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1. Introduction

The development of coordination between limbs is
one of the principal factors of skills acquisition in
humans. This process starts from early stages of
child’s development and continues during the whole
life. Particularly bimanual coordination plays a cru-
cial role in routine life, making possible wide range
of manipulation activities.

Figure 1: The model overview.

There are several motivations for adapting the con-
cepts of bimanual coordination originating in human
motor control to humanoid robotics. Amongst the
most important reasons we can highlight are the fol-
lowing: 1) guarantee adequate performance of hu-
manoids in dual-arm tasks; 2) make their movements
more effective and natural-looking for humans; and
3) provide the basis for more complex forms of inter-
limb coordination, e.g., quadro-manual coordination
between robotic/human collaborators in the case of
joint task execution.

Robot Programming by Imitation proved to be
a useful methodology for transferring various skills
from a human to a robot through direct interac-
tion. Although learning of manipulation tasks has
received a lot of attention in this framework, none of
the works address the problem of inter-limb coordi-
nation explicitly by extracting high-level features of
coordination.

This work attempts to shed some light on what
are the main aspects of bimanual coordination to
guarantee satisfactory robot’s performance in sim-
ple manipulation tasks and how these aspects can
be learnt. We investigated two types of coordination
constraints: spatial constraints (e.g. two arms must
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adopt a specific spatial relation to one another) and
temporal constraints (two arms must synchronize
and should reach a target position at the same time).
Satisfactory performance was deemed achieved when
the robot managed to go through the set of required
postures, adhering to a proper timing. The robot
was, however, free to depart significantly from the
arm trajectories shown during the demonstration in
between each of these postures.

Our model is inspired by the research in biman-
ual coordination in human movement science. We
hypothesize, analogously to the rhythmic case [2],
that for discrete goal-directed movements the rel-
ative position between two arms is an appropriate
candidate for the collective variable. The collec-
tive variable contains information about coordina-
tion patterns – spatio-temporal constraints typical
for a certain movement and thus governs cooperative
behavior of two arms. Stable positions (attractors)
in this variable’s state space represent stable coordi-
nated postures (coordination patterns) that must be
reached in sequence to perform a task.

2. Model Overview

The proposed model is composed of two principal
systems (see fig. 1): a learning and a motor system.
A learning system accounts for building a model of a
observable skill. The model of a skill consists of a set
of spatial constraints – stable relative postures be-
tween the two end-effectors and temporal constraints
- a mean postures’ duration and a time of their emer-
gence.

The model is built automatically from trajecto-
ries recorded during kinesthetic demonstrations of
a task (a human operator moves the robot’s arms).
First, the data is processed by resampling and align-
ing. Then the relative position between the two
end-effectors is segmented to extract the stable pos-
tures and associated with them temporal constraints.
In general, the set of postures after segmentation
contains spurious postures, thus we encode the sets
obtained after several demonstration with Hidden
Markov Models to get the relevant set of the pos-
tures. Each single hidden state represents a stable
posture with its time properties.
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Figure 2: Set-ups of 3 experiments. Tea task : put the

piece of sugar into the cup. Cube task : grasp the cube,

lift it, and put it on top of the pedestal. Tray task : grasp

the tray with two arms, lift it, and move it forward.

Once built the model of a skill is fed into a mo-
tor system. The motor system generates movements’
trajectories with respect to the coordination con-
straints and ensures synchronization between the two
arms. In previous works of ours [3] a dynamical hy-
brid controller that generates uni-manual reaching
movements in robots was proposed. It is based on
Grossberg’s computational model of human reach-
ing movement [1]. Here we extend this controller for
both arms and add constraints that guarantee repro-
duction of a learnt task.

The hybrid controller is described by the following
set of differential equations (here we present only the
equations for the right arm, as the equations for the
left arm are identical):

θ̈R,d
t = αR

θ (−θ̇R
t + βR

θ (θ̃R
i − θR

t )); (1)

ẍR,d
t = αR

x (−ẋR
t + βR

x (x̃R
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t )); (2)

where θR
t is a posture of the right arm in the joint

space; xR
t is a end-effector position in the Cartesian

space, upper index ”d” refer to ”a desired position”
that is corrected each time step to satisfy constraints,
θ̃R

i , x̃R
i are current target positions (mapping of spa-

tial constraints into the attractors of the dynamical
systems (1)-(2)); αR

x , αR
θ , βR

x , βR
θ are empirically de-

rived constants.
To endow the motor system with the desired be-

havior (spatio-temporal coordination) and guarantee
the consistency between robot’s end-effectors posi-
tion and arms’ postures, we apply the following con-
straints on the system (1)-(2):

1) The robot’s body constraints ensure consistency
between generated postures and end-effector posi-
tions:

xR
t = K(θR

t );

xL
t = K(θL

t ); (3)

where K(.) is the forward kinematic function of an
arm.

2) Spatial constraints preserve coordination pat-
terns learnt from the demonstrations at given stages
of a movement:

ẋR
t − ẋL

t = 0 (4)

We then solve the constraint optimization problem to
find the values {θR

t , xR
t , θL

t , xL
t } in the neighborhood

of the desired values {θR,d
t , xR,d

t , θL,d
t , xL,d

t } that sat-
isfy the above mentioned constraints.

3) Time constraints guarantee the synchronization
of the arms (adaptation of one arm’s velocity to an-
other one) and the timing of the whole movement.
These constraints are expressed in the form of a spe-
cific procedure for computing the parameters α, β of
the controller:

αR
x = 2

log(
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x

∆R
x

)

∆t
; βR

x =
4

π2

∆t2
+ α2

4α
; (5)

where AR
x , ∆R

x are respectively the amplitude and
the precision of a movement, ∆t is its mean duration.

3. Experiments

We conducted three experiments to illustrate our ap-
proach and test it (see fig.2). We were interested in
testing both abilities of the system to learn manipu-
lation tasks as well as abilities of the motor system
to reproduce tasks and adapts to external perturba-
tions. Fig.3 shows the result of reproduction of the
Cube task (grasp the cube and lift it up, and put
it on top of the marked pedestal. The robot had to
adapt to both changed position of the cube (synchro-
nization) and changed position of pedestal (spatial
coordination)), the trajectories of the two arms are
projected into an axial plane.
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Figure 3: Reproduction of the Cube task. Left: the robot

tries to grasp the cube while its position is changed from

A to B and it simultaneously adapts both arms to grasp

the cube at position B. Right: while the robot is carrying

the cube, the position of the pedestal is changed from

C to D, the robot puts the cube on the new location

preserving the relative position between its arms.

References

D. Bullock and S. Grossberg. Neural dynamics of
planned arm movements: Emergent invariants and
speed-accuracy properties during trajectory forma-
tion. Psychological Review, 95(1):49–90, 1988.

Kelso J.A.S. Haken, H. and H. Bunz. A theoretical
model of phase transitions in human hand move-
ments. Biological Cybernetics, 51:347–356, 1985.

M. Hersch and A. Billard. A biologically-inspired model
of reaching movements. In Proceedings of the In-
ternational Conference on Biomedical Robotics and
Biomechatronics, pages 1067–1072, 2006.


