS1 PESs

calculated at the CASSCF geometries around the CX. As already discussed, the formal theory suggests

that the best that we can hope to find is a hyperline rather than a hyperpoint. This is essentially what we

see in the figure. That is, the surfaces remain essentially degenerate along the CASSCF UGD coordinate

in the interval−10 ≤ m ≤ 0.

Since TDDFT is a formally exact theory, we do expect to get exact CXs from TDDFT when the

exchange-correlation (xc) functional is exact. Furthermore, as discussed in Oxirane I, exact DFT is also

expected to be able to describe the ground state of closed-shell singlets without symmetry breaking. In

practice, of course, neither DFT nor TDDFT is exact because of the use of approximate xc energy func-

tionals. Under these circumstances, symmetry breaking and the associated triplet instability (Oxirane

I) is expected to occur in biradicaloids. Indeed a TDPBE instability is seen in Fig. 6.9 at around 104◦.

However its nature is fundamentally different than a normal triplet instability. To see what is meant by

this, consider the two-orbital model for excitation from an unoccupied orbitali to an occupied orbitala.
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Figure 6.13: On the left hand side are shown theS0 andS1 PESs for each method computed as described
in the text. On the right hand side are shown the corresponding energy difference,ω(S1) = E(S1) −
E(S0).
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Figure 6.14: A selection of representative geometries and their CCO angles for the coordinates in
Fig. 6.13. The Cs symmetry CASSCF conical intersection structure is at the origin.

The triplet and singlet excitation energies are, respectively,

ωT =
√

(εa − εi)[εa − εi + 2(ia|f↑,↑xc − f↑,↓xc |ai)]

ωS =
√

(εa − εi)[εa − εi + 2(ia|2fH + f↑,↑xc + f↑,↓xc |ai)] .

(6.20)

In a normal triplet instability,ωT goes to zero and then becomes imaginary because the term in square

brackets goes to zero and then becomes negative. Instead for triplet instabilities in the neighborhood of

a conical intersection, the orbital energy difference goes to zero and then becomes negative, so thatωS

andωT go to zero at the same time.

The original Kohn-Sham formulation of density functional theory [45] assumedv-representability.

That is, it was assumed that the ground density of the interacting system was also the ground state

density of the noninteracting system. This means that theAufbauprinciple holds and the LUMO energy

should never fall below the HOMO energy or, in the language of solid-state physics, there should be

no holes below the Fermi level. However holes below the Fermi level often happen in practice in

DFT when orbitals are quasidegenerate. One way to understand this is that self-interaction errors in
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approximate xc functionals are larger for occupied than for unoccupied orbitals. Thus the occupied

member of the quasidegenerate orbitals is destabilized with respect to the unoccupied member and any

attempt to change the orbital occupation leads to a reversal of the orbital energy ordering, with the

result that the HOMO always remains higher in energy than the LUMO. A closely-related argument

involves beginning with empty degenerate orbitals and then making a differential increase in the orbital

occupancy. Since
∂εr
∂nr

= (rr|fH + f↑,↑xc |rr) (6.21)

is expected to be dominated by the positive Hartree kernel,fH , rather than the typically negative but

smaller in magnitude xc kernel,fxc, the orbital energy will increase as it becomes increasingly occupied,

raising the energy of the occupied orbital above the energy of the unoccupied orbitals in the formerly

degenerate set. The constrained search formulation of density functional theory allows holes below the

Fermi level [167–169]. Indeed holes below the Fermi level are expected for the exact xc functional

[169, 170]. We do see holes below the Fermi level in our calculations around the CX in oxirane. They

represent a practical problem because convergence failures come from the common Quantum Chemistry

practice of enforcingAufbaufilling in DFT calculations. In practice convergence is accomplished in

a natural manner in the dynamics calculations by a sort of “orbital-following trick” where the initial

guess for the electronic structure problem at each geometry is taken from the converged solution to the

electronic structure problem from the previous geometry.

The foregoing discussion suggests that TDDFT(S0, S1) conical intersections should be largely de-

termined by orbital conical intersections between the HOMO and the LUMO. A way around this in

exact TDDFT is if the frequency dependence of the xc kernel allows,

lim
ω→εa−εi

(εa − εi)[εa − εi + 2(ia|f↑,↑xc (ω)− f↑,↓xc (ω)|ai)] 6= 0 (6.22)

(see for example the form of the exact xc kernel proposed by Maitra [171, 172].) However, in practice,

the HOMO-LUMO energy difference is definitely small in our calculations around the CX.

According to Fig. 6.9 the singlet excitation energy becomes imaginary when the HOMO and LUMO

energies cross at an OCC angle of about 104◦. The exact solution should have neither this singlet insta-

bility nor the associated triplet instability. Following the recommendation of Oxirane I, we compensate
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for this deficiency in the approximate xc functional by making the TDA in our calculations. The resultant

formula,

ωS = (εa − εi) + (ia|2fH + f↑,↑xc + f↑,↓xc |ai) , (6.23)

relies on error cancellation. By definition the exactωS is nonnegative. In practice,ωS could be negative

because approximations have been made. However the 2-electron integral terms are typically net pos-

itive, so they will at least partly cancel the negative orbital energy difference associated with the hole

below the Fermi level. Explicit calculations are needed to see if this is actually the case.

Figure 6.13 shows that the TDPBE TDAS0 andS1 PESs calculated at the CASSCF geometries

around the CASSCF CX. There is a much more marked resemblance between the TDPBE TDA and

the CASSCF PESs than between the CIS and CASSCF PESs. In fact, the main difference between

the TDPBE TDA approximate CX and the CASSCF CX is that the CASSCF double cone becomes a

slightly interpenetrating double cone in the TDPBE TDA. Nevertheless the main conclusions of Levine,

Ko, Quenneville, and Martínez [102] are verified. The CASSCF CX has become a TDPBE TDA seam

encircling the CASSCF CX and the TDPBE TDA PESs vary too rapidly around this seam compared to

the CASSCF PESs. From a dynamics point of view, the most serious problem with the TDPBE TDA

approximate CX is that a typical trajectory crosses betweenS0 andS1 twice, with the net result that little

surface hopping will occur. To counter this we deliberately decided to stay onS0 after SH and not allow

rehopping back toS1. While this neglect of surface recrossing may lead to shorter photodynamics, it is

necessary to counter problems due to the approximate nature of the TDDFT CX and is not expected to

have a large impact on the overall photochemical pathways that we seek to study.

6.6 Conclusion

Over the past decade, TDDFT has become a method of choice for studying molecular excited states.

It is natural to expect that this success should be extended to the study of photochemical processes

and that there will be obstacles encountered which must be surmounted. One barrier to applications

of TDDFT in photochemistry has simply been a lack of technology to search excited state minimum

energy pathways, to find funnels, to carry out photodynamics calculations of femtosecond spectra, and

to simulate photochemical reactions. Technology of this sort is now coming on-line and, as it does,
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it will permit us to troubleshoot TDDFT for applications to real photochemical reactions, thus giving a

better idea of where conventional TDDFT provides an adequate description of photochemistry and where

some of the problems mentioned in the introduction (artificially low ionization threshold, underestimated

charge transfer excitations, lack of explicit two-electron excitations) may be critical and so must be

corrected.

Very recently mixed TDDFT/classical trajectory photodynamics calculations have become possible

[120–122]. This technology has been applied here to assess the usefulness of TDDFT for describing

the photochemistry of oxirane. It was argued in Oxirane I that TDDFT/TDA calculations could indeed

give a qualitatively correct description of oxirane photochemistry, but that dynamics calculations were

needed in order to obtain full confirmation of this claim. We have done this and found that mixed

TDPBE TDA/classical trajectory SH photodynamics calculations confirm the main experimental results

available for the photochemical ring opening of oxirane. In addition we obtain state-specific information

not easily available from experiment, such as that the1(n, 3pz) state is significantly more reactive than

the1(n, 3s) state, leading us to expect that vibronic coupling is likely to be much more important for the

1(n, 3pz) state than for the1(n, 3s) state.

Of course, some of what we found was already anticipated in earlier nondynamical studies. Indeed

Bonǎcić-Koutecký and Michl give oxirane potential energy curves obtained with limited configuration

interaction and a minimal basis set for a postulated CO ring-opening pathway (Ref. [1] p. 409) which

are qualitatively similar to Fig. 6.9. However it should be emphasized that we had no need to postulate

a pathway. Indeed the dynamics explores several pathways and gives us an idea of which are the most

important. We see that we are not limited to following minimum energy pathways and that several

surface hops may be needed before products are finally reached.

Once determined, we compared the performance of different functionals along the physically most

important pathway. We found that the asymptotically-corrected TDLDA/SAOP and TDLDA/LB94 cal-

culations give a more realistic vertical absorption spectrum. However this advantage diminishes along

the1(n, 3pz) CO ring-opening pathway when theS1 state falls below−εHOMO. It is then seen that the

TDPBE potential energy curves are quite superior to those produced with the asymptotically-correct

TDLDA/SAOP or TDLDA/LB94 approaches when compared to accurate QMC potential energy curves.

Remarkably the TDPBE potential energy curves also appear to be superior to TDPBE0 potential energy
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curves below−εHOMO. This leads us to describe our TDPBE/TDA calculations as semi-quantitative.

We then went on to explore the timely question of how conical intersections are treated in TDDFT.

Since TDDFT is a formally exact theory we should be able to obtain conical intersections had we the

exact exchange-correlation functional. In practice, the use of approximate functionals leads to additional

complications. Some of these complications are due to the presence of nearly degenerate HOMO and

LUMO energies in the vicinity of conical intersection, leading to spin instabilities associated with holes

below the Fermi level. These are handled, following the recommendation of Oxirane I, through the

use of the Tamm-Dancoff approximation. The resultant TDDFT TDA calculations appear to be able

to give an approximate description of the CASSCF conical intersection found in this system, the main

difference being that the two cones interpenetrate slightly rather than touching as they should.

This “small” error could potentially translate into a large error in surface hopping dynamics, because

it increases the probability of recrossings fromS1 to S0 and back toS1. We have chosen to deal with

this by simply forbidding surface hopping fromS0. Such an approximation may lead to errors in rate

constants but calculations using this approximation still provide useful information about likely reaction

pathways.

As it stands, the success of the method for oxirane suggests that it could be used to study the pho-

tochemistry of similar systems. One example would be to add substituants which could stabilize the

formation of carbonyl ilydes since this is expected to favor CC ring-opening and (perhaps) lead to a

Woodward-Hoffmann photomechanism (Appendix B of Oxirane I).

As it stands much of the interaction between theS0 andS1 surfaces at the conical intersection is

happening at the orbital level. It would be interesting to introduce explicit configuration mixing between

S0 andS1 in TDDFT in order to improve the TDDFT intersection topologies and(S0, S1) surface

hopping rate calculations as well. The polarization propagator correction [101, 173, 174] and the spin-

flip [175–178] approaches are promising routes in this direction.

6.7 Noncrossing Rule

Following Yarkony [179], we consider solving the problem

HC = EC , (6.24)
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whereH is a real matrix with spectral decomposition

Hp,q(R) =
∑

r

Up,r(R)Er(R)U †
r,q(R) , (6.25)

whereU is a real orthogonal matrix. HereR is the matrix of all nuclear degrees of freedom. At this

point, Eq. (6.24) could be an eigenvalue problem for finding orbital energies, or it could be a config-

uration interaction (CI) problem for finding state energies. In the former case, we are studying orbital

energy surfaces while, in the latter case, we are studying state energy surfaces.

The argument for a conical intersection (CX) is summarized here. The argument hinges on a cal-

culation of the number of independent degrees of freedom inH which is the number of independent

degrees of freedom inU plus the number of independent degrees of freedom in the set ofEr. Let N be

the dimensionality ofU. ThenU hasN ×N matrix elements. However

U†U = 1 (6.26)

means that there areN(N − 1)/2 orthogonality conditions to be satisfied on the columns ofU plusN

normalization conditions. ThusU really has

pU (N) = N2 − [N(N − 1)/2 +N ] = N(N − 1)/2 (6.27)

independent parameters.

Now suppose that one of the energy values is degenerate with valueẼ. For generality let it be

m-times degenerate. Without loss of generality we can reorder the energies so that

E1 = E2 = ... = Em = Ẽ . (6.28)

Then we have the additional constraint that

∑
r=1,m

Up,r(R)Er(R)U †
r,q(R) = Ẽδp,q (6.29)
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for p andq between1 andm. That is,

∑
r=1,m

Up,r(R)U †
r,q(R) = δp,q (6.30)

which fixes

rU (m) = m(m− 1)/2 (6.31)

parameters. At the same time, there are

d(N,m) = N −m+ 1 (6.32)

independent values of theEr for r = 1, 2, ...,m . This allows us to conclude that the final number of

independent parameters inH is

pH(N,m) = pU (N)− pU (m) + d(N,m)

= N(N − 1)/2−m(m− 1)/2 +N −m+ 1 .

(6.33)

Finally we consider the case that two surfaces touch to make a CX. At the CX the number of free

parameters is decreased frompH(N, 1) (no degeneracy) topH(N, 2) (two surfaces touching). That is

there is a reduction of

∆pH = pH(N, 1)− pH(N, 2) = 2 (6.34)

degrees of freedom (DOF). The conclusion is that 2 of thef internal DOF of a molecule must be fixed

at a conical intersection. Hence that the conical intersection is of dimensionalityf − 2. Actually, as

emphasized in Ref. [179], it is not that the dimensionality of the conical intersectionmustbef − 2 but

that itmaybef − 2. It could equally well be locallyf − 1, even if this is improbable.

In the independent particle picture, there are no repulsions between electrons and the state Hamilto-

nian separates into the sum of orbital Hamiltonians. As is well-known, the state energies are just sums
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of orbital energies and the energy difference between the ground and first excited states is just,

EX − EG = εL − εH , (6.35)

whereεL is the LUMO energy andεH is the HOMO energy. In this case, there is a clear one-to-one

correspondence between the orbital and state CXs.

In contrast, full CI is invariant to a unitary transformation of the underlying orbitals. So state energy

CXs are independent of orbital CXs.

In truncated CI, orbital and state CXs will be different because of the presence of orbital repulsion

terms. For example, the CIS singlet-singlet excitation energy in a 2-orbital model is,

EX − EG = εL − εH + 2(HL|fH |LH)− (HH|fH |LL) . (6.36)

Usually

2(HL|fH |LH)− (HH|fH |LL) 6= 0 (6.37)

when

εL − εH = 0 . (6.38)

This means that it usually suffices to focus on the CI matrix when discussing CXs.

Let us examine how the DOF argument changes in the CIS case. (This is quite analogous to what

happens in the TDDFT/TDA method when employing the TDDFT adiabatic approximation.) We con-

sider the equation

Ac = ωc (6.39)

where

A = H− E01 (6.40)

and

ω = E − E0 (6.41)

is a vertical excitation energy (which depends uponR). (AlternativelyE0 is the HF ground state energy

and the singly excited states are decoupled from the ground state by Brillouin’s theorem.) Let us repeat
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the above argument.A is theN ×N matrix. We have that

pA(N) = N2 − [N(N − 1)/2 +N ] = N(N − 1)/2. (6.42)

Similarly if the ground state ism-fold degenerate, then without loss of generality

ω1 = ω2 = . . . = ωm−1 = 0. (6.43)

Note thatm is the same as before, butm degenerate states correspond to(m−1) null excitation energies.

Then

rU = (m− 1)(m− 2)/2 for m > 0 (6.44)

[which is different from Eq. (6.31)] and

rU = 0 for m = 0 . (6.45)

Also

d = N − (m− 1) = N −m+ 1 (6.46)

[same as Eq. 6.32]. Calculating

∆pA = pA(N, 1)− pA(N, 2) = −1 + 2 = 1. (6.47)

Thus the “CIS noncrossing rule” is that the intersection with the ground state is of dimensionalityf − 1.

Intersections between other states are of dimensionalityf − 2.

6.8 Supplementary Material

Table 6.3 gives DMC energies calculated at the trajectory geometries given in Table 6.4.

We like to acknowledge useful discussions with Prof. Todd Martínez, Prof. Melvyn Levy, Prof.

Massimo Olivucci, Dr. Felipe Cordova, and M. Mathieu Maurin. CF acknowledges the support by the

Stichting Nationale Computerfaciliteiten(NCF-NWO) for the use of the SARA supercomputer facilities.
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Table 6.3: Diffusion Monte Carlo energies.

Time Step DMC Energy (a.u.)
S0 S1 S2

1 -29.76593 (0.00059) -29.48839 (0.00056) -29.48847 (0.00057)
11 -29.76599 (0.00061) -29.49390 (0.00056) -29.49372 (0.00056)
21 -29.76023 (0.00059) -29.50356 (0.00057) -29.49707 (0.00057)
31 -29.74554 (0.00057) -29.51447 (0.00060) -29.49012 (0.00055)
41 -29.72426 (0.00062) -29.53004 (0.00059) -29.47881 (0.00056)
51 -29.69927 (0.00058) -29.55456 (0.00056) -29.49184 (0.00056)
61 -29.67125 (0.00059) -29.57476 (0.00058) -29.51883 (0.00055)
71 -29.64413 (0.00058) -29.59381 (0.00058) -29.53351 (0.00054)
81 -29.62603 (0.00061) -29.60140 (0.00057) -29.53029 (0.00063)
91 -29.61644 (0.00060) -29.60962 (0.00057) -29.52493 (0.00061)
101 -29.61977 (0.00058) -29.61636 (0.00058) -29.51733 (0.00061)
111 -29.63379 (0.00059) -29.63012 (0.00063) -29.52561 (0.00062)

Dr. Latévi Max Lawson Daku is thanked for supplying us with equilibrium geometry HOMO energies

calculated with ADF and the LB94 and SAOP model exchange-correlation potentials.
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Table 6.4: Diffusion Monte Carlo Geometries (Å)

Atom x y z x y z
Time Step 1 Time Step 11

C 5.716001 4.697350 4.7402535.708642 4.696365 4.707034
C 4.268542 4.861866 4.6851934.268986 4.866002 4.689871
O 5.059958 5.579439 5.6592615.068887 5.581291 5.675816
H 6.394873 5.254909 4.0177596.320931 5.248272 4.026430
H 3.570817 4.074812 5.0613613.596577 4.054059 5.108103
H 6.124220 3.800314 5.1425906.113518 3.774548 5.164374
H 3.899536 5.530933 3.9226913.894545 5.561504 3.968278

Time Step 21 Time Step 31
C 5.700583 4.685666 4.6706255.690324 4.662562 4.633233
C 4.266822 4.860386 4.6905634.265988 4.853880 4.684585
O 5.078555 5.590114 5.7018355.087869 5.605949 5.737091
H 6.273994 5.268379 4.0256586.286331 5.335100 3.983653
H 3.658380 4.097412 5.1417763.695577 4.140119 5.193340
H 6.105241 3.785173 5.1896596.097250 3.839300 5.202626
H 3.856671 5.619638 4.0101253.805925 5.669373 4.071584

Time Step 41 Time Step 51
C 5.682108 4.634714 4.5847195.679835 4.602380 4.516071
C 4.269528 4.853639 4.6739704.276690 4.856568 4.670861
O 5.094616 5.629287 5.7811315.095162 5.660574 5.834160
H 6.299899 5.383928 3.9650256.281852 5.380354 3.998633
H 3.673699 4.140254 5.2771983.645922 4.152668 5.338324
H 6.111188 3.885028 5.2204106.150170 3.904335 5.250797
H 3.760295 5.681397 4.1555383.714459 5.669340 4.230430

Time Step 61 Time Step 71
C 5.683447 4.559336 4.4329465.687818 4.498389 4.338152
C 4.287814 4.861139 4.6855884.307673 4.874285 4.721692
O 5.087170 5.697589 5.8937595.068676 5.741067 5.960793
H 6.259261 5.354725 4.0442496.279360 5.369187 4.046432
H 3.654298 4.205548 5.3361033.683374 4.256475 5.299296
H 6.182328 3.934450 5.2472716.188564 3.982099 5.170132
H 3.661860 5.656398 4.2687163.624044 5.636436 4.269583

Time Step 81 Time Step 91
C 5.688775 4.448742 4.2614925.685935 4.406500 4.179016
C 4.333290 4.897132 4.7607264.370446 4.931787 4.812912
O 5.046809 5.775195 6.0123905.016058 5.808376 6.062579
H 6.305775 5.382080 4.0075536.303708 5.335130 3.927621
H 3.679632 4.233752 5.3003413.671551 4.169233 5.324153
H 6.191412 3.989886 5.0813206.223290 3.924308 4.998596
H 3.634741 5.606361 4.2520523.689336 5.569068 4.226539

Time Step 101 Time Step 111
C 5.679266 4.378646 4.1079755.668014 4.357301 4.058374
C 4.413671 4.967544 4.8755954.462932 5.000061 4.944148
O 4.979064 5.834592 6.1025294.937273 5.852877 6.131409
H 6.275147 5.229236 3.7996006.261575 5.125170 3.598018
H 3.716003 4.143069 5.3305103.815039 4.179305 5.319001
H 6.268247 3.797387 4.8988326.286471 3.657429 4.730906
H 3.763102 5.549321 4.2044023.840754 5.560831 4.202227
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Chapter 7

CC2 and TDDFT Studies of a Fluorescent

Donor-Bridge-Acceptor Molecule

Abstract

The photophysical properties of a donor-bridge-acceptor molecule (N-phenylpiperindone-malondinitrile)

are investigated by second-order approximate coupled cluster (CC2) and time-dependent density func-

tional theory (TDDFT). We report vertical excitation and fluorescence energies, calculated by taking

energies from ground and excited state optimized geometries. CC2 is able to reproduce accurately the

experimental results for both vertical excitations (within 0.3 eV) and fluorescence (within 0.1-0.6 eV).

On the other hand, charge transfer (CT) excitations and fluorescence energies are strongly underes-

timated by TDDFT using the pure PBE functional but improved agreement is found for the hybrid

functional PBE0. CC2 and DFT both predict accurate ground state geometries. Equilibrium geome-

tries for the fluorescent state are qualitatively different between CC2 and TDDFT. CC2 predicts a bent

exciplex geometry while TDDFT predicts a linear one. CC2 locates a minimum of the locally excited

intradonor state. TDDFT fails to predict the equilibrium geometry of the intradonor state because of

mixing between this state and an artificially low-lying CT state. This is an alarming example where the

well documented CT failure of TDDFT affects properties of other localized states.
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7.1 Introduction

The study of donor-bridge-acceptor (DBA) systems has a long history of serving as model systems in

order to gain basic understanding of the elementary processes of photoinduced electron transfer (ET) in

photosynthesis [180]. Nowadays, these types of systems are becoming attractive as possible building

blocks for nano-optical devices in molecular electronics [181].

Covalently linked rod-shaped DBA systems [180] have been studied experimentally within the con-

text of through-bond interactions [182, 183] (TBI). TBI refers to the interaction of electron donor and

acceptor orbitals through mutual mixing with saturatedσ-bonds that separate the two functional groups.

It has been hypothesized and shown experimentally that TBI leads to structural distortions of DBA

molecules compared to the molecular structures of the single donor, acceptor and bridge units [184]. In

addition TBI leads to strong charge transfer (CT) absorption bands and excited states with large dipole

moments [185].

In the present study we investigate, using differentfirst principlemethodologies, the geometric and

optical properties of ground and excited states of a simple DBA molecule (DA1), as shown in Fig. 7.1.

An N-phenyl unit serves as the electron donor and is separated from the dicyanoethylene electron ac-

cepting moiety by three saturatedσ-bonds of the central piperidine unit. DBA molecules containing

piperidine as a central unit were first synthesized and studied experimentally by Verhoeven and co-

workers [184–189]. ET in DBA chromophores can proceed by two phenomenological different path-

ways, namely optical ET and photoinduced ET. In optical ET the transfer of an electron proceeds directly

by excitation while in photoinduced ET an excitation occurs firstly into a locally excited state that then

couples via molecular rearrangements to the CT state. DA1 is characterized by a strong CT absorption

and a high fluorescence quantum yield. It has been found that excitation at different wavelengths all lead

to a single fluorescence band, belonging to the lowest CT state [185]. This indicates that both pathways,

optical and photoinduced ET might be important in the photophysics of this system. To investigate the

importance of the different decay pathways, and to explain the strong fluorescence, we characterize the

lowest excited states and their equilibrium geometries. Furthermore, we try to gain information about

the geometric changes associated with interconversion from locally excited states into the fluorescence

CT state.

Recentlyfirst principlesexcited-state electronic-structure methods have been used to complement
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Figure 7.1: N-Phenylpiperidone-malondinitrile, which serves as the DBA model in the present study.
The definition of donor (D), bridge (B) and acceptor (A) used in the analysis as well as the atomic
numbering are indicated.

experimental studies of donor-acceptor systems. In particular theory has assisted in the rational design

of molecules to gain desired properties [190–198]. Within this context, our aim is not only to investigate

the photophysics of this particular system but also to probe the quality of the different excited-state

methodologies for the description of this class of systems.

Coupled cluster (CC) methods [33] provide size-extensive descriptions of excited-state properties of

molecular systems at a lower cost than CI methods. Among CC methods, second-order approximate CC

singles-and-doubles [34] (CC2) offers a good comprise between accuracy and computational efficiency.

CC2 is an approximation to coupled cluster singles and doubles (CCSD) but exhibits an N5 scaling

with the number of orbitals rather than the N6 scaling of CCSD. In addition, excitation energies can be

obtained by a linear response treatment of the CC2 reference state. Excitation energies using CC2 have

been shown to be within 0.3 eV from experimental measurements [199, 200]. CC2 has been recently

applied to study photophysical processes in a range of different systems [201,202].

Further reduction of computational cost can be obtained by using time-dependent density functional

theory (TDDFT) [19, 20, 39]. This method has been successfully applied to study photochemistry and

photophysics in different systems [21, 43, 49, 203–205]. Unfortunately TDDFT has some severe draw-

backs related to the approximate nature of the exchange-correlation (xc) kernel, which still restricts its

general usage for a large variety of systems [206]. One of the major problems of TDDFT for describ-

ing extended systems is related to the well known underestimation of long-range CT excitations [83].

However, in some cases sufficient overlap between donor and acceptor orbitals can lead to a reasonable

description of CT states [207–210], especially when hybrid functionals are used. In light of this, we

explore the quality of TDDFT for the CT states occurring in our particular system, in addition we probe

to what extent the CT failure affects the description of locally excited states.
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7.2 Computational Details

All calculations presented here were carried out with the TURBOMOLE [78] program package. Ge-

ometry optimizations in the ground state were carried out using CC2 and DFT. The excited state geome-

tries were obtained using linear response CC2 and linear response TDDFT. All geometry optimizations

employ the TZVP [79] basis set and we use the default convergence criteria for Cartesian gradients

(10−3 a.u.) and total energies (10−6a.u.). Improved excitation energies and excited state properties

were obtained by single point calculations using the augmented aug-cc-pVDZ [211] basis set for both,

CC2 and TDDFT. Excitation energies were computed at linear response CC2 [34] level and by linear

response TDDFT [20], using the the Tamm-Dancoff (TDA) [48] approximation. In the notation used in

the following we do not make the distinction between CC2 and linear response CC2. Furthermore, the

abbreviation TDDFT stands for linear response TDDFT using the TDA.

The CC2 module of TURBOMOLE [199, 200, 212, 213] makes use of the frozen core approxima-

tion. In our calculations the 17 lowest molecular orbitals were kept frozen. In addition the Coulomb

repulsion is approximated by the resolution of identity (RI) method, was originally implemented for

MP2 [214]. Therefore optimized auxiliary basis sets for SVP, TZVP [79] and aug-cc-pVDZ [215] basis

sets were used.

DFT and TDDFT implementations of TURBOMOLE are described elsewhere [86,216,217]. Cal-

culations employ the PBE [66] xc-functional and its hybrid version PBE0, in which 25% of PBE ex-

change is replaced by exact (Hartree-Fock) exchange. Corresponding TDDFT calculations are denoted

by TDPBE and TDPBE0 in the following.

7.3 Results

7.3.1 Ground State Geometries

Selected bond distances, bond angles and dihedral angles of the ground state equilibrium structure of

DA1 optimized with CC2, DFT/PBE, and DFT/PBE0 are reported in Tables 7.1 and 7.2. The full

Cartesian coordinates can be found in Table 7.11 of the appendix. Fig. 7.2 shows the computed structures

together with the experimentally derived crystal structure (X-ray), all aligned to the donor moiety plus

the C5 atom of the bridge unit (D+C5). From this alignment it can be seen that all methods agree well in
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the local description of the donor, bridge and acceptor units. This is evident by the low root mean square

deviation (RMSD) (< 0.07 Å) from the crystal structure (Table 7.3). In contrast the relative orientation

between the single units exhibit larger deviations as evidenced by the somewhat larger overall RMSD.

The most significant deviation between the crystal structure and the theoretically computed struc-

tures concerns the description of the N28-C9 twist angle, defining the orientation of the phenyl ring

to the piperidine moiety (C8-C9-N28-C1 and C10-C9-N28-C5 in Table 7.2). From the comparison of

the Newman projections along the N28-C9 bond (Fig. 7.3), it can be seen, that all theoretical methods

predict a rather asymmetric conformation, in contrast to the crystal structure that nearly conserves a

symmetry plane perpendicular to the plane of the phenyl ring. This is also reflected by a larger RMSDs

(≈ 0.2 Å) for the donor moiety plus atoms C1 and C5 (D+C5+C1 in Table 7.3) compared to the RMSDs

of the single units D, B, A. It is possible that the inaccurate description of dispersion interactions in the

DFT methods leads to a stronger twist, caused by repulsion between hydrogens of the donor and the

bridge (hydrogen atoms connected to C8, C10, C1, and C5). However, the fact that all theoretical gas-

phase structures predict this asymmetric conformation suggests that the more symmetric conformation

of the crystal structure arises from packing effects. It may be suspected that crystal packing would affect

more the relative orientation of the units, than the internal geometries of the units.

Regarding the pyramidalization angle at N28 (Table 7.4), it can be seen that DFT structures and the

crystal structure exhibit a flatter conformation than the CC2 structure.

The same trend is found for the acceptor, where CC2 again predicts a slightly stronger pyramidal-

ization of the C3 center (Table 7.6) than DFT and the experiment.

For the piperidine unit, the RMSD of about 0.04 Å from the X-ray structure is equally good for

all theoretical methods, and small deviations in the dihedral angles related to the chair conformation

(Table 7.5) have negligible effects on the positions of the nuclei.

In summary, theoretical structures agree within 0.18 Å with one another but they differ by about

0.24-0.29 Å from the the crystal structure (Table 7.3). In contrast, if we consider the donor, bridge, and

acceptor units on their own then an agreement of < 0.07 Å with the experiment is found.

Some geometric parameters have been found to be sensitive for TBI in DA1 [184]. To probe the

influence of TBI on the geometry of theσ-relay of the bridge unit the geometry of N-phenylpiperidine

(NPP) was optimized. NPP may be considered as a DA1 molecule but lacking the acceptor moiety,
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Figure 7.2: Superposition of the ground-state geometries, optimized by different methods and the crystal
structure. All structures were aligned on the donor moiety plus C5. Red: CC2, blue: PBE, green: PBE0,
and black: crystal structure.

so that distortions due to TBI should be absent. According to Ref. [184] the "central" C-C bonds of

the bridge unit (C1-C2, C4-C5) are expected to be elongated if an interaction between the donor and

acceptor is present. All theoretical methods used here predict longer "central" C-C bonds compared to

the corresponding bonds in NPP (Table 7.1) and seem confirm the presence of TBI. With respect to the

lengths of remaining C-C and C-N bonds of theσ-relay, CC2 and DFT both agree in the trend from NPP

to DA1.

7.3.2 Vertical Absorption Energies

Using CC2, TDPBE and TDPBE0, we computed the lowest vertical singlet excitation energy from

optimized ground state geometries. Results, employing the TZVP and aug-cc-pVDZ basis sets are

summarized in Table 7.7.

The electronic transitions are interpreted in terms of single-particle transitions between the frontier

orbitals of the given reference state. In the case of DFT these are the Kohn-Sham (KS) orbitals and for
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Figure 7.3: Newman projection along the N28-C9 bond. Red: CC2, blue: PBE, green: PBE0, and black:
crystal structure.

NPP DA1
S0 S0 S1 S2

PBE PBE0 CC2 PBE PBE0 CC2 X-ray PBE PBE0 CC2 CC2
C9-N28 1.398 1.391 1.406 1.410 1.400 1.414 1.412 1.346 1.337 1.379 1.391
N28-C1 1.459 1.449 1.463 1.450 1.441 1.453 1.461 1.494 1.474 1.475 1.455
N28-C5 1.463 1.453 1.467 1.455 1.444 1.459 1.495 1.495 1.474 1.475 1.458
C5-C4 1.539 1.528 1.528 1.565 1.547 1.550 1.546 1.521 1.516 1.539 1.546
C2-C1 1.536 1.526 1.530 1.564 1.546 1.552 1.542 1.520 1.515 1.534 1.544
C4-C3 1.534 1.525 1.530 1.492 1.487 1.491 1.494 1.513 1.494 1.497 1.495
C3-C2 1.535 1.525 1.530 1.493 1.488 1.491 1.495 1.513 1.495 1.497 1.495
C3-C12 - - - 1.374 1.357 1.365 1.347 1.438 1.423 1.446 1.362
C12-C14 - - - 1.429 1.428 1.430 1.438 1.410 1.405 1.406 1.431
C12-C13 - - - 1.430 1.427 1.430 1.436 1.410 1.405 1.406 1.431
C14-N30 - - - 1.168 1.153 1.182 1.141 1.176 1.162 1.194 1.182
C13-N30 - - - 1.167 1.153 1.182 1.139 1.176 1.162 1.194 1.182
C9-C10 1.417 1.406 1.411 1.412 1.404 1.409 1.395 1.442 1.432 1.415 1.432
C9-C8 1.415 1.403 1.411 1.411 1.401 1.408 1.399 1.442 1.433 1.416 1.418
C10-C11 1.393 1.383 1.392 1.392 1.383 1.391 1.387 1.378 1.369 1.386 1.435
C11-C6 1.399 1.389 1.396 1.398 1.389 1.396 1.373 1.407 1.397 1.399 1.405
C6-C7 1.396 1.386 1.393 1.396 1.385 1.392 1.372 1.407 1.397 1.400 1.415
C7-C8 1.396 1.387 1.395 1.397 1.388 1.396 1.386 1.378 1.369 1.386 1.436

Table 7.1: Selected bond lengths (Å) of the ground and excited state state equilibrium geometries of
DA1 and NPP, calculated by CC2 and DFT, and obtained from X-ray diffraction [184]. The numbering
of the atoms refers to Fig. 7.2.
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NPP DA1
S0 S0 S1 S2

PBE PBE0 CC2 PBE PBE0 CC2 X-ray PBE PBE0 CC2 CC2
C9-N28-C5 121.51 120.74 117.41 120.34 120.93 117.22 118.9 124.24 123.98 122.53 121.91
C8-C9-N28 120.75 120.67 120.55 120.10 120.22 119.74 121.1 121.55 121.57 119.92 117.81
C10-C9-N28 122.18 122.21 122.40 122.26 122.27 122.61 121.8 121.46 121.52 120.32 119.48
C9-N28-C1 121.47 120.79 117.09 119.64 120.41 116.37 118.1 124.31 124.08 122.28 120.56
C9-N28-C5 121.51 120.74 117.41 120.34 120.93 117.22 118.9 124.24 123.98 122.53 121.91
N28-C1-C2 111.60 111.71 111.33 111.53 111.86 111.34 110.9 112.56 111.94 106.24 107.70
N28-C5-C4 112.74 112.76 112.23 112.47 112.76 112.40 111.2 113.06 112.57 108.54 109.29
C1-C2-C3 111.16 110.93 110.01 109.22 109.76 107.72 108.8 112.17 111.83 110.44 109.02
C5-C4-C3 109.73 109.70 109.73 108.19 108.82 107.55 109.2 111.15 110.98 109.41 108.71
C2-C3-C12 - - - 122.63 122.70 122.57 122.8 116.60 118.58 117.21 122.49
C4-C3-C12 - - - 122.47 122.75 122.52 123.0 116.83 118.80 117.18 121.99
C12-C14-N30 - - - 179.48 179.17 178.61 179.6 176.99 177.56 174.92 178.75
C12-C13-N29 - - - 179.55 179.29 178.92 179.4 176.92 177.42 175.05 179.07
C3-C12-C14 - - - 121.63 121.79 121.33 122.2 121.00 121.19 119.63 121.41
C3-C12-C13 - - - 121.76 121.86 121.56 122.6 121.02 121.15 119.90 121.69
C4-C3-C2 110.99 110.87 110.76 114.46 114.40 114.36 114.0 109.38 111.87 113.36 115.29
C8-C9-N28-C1 36.82 39.11 37.24 41.35 39.74 43.53 23 -0.51 3.25 35.78 31.42
C10-C9-N28-C5 7.12 4.59 -11.51 3.55 4.11 -5.38 22 14.44 12.03 12.74 6.83
C2-C3-C12-C13 - - - 3.38 2.41 5.38 4 -24.56 -20.41 -23.35 3.87
C4-C3-C12-C14 - - - -3.85 -2.07 -4.33 4 25.15 20.96 22.95 -2.64
C1-C2-C3-C4 -52.60 -52.74 -53.38 -53.56 -51.87 -55.74 53 -54.97 -52.78 -55.50 -53.34
C5-C4-C3-C2 52.46 52.50 52.48 53.34 51.61 54.62 52 55.13 52.69 53.54 51.76

Table 7.2: Selected bond angles and dihedral angles (◦) of the ground and excited state state equilibrium
geometries of DA1 and NPP, calculated by CC2 and DFT, and obtained from X-ray diffraction [184].
The numbering of the atoms refers to Fig. 7.2.

DA1 C9+N28+B+A D D+C1+C5 piperidine A A+C2+C4
CC2 0.293 0.159 0.038 0.178 0.041 0.068 0.094
PBE 0.251 0.124 0.035 0.195 0.038 0.056 0.082
PBE0 0.241 0.109 0.043 0.193 0.038 0.064 0.092

Table 7.3: RMSD (Å) of the heavy atoms between the DA1 crystal structure [184] and the ground state
geometries optimized by different methods. The donor (D), bridge (B), and acceptor (A) moieties and
the numbering of the atoms are defined in Fig. 7.2.

DA1 NPP
PBE PBE0 CC2 X-ray PBE PBE0 CC2

S0 19.25 17.83 26.38 21.62 14.74 17.25 26.02
S1 -7.70 -4.84 10.21 - - - -
S2 - - 15.04 - - - -

Table 7.4: N-pyramidalization angles (◦) of ground (S0) and the first two excited state (S1, S2) ge-
ometries calculated by CC2 and DFT, and obtained from X-ray diffraction [184]. The average of the
dihedrals C1-C5-C9-N28, C5-C9-C1-N28, and C9-C1-C5-N28 define the N-pyramidalization angle.
Atoms numbers are defined in Fig. 7.2.
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DA1 NPP
PBE PBE0 CC2 X-ray PBE PBE0 CC2

S0 α 52.20 51.94 53.83 51.85 51.40 51.75 54.42
β 49.59 47.88 51.54 46.44 48.08 48.22 48.69

S1 α 48.11 49.26 58.78 - - - -
β 49.62 47.82 49.97 - - - -

S2 α - - 58.76 - - - -
β - - 48.74 - - - -

Table 7.5: Dihedral angles related to the chair conformation of the piperidine spacer for ground and
excited state geometries of DA1 and NPP, calculated data and experimental values.α is defined as the
average of the dihedrals N28-C1-C5-C4 and N28-C5-C1-C2, andβ as the average of dihedrals C3-C4-
C3-C1 and C3-C2-C4-C5. Atoms numbers are defined in Fig. 7.2.

PBE PBE0 CC2 X-raya

S0 4.30 2.49 4.87 2.66
S1 -26.68 -21.34 -22.70 -
S2 - - 3.14 -

Table 7.6: Calculated and experimental [184] values of the C3-pyramidalization angle (◦) of ground (S0)
and first two excited state (S1, S2) geometries of DA1. The C3-pyramidalization angle is defined as the
average of the dihedrals C2-C12-C4-C3, C12-C4-C2-C3, and C4-C2-C12-C3.

CC2 these are the HF orbitals. In the case of PBE and PBE0, the usage of different basis sets does not

affect the qualitative appearance (nodal structure, spatial extent) of the relevant orbitals. This is in stark

contrast to HF, where the shape of the virtual orbitals changes when the basis set is augmented with

diffuse functions. This leads to different sets of HF orbitals when TZVP and aug-cc-pVDZ are used

(Fig. 7.4). PBE0, PBE and HF/TZVP orbitals agree qualitatively well, although their relative energetic

ordering is slightly different. Therefore assignments calculated by TDPBE, TDPBE0, and CC2/TZVP

are based on the same set of reference orbitals, as shown on the left of Fig. 7.4, while CC2/aug-cc-pVDZ

assignments refer to the orbitals on the right of Fig. 7.4.

The CC2/aug-cc-pVDZ vertical absorption energies agree within 0.3 eV with the maxima of the

experimental bands. We assign the first experimental band at 3.63 eV to the lowest charge transfer

excitation (H→L+6) calculated at 3.685 eV, an assignment that is also supported by the fluorescence

experiments of Hermantet al. [185]. The next band at 4.25 eV is assigned to an intradonor (ID)π-π∗

(H→L+14) transition at 4.553 eV, typical for aniline derivatives [218]. According to CC2, the band

at 4.99 eV can be caused either by another CT excitation (H→L) and/or by a Rydberg like transition
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Figure 7.4: Left: PBE Kohn-Sham molecular orbitals obtained using the TZVP basis set. Right:
Hartree-Fock molecular orbitals obtained using the aug-cc-pVDZ basis set. Assignments of TDDFT
and CC2/TZVP transitions are qualitatively given on the basis of the KS orbitals on the left. CC2/aug-
cc-pVDZ transitions are given on the basis of the HF/aug-cc-pVDZ orbitals on the right.
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(H→L+3/L+2).

Comparing the excitation energies of the two CC2 calculations which differ only in the basis set used,

it can be seen thatS1 andS2 are predicted within 0.2 eV from the experimental value. However, the

inclusion of diffuse basis functions shifts the energies of the next two higher states (4.857 and 5.026 eV

in Table 7.7) down close to the experimental band at 4.99 eV. Therefore, the inclusion of diffuse basis

functions is important for a balanced description of all excitation energies compared to the experiment.

From a practical point of view, this fact complicates the description of the interconversion fromS2

andS3 into the fluorescentS1 state, because CC2 geometry optimizations or molecular dynamics are

computationally very demanding when augmented basis sets are used.

Turning to the TDDFT excitation energies, we see that TDPBE drastically underestimates the lowest

CT excitation by more than 1.6 eV. In addition, there exists betweenS1 and the ID excitation at 4.1 eV

two additional CT states that are absent in the CC2 description. Usage of the hybrid xc-functional PBE0

leads to a blueshift of all excitation energies. The blueshift is certainly larger for CT excitations, resulting

in a smaller error for the first excitation energy compared to TDPBE. However, using TDPBE0/TZVP

one finds an artificially low-lying CT state betweenS1 and the ID state. With TDPBE0/aug-cc-pVDZ

this artificial CT state is shifted 0.1 eV above the ID state and mixes considerably with the ID state at

4.6 eV. This mixing also seems to affect excited state properties, for instance the excited state dipole

moment ofS2 predicted by TDPBE0 (11.683 Debye) is considerably larger than predicted by CC2

(2.283 Debye). As we will see later, the mixing between ID and CT states affects the nuclear forces and

makes it impossible to obtain structural information of the ID state using TDPBE and TDPBE0.

In summary, it is CC2/aug-cc-pVDZ that reproduces best the experimental excitation energies. Both

TDDFT approximations underestimate CT excitations. Considering the excitation energies, PBE0 dif-

fers on average by about 0.5 eV from the experiment. However, PBE0 predicts a strong mixing between

the CT and ID states, in contrast such a mixing is not present in CC2. The influence of the basis set on

the excitaion energies appears to be stronger for CC2 than for TDDFT.

7.3.3 Geometries of the Excited Charge Transfer State and Fluorescence

In order to investigate structural rearrangements related to the electron transfer from donor to acceptor

and to predict the fluorescence spectra, we optimize the geometry of DA1 in the lowest CT state. Ac-
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Figure 7.5: Comparison of theS0 andS1 geometries. Left: Newman projection along the N28-C9 bond
of the CC2 structure optimized inS1. Right: CC2 optimized geometries ofS0 (red) and ofS1 (cyan),
aligned on the donor.

cording to Hermantet al. [185] it is this state from which the experimentally measured fluorescence is

emitted. Cartesian coordinates of theS1 optimized structures computed by CC2, TDPBE, and TDBPE0

are summarized in Table 7.5 in the appendix.

Comparing the CC2 ground state geometry with that ofS1 (Fig. 7.5), we recognize that the major

rearrangements result from a strong pyramidalization of the C3 atom of the acceptor moiety (Table 7.6).

Simultaneously we observe a flattening of the pyramidalization of the donor nitrogen (Table 7.4), while

the piperidine spacer changes very little (Table 7.5). These structural changes lead to a bending of the

entire molecule. This geometric rearrangement resembles Coulombic-induced folding ("harpooning"),

which has been observed in DBA systems possessing more flexible bridging units [219]. In addition,

we observe a change of the sign N28-C9 twist angle (Fig. 7.5) compared to the ground state geometry

(Fig. 7.3).

The optimized structures of the lowest CT state computed by TDDFT are qualitatively different

from the corresponding CC2 structure (Fig. 7.6) as they do not exhibit the same bending of the molecule

at N28. TDDFT assumes structures that are even more linear, due to a flat and only slightly inverted

conformation of the N28 pyramidalization (Table 7.4). Similar to CC2 we also observe an increase of

the N28-C9 twist angle and a similar C3-pyramidalization of the ethylene moiety.

With respect to the N28-C9 twist angle and the C3-pyramidalization TDPBE, TDPBE0 and CC2 are

qualitatively similar, but the global structure of the molecule appears to be very different because of the

different description of the pyramidalization at N28.
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Figure 7.6: Geometries optimized in theS1 CT state. Red: CC2, blue: PBE, and green: PBE0. The
structures were aligned at the donor moiety.

CC2/aug-cc-pVDZ Experimental
ω Stokes’ shift µ Stokes’ shift
2.123 (0.0384) 1.562 CT 20.28652.727 (n-hexanec) 0.903

2.293 (diethyl etherd) 1.311
4.154 (0.0296) ID 3.0562 -
4.272 (0.0237) CT 3.8097 -
4.562 (0.0168) Rydberg 6.8941 -

Table 7.8: CC2/aug-cc-pVDZ electronic excitation energiesω (eV) and dipole momentsµ (Debye)
of the S1 geometry optimized at the CC2/TZVP level. According to the location of the orbitals the
excitations were labeled as charge transfer (CT), intra donor (ID) or Rydberg excitations.c Experi-
mental fluorescence energy is taken from Ref. [185].d Experimental fluorescence energy is taken from
Ref. [188].

To gain insight into the nature of DBA fluorescence, we computed the excitation energies using

aug-cc-pVDZ basis set (Table 7.8) for the geometries relaxed in the CT state. CC2 predicts a gas phase

fluorescence energy of about 2.1 eV, very similar to the experimental value of 2.2 eV in polar solvent.

Interestingly the CC2 gas phase value is considerably lower than the experimental value measured in

apolar solvent (2.7 eV). This could indicate a kind of self stabilization of the bent zwitterionic geometry,

which is decreased by the screening of the charges due to an apolar solvent. The solvent might also play

a role in the interrconversion from the ID state to the CT state by changing the energy gap between the

two states.

Similar to the case of the vertical excitation spectra, TDPBE and TDPBE0 drastically underestimate

theS1-S0 gap, predicting fluorescence energies of 0.341 and 1.628 eV, respectively.
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DA1 D+C1+C5 piperidine A+C2+C4
PBE 0.527 0.178 0.059 0.053
PBE0 0.495 0.164 0.044 0.053

Table 7.9: RMSD (Å) between DFT structures and the CC2 structure optimized in the lowest CT state,
for different fragments of DA1.

7.3.4 Geometries of the Excited Intradonor State

Hermant and coworkers [185] found that irrespective of the excitation wavelength a fluorescence typical

for the CT state is always observed, leading to the conclusion that the locally excited states might

interact with the CT states. To gain information about the interconversion process, we optimized the

geometry of DA1 in theπD-π∗D ID state using the CC2/TZVP method. The corresponding optimization

using TDDFT is not possible because the ID state mixes with one of the artificially low-lying CT states

(2πD-π∗A) and transforms adiabatically into the CT state. The mixing of the adiabtic states is caused by

degenerate Kohn-Sham states. In the case of TDPBE0, LUMO+2 and LUMO+1 (Fig. 7.4) cross during

the optimization and the initial character of the adiabatic state (H→HOMO+1) changes into a CT state

when LUMO+1 adopts the character of the 2π∗A orbital. For this reason no local minimum for the ID

state can be located using either TDPBE or TDPBE0, showing that the presence of artificially low-lying

CT states in TDDFT affect properties of non-CT states. Therefore we report only the result of the CC2

optimization (Fig. 7.7, Cartesian coordinates in Table 7.5 of the appendix).

Structural changes in the ID state are much smaller than in the CT state. Consequently, the only

significant change observed is the inversion of the sign of the N28-C9 twist angle similar to theS1

geometry. Twisting along the N-C bond in the locally excited state is typical for dialkylanilino deriva-

tives [210]. In dimethylaniline compounds, twisting proceeds until an orthogonal conformation between

the phenyl ring and the plane formed by the methyl groups and the nitrogen atom is reached. However,

in the case of DA1, the twist angle does not exceed 90o, which most likely occurs because of steric

hindrance due to the piperidine moiety.

Regarding the CC2/aug-cc-pVDZ excitation energies at the ID minimum energy structure (Ta-

ble 7.10), we observe a decrease of the gap betweenS1 andS2 during the optimization from initially

about 0.9 to 0.55 eV. We conclude that although the gap between the CT state and the ID state decreases,

there is still thermal activation needed to decrease the gap to and allow interconversion from the ID to the
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CC2/aug-cc-pVDZ µ

3.276 (0.180) CT 19.709
3.827 (0.035) ID 1.854
4.469 (0.058) CT 5.430
4.678 (0.033) Rydberg 6.517
4.848 (0.060) 4.084

Table 7.10: CC2/aug-cc-pVDZ excitation energies of theS2 geometry optimized on CC2/TZVP level
(eV).

Figure 7.7: Left: Newman projection along the N28-C9 bond of the CC2 structure optimized inS2.
Right: CC2 geometries optimized inS0 (red) and optimized inS1 (black), aligned on the donor unit.

fluorescent CT state. The main difference between theS1 andS2 structures is that the C3 center is rather

flat for theS2 structure but strongly pyramidal inS1. Therefore we suspect the C3-pyramidalization to

be an important reaction coordinate that could lead to a decrease of the gap between ID and CT states

and may help to mediate a non-adiabatic transition.

7.4 Conclusions

Ground state geometries are well described by CC2 and the DFT methods we tested. A slightly better

RMSD is found for DFT, especially using the PBE0 functional where a very good agreement with

the crystal structure is found when the N-C twist angle of the donor is excluded (RMSD = 0.109 Å).

However, all theoretical methods predict a twisted conformation of the phenyl substituent of the donor

with respect to the central piperidine spacer, whereas the X-ray structure exhibits an almost symmetric

conformation. Because of the fact that both, DFT and CC2 methods tend to be in a more asymmetric
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conformation, we suspect that crystal packing effects are likely to be responsible for the more symmetric

conformation of the phenyl substituent. A better answer to this question could be obtained by theoretical

geometry optimization of the crystal, which is beyond the scope of the present work.

The experimental vertical absorption energies are very well reproduced by CC2, enabling a full

assignment of the experimental bands. According to what was found experimentally, the lowest excited

singlet state is due to a fluorescent CT state. We assign the next higher absorption band at 4.25 eV to a

π-π∗ ID excitation. According to CC2, the experimentally observed band at 4.9 eV is accounted for by

two separate states, one a CT state and the other one a Rydberg state. We find that the description of the

latter two states is very sensitive to the inclusion of diffuse basis functions.

In contrast, TDDFT underestimates theS1 CT excitation by 1.4 eV using PBE and by 0.5 eV using

PBE0. In addition, artificially low-lying CT states, which are not present in the CC2 spectra, are located

betweenS1 and the ID state. Although, both TDDFT methods are able to reproduce the ID excitation

energy to within 0.4 eV, mixing of the artificial CT states with the locally excited ID state perturbs the

potential energy surface of the ID state in such a way that neither geometry optimizations nor molecular

dynamics calculations can be carried out in a pure ID state. This finding rules out the use of TDDFT to

gain structural and dynamical information about the ID state. The common practice of using TDDFT

to describe only the locally excited states by ignoring the presence of artificially too low lying CT

states [122] cannot be applied for the present system. In addition, excited state dipole moments are

affected by the partial CT character.

For theS1 optimized geometry, the major characteristic of the CC2 structure is a bent conformation,

that could be caused by the attraction of the negatively charged C3 center and the positively charged

donor unit. In contrast, the linear geometries predicted by TDDFT are caused by a too strong flattening

of the N28 center when compared with CC2. A delocalisation of the charges in the zwitterionic geometry

could be responsible for the bending of the molecule not occurring.

Regarding fluorescence, CC2 is able to predict the emission energy within 0.1 eV compared to the

value measured in diethyl ether, whereas a larger deviation of about 0.6 eV is found compared to the

experimental value, measured in n-hexane. It is indicated that the solvent destabilizes the zwitterionic

state. However, to obtain more information about the effect of the solvent on the excitation energies a

more sophisticated model [220] would be required.
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For the ID state we find a minimum energy structure indicating that the postulated interconversion

from the ID state to theS1 CT state requires activation by thermal energy. However, although we find a

decrease of theS2-S1 energy gap for the ID geometry from 0.9 eV atS0 equilibrium structure to 0.55 eV,

the mechanism of the interconversion cannot be described on the basis of the present results based on

single geometries. Finite temperature excited state molecular dynamics calculations, at the CC2 level,

could provide information about the interconversion mechanism.

In summary, this study shows that CC2 using a large basis set is able to describe accurately the elec-

tronic absorption and fluorescence energies of a DBA molecule for both local and CT states. TDDFT

in contrast fails to describe absorption and emission energies of the CT states, where a partial improve-

ments is obtained by using a hybrid functional. Locally excited states are described at more reasonable

excitation energies. However, it is shown that locally excited states are affected by the TDDFT failure

for CT states. This holds for both, the purely local PBE functional as well as for the hybrid functional

PBE0.

Furthermore, equilibrium geometries for ground and the first two low lying excited states were de-

termined. For the zwitterionic structure large differences are found between the CC2 and the DFT

structures.
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7.5 Appendix

Table 7.11: Ground State Equilibrium Geometries (Å)

CC2/TZVP PBE/TZVP PBE0/TZVP
Atom x y z x y z x y z

C 8.5883961 4.0839319 5.3730607 8.6183527 4.0609037 5.1218392 8.6079487 4.0676267 5.1355389
C 9.1905532 4.4299289 3.9870611 9.3707219 4.4558169 3.8070828 9.4055230 4.4460453 3.8647127
C 9.8969682 5.7366182 4.112626810.0926668 5.7434015 4.022093010.1212922 5.7314164 4.0841114
C 9.0468721 6.8483489 4.6259484 9.2360494 6.8550702 4.5305609 9.2588754 6.8389154 4.5779955
C 8.4299076 6.3827698 5.9712943 8.4971057 6.3541432 5.8142618 8.4739005 6.3461143 5.8150054
C 3.8304602 5.2569161 4.0795422 3.6882164 5.2557967 4.3412225 3.6930114 5.2394000 4.3426661
C 4.4095538 4.0478661 4.4692437 4.3146635 4.0430636 4.6440842 4.3250527 4.0366781 4.6304508
C 5.6956833 4.0125978 4.9987443 5.6488398 4.0057455 5.0403904 5.6526096 4.0044920 5.0178728
C 6.4207040 5.1990053 5.2261457 6.4135240 5.1891435 5.1369210 6.4063702 5.1841170 5.1187946
C 5.8180305 6.4145670 4.8506496 5.7725880 6.4079734 4.8280901 5.7595280 6.3906878 4.8226745
C 4.5213242 6.4386432 4.3329706 4.4297274 6.4338483 4.4432373 4.4231151 6.4117116 4.4491483
C 11.2450279 5.8625074 3.941661611.4578754 5.8548797 3.912182811.4636492 5.8582102 3.9321994
C 12.0519161 4.7608001 3.518123112.2730665 4.7513544 3.512673812.2792768 4.7693867 3.4992292
C 11.9094602 7.1093547 4.162236712.1364161 7.0790005 4.204547812.1376687 7.0878570 4.1977793
H 9.3961900 3.9804936 6.1033270 9.3604182 3.8340916 5.9033955 9.3114460 3.8407749 5.9437275
H 8.0699192 3.1302119 5.3169046 8.0418654 3.1492110 4.9382284 8.0428864 3.1606466 4.9372800
H 8.3600864 4.5220159 3.2782344 8.6083561 4.5850220 3.0196174 8.6884474 4.5772408 3.0458003
H 9.8551545 3.6324223 3.648683610.0485880 3.6467214 3.501242710.0889637 3.6405132 3.5916946
H 8.2384889 7.0375914 3.9128684 8.4746151 7.1096744 3.7750335 8.5427983 7.1015373 3.7907601
H 9.6150576 7.7702109 4.7668641 9.8192109 7.7596378 4.7530635 9.8398063 7.7310459 4.8194757
H 7.7876454 7.1559613 6.3920666 7.8363861 7.1371284 6.2039214 7.8098521 7.1286935 6.1772306
H 9.2401079 6.2086356 6.6855308 9.2523768 6.1537267 6.5910271 9.1892184 6.1418813 6.6192169
H 2.8282823 5.2816096 3.6707644 2.6410300 5.2823203 4.0384162 2.6514951 5.2603098 4.0466435
H 3.8786163 3.1150281 4.3183519 3.7526799 3.1087091 4.5912112 3.7732654 3.1045238 4.5714634
H 6.0965420 3.0613318 5.3241229 6.0876855 3.0472064 5.3174194 6.0959600 3.0524789 5.2814326
H 6.3170459 7.3591890 5.0175853 6.3160647 7.3519493 4.8770899 6.2925528 7.3316742 4.8731985
H 4.0853920 7.3929270 4.0602155 3.9645850 7.3940590 4.2112060 3.9548123 7.3655957 4.2298093
N 7.6929757 5.1368843 5.8410149 7.7504361 5.1332287 5.5829410 7.7342068 5.1363505 5.5602707
N 12.7024513 3.8359989 3.172300112.9352725 3.8442608 3.192358612.9287591 3.8810815 3.1553377
N 12.4351535 8.1504663 4.356934512.6823982 8.0814679 4.449475312.6708854 8.0847069 4.4240977
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Table 7.12:S1 Equilibrium Geometries (Å)

CC2/TZVP TDPBE/TZVP TDPBE0/TZVP
Atom x y z x y z x y z

C 8.6046410 3.9711330 5.4255140 8.5381533 4.1108472 4.9160707 8.5443160 4.1080735 4.9281079
C 9.5282361 4.3919798 4.2692857 9.7676955 4.4815944 4.1017700 9.7158878 4.4853350 4.0431312
C 10.1903747 5.6982942 4.577930110.4578087 5.7161274 4.639278010.3856155 5.7365522 4.5110121
C 9.2213718 6.7943856 4.8974054 9.4631206 6.8533944 4.7177607 9.4128544 6.8588434 4.6808079
C 8.2812841 6.3331628 6.0190672 8.2462127 6.4619107 5.5399900 8.2523745 6.4423385 5.5605532
C 3.7525757 4.9319701 4.0950141 3.4038349 4.7886546 4.8100719 3.4594708 4.8027303 4.7558348
C 4.3822858 3.7536924 4.5096097 4.2467695 3.6702485 4.6731802 4.2913377 3.6856221 4.6464090
C 5.6639091 3.7968113 5.0364651 5.6167931 3.8053407 4.7265551 5.6516601 3.8097689 4.7350753
C 6.3641958 5.0253236 5.0810696 6.2255253 5.0940222 4.9437129 6.2611380 5.0869066 4.9572130
C 5.7159524 6.2153778 4.6710141 5.3385347 6.2255299 5.0605828 5.3840919 6.2161029 5.0512409
C 4.4446525 6.1484928 4.1240126 3.9714957 6.0620954 4.9984439 4.0271032 6.0632180 4.9545535
C 11.3531765 6.0519422 3.794059811.7512835 6.0217676 4.089866611.6934131 6.0291625 4.0315441
C 12.1071720 5.0456469 3.165386812.5571299 5.0128374 3.523109412.5157676 5.0207916 3.5014763
C 11.7987741 7.3850786 3.773994912.2678352 7.3327792 4.134244312.2310500 7.3232804 4.1281763
H 9.1740351 3.8811360 6.3518272 8.8352934 3.8958895 5.9592551 8.9016118 3.8893008 5.9412369
H 8.0676410 3.0520242 5.2044151 8.0462151 3.2304420 4.4979736 8.0405136 3.2312440 4.5383427
H 8.9054890 4.4222264 3.3529097 9.4795700 4.6252000 3.0350346 9.3613955 4.5781319 2.9982516
H 10.2605787 3.5914337 4.131838410.4235163 3.5985298 4.118383310.3996621 3.6328827 4.0502020
H 8.5997571 7.0892656 4.0290206 9.1450777 7.1785857 3.7003977 9.0237095 7.2176788 3.7084587
H 9.7339053 7.6967185 5.2431028 9.8901295 7.7450238 5.1995701 9.8751106 7.7267075 5.1569569
H 7.5022753 7.0479228 6.2792487 7.5298522 7.2808823 5.6352376 7.5294506 7.2408269 5.6841773
H 8.8702967 6.0888570 6.9058329 8.5768088 6.1716787 6.5553646 8.6326480 6.1749270 6.5541552
H 2.7502843 4.8928238 3.6864262 2.3214785 4.6708245 4.7561811 2.3852352 4.6926318 4.6782312
H 3.8433917 2.8147450 4.4940313 3.8144450 2.6809103 4.5202642 3.8592061 2.7045847 4.4922771
H 6.1269747 2.8873216 5.3937293 6.2345063 2.9190554 4.6228815 6.2565139 2.9210128 4.6602960
H 6.2536244 7.1533096 4.6684143 5.7427934 7.2270511 5.1672200 5.7848274 7.2096172 5.1675458
H 3.9668080 7.0555953 3.7757813 3.3256611 6.9368584 5.0806825 3.3901911 6.9365648 5.0208241
N 7.6393804 5.0717033 5.6041608 7.5617061 5.2371931 5.0257682 7.5863866 5.2189460 5.0771959
N 12.6678427 4.1278863 2.647584713.1833580 4.1299893 3.063514013.1579887 4.1522825 3.0732247
N 12.0836008 8.5440437 3.797991012.6489341 8.4430163 4.203651012.6345202 8.4079809 4.2312033
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Table 7.13:S2 Equilibrium Geometry (Å)

CC2/TZVP
Atom x y z

C 8.5825075 4.1038785 5.3076390
C 9.2899380 4.4734697 3.9838296
C 10.0063322 5.7721241 4.1660530
C 9.1635054 6.8978181 4.6730594
C 8.4351002 6.4313526 5.9524420
C 3.7867333 5.2385148 4.1837925
C 4.3951462 4.0083914 4.4848469
C 5.7211217 3.9742811 5.0331655
C 6.3843407 5.2309954 5.2145374
C 5.7748408 6.4703334 4.8946011
C 4.3992187 6.4778372 4.4819967
C 11.3530514 5.8916044 3.9990519
C 12.1564736 4.7943039 3.5553062
C 12.0280535 7.1287142 4.2453065
H 9.3144716 3.9699738 6.1083870
H 8.0005463 3.1969231 5.1685549
H 8.5080080 4.5756464 3.2230801
H 9.9653553 3.6680494 3.6885643
H 8.4010971 7.1439499 3.9258525
H 9.7541272 7.7916314 4.8840791
H 7.7492736 7.1874979 6.3283273
H 9.1662457 6.2007470 6.7324970
H 2.7804659 5.2361082 3.7767506
H 3.8650505 3.0824451 4.2983221
H 6.0568534 3.1034137 5.5874869
H 6.3532332 7.3846471 4.8459858
H 3.9241900 7.4085943 4.2013448
N 7.7010787 5.2087916 5.6647650
N 12.8084388 3.8772478 3.1932309
N 12.5620174 8.1610329 4.4608570
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Chapter 8

Conclusions and Outlook

In this thesis, a non-adiabatic AIMD scheme has been developed and implemented, and then applied to

the study of decay processes, such as fragmentation, isomerization, and de-excitation, which occur upon

photoexcitation of different organic molecules. The method is based on the Fewest-Switches Trajectory

SH method and uses TDDFT as underlying electronic structure method.

Furthermore, the accuracy of approximations within TDDFT is assessed by comparison with the

results of wavefunction-based excited-state methods. This investigation focuses on the evaluation of the

performance of a number of different issues that are particularly important for the modeling of photo-

processes. These aspects include a) the accuracy of non-adiabatic coupling vectors, b) the description of

conical intersections, and c) the description of locally excited states in the presence of CT states.

The newly developed non-adiabatic AIMD scheme (TDDFT-SH) is tested by studying the photody-

namical processes of two small well-studied organic molecules, oxirane and protonated formaldimine.

For protonated formaldimine, a good agreement with results of simulations based on CASSCF is found.

The TDDFT-SH method and the CASSCF-SH method agree in the predicted reaction mechanism as well

as with respect to the predicted excited state lifetimes. In the case of oxirane, the TDDFT-SH results

are consistent with experimental data and furthermore provides a detailed mechanistic description that

is difficult to obtain by experiments.

These examples show that the developed method constitutes a tool for the description of photody-

namical processes of molecular systems that can reach accuracy similar to wavefunction-based methods

but has the advantage of being easier to use and computationally more efficient.
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However, it is also shown that TDDFT bears some limitations which arise from both, the approx-

imate nature of the ground state xc-functional and the adiabatic approximation made in the TDDFT

kernel. For some of these deficiencies, remedies are already available [145, 174, 221]. For instance, the

underestimation of excitation energies due to the incorrect asymptotic behavior of the xc-potential can

be overcome by the use of asymptotically corrected or hybrid functionals, as we have seen in the case of

oxirane.

It is not yet clear how strongly the shortcomings in the description of the coupling betweenS1

andS0 and theS1-S0 intersections affect molecular dynamics simulations. Further comparisons of the

TDDFT-SH method to other methods are necessary to fully establish to which extent the inaccuracies

of theS1-S0 intersections can be corrected by an adapted surface hopping algorithm such as the one

proposed in this work.

For the non-adiabatic coupling vectors evaluated at ground state equilibrium geometries, TDDFT

provides a qualitative description similar to multiconfigurational CASSCF. However, the TDDFT-SH

simulations show that in regions close to theS1-S0 intersection the coupling appears to be orders of

magnitude smaller than the one close to intersections between excited states. With respect to the fact that

S1 andS0 “do not see each other” in this region, TDDFT-TDA behaves similar to CIS. On the other hand,

TDDFT-TDA seems to be able to account for the mixing between ground and excited states as shown

by the shape of the intersection that appears to be approximately conical and resembles the CASSCF

intersection on a larger scale. Not much is known about the effect the approximation in the xc-kernel

regarding these problems. To some extent it seems that the LR-TDDFT method incorporates a certain

degree of correlation, which in post Hartree-Fock methods would be included by double excitations,

although linear response TDDFT is formulated in terms of singly excited determinants. This could

account for the global similarity to the multiconfigurational description of the conical intersection.

We have shown that the problem of describing the energy of long-range CT excitations is severe,

since it changes qualitatively the order of the adiabatic states and furthermore it affects the description of

other excited states that do not have a CT character. This can cause problems if one considers simulations

of larger systems in complex environments like liquids, where a large number of possible CT states could

influence the dynamics. A few corrections to the CT failure in TDDFT have already been proposed [83,

103, 222], future validation studies will help to understand if these corrections are able to tackle this
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problem.

The CC2 method on the other hand, has been shown to provide a highly accurate description of

both, CT and non-CT states. An unbiased description of all types of states is an important requirement

for the dynamical description of photoprocesses. Although for small molecules, AIMD simulations

based on CC2 are already possible, more extensive applications of the method are still limited due to

the fast growing computational expense that arises when the system size is increased. This is especially

acute when high quality basis sets with diffuse functions are used, which is often necessary for a proper

description of excited states.

It remains the hope that improvements in the development of xc-functionals and kernels become

available for a more accurate modeling of dynamical processes. This requires that nuclear gradients

from the improved xc-functionals can be obtained. However, improvements should not substantially

increase the computational cost. The TDDFT-SH method is independent of the approximation used for

the xc-functional and can directly profit from any improvement of the xc-functionals that leads to more

accurate TDDFT potential energy surfaces.



128 Conclusions and Outlook



Bibliography
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