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Abstract

Neoclassical tearing modes are driven by the reduction of bootstrap current inside the island

due to the flattening of the pressure profile. This current perturbation enhances the magnetic

perturbation responsible for the island formation. Therefore it is well-known that local current

drive (CD) can be used to compensate this perturbation and stabilize the mode. Several forms of

the current drive contribution to the modified Rutherford equation have been proposed. Analytical

fits of these contributions are provided in order to facilitate their comparison with experiments and

a new contribution is proposed. Since the bounce and transit frequencies are much larger than the

collision frequency and the modulation frequency of the CD source in phase with the island, it is

argued that the effective current driven density profile is a flux function. Assuming an exponential

profile leads to no difference between modulated and continuous application of current drive. The

various forms differ mainly at small island width and the possibility to differentiate amongst them

experimentally is discussed.
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I. INTRODUCTION

Tearing modes in tokamak plasmas have been studied for many years and the possibility

to “compensate” the perturbed parallel current within the island in order to stabilise them

has been proposed more than twenty years ago [1]. It has also been seen that local heating

can stabilise the mode by modifying the local resistivity and hence the local inductive current

[2]. However this latter effect is usually smaller than the current drive (CD) contribution

and therefore is not discussed in this paper.

The contribution to the modified Rutherford equation [3], which governs the nonlinear

time evolution of the island width with respect to the perturbed parallel electric field in

the vicinity of the island, has been calculated by several authors [4]-[9]. This has become

more important due to the presence of neoclassical tearing modes (NTM) in long pulse

ELMy H-mode scenarios (high confinement scenario with edge localised modes), which can

degrade the energy and particle confinement even at low β [10]. These modes are tearing

modes with a sufficiently large island width, typically larger than 2 − 3cm, such that the

perturbed bootstrap current drives the island to a much larger saturated island width, up

to typically 10 − 20cm in present tokamaks (10 − 20% of the minor radius). With such

saturated widths, a confinement degradation exceeding 20% is predicted for the standard

scenario in the international thermonuclear experimental reactor (ITER-FEAT) [11], which

is unacceptable in order to fullfill the main goals of this experiment. Therefore it is proposed

to use electron cyclotron current drive (ECCD) to stabilise or reduce significantly the size

of the NTM. This has been achieved successfully in several tokamaks [12]-[14], however the

predictions of the requirements for the ECCD system are still in question and this is the

principal application of this paper.

II. CD CONTRIBUTION TO THE MODIFIED RUTHERFORD EQUATION

The modified Rutherford equation, for the island evolution of a m/n tearing mode (with

m the poloidal and n the toroidal mode numbers) can be written as follows, using the

notation of Ref. [15]:

dw

dt
=
ρs

τR

[

ρs∆
′ + ρs∆

′
bs + ρs∆

′
GGJ + ρs∆

′
pol + ρs∆

′
cd + ρs∆

′
H

]

, (1)
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The first term on the right-hand side is the classical ∆′ term determined by the total equi-

librium current density profile, the second term relates to the perturbed bootstrap current

and is the driving term. The GGJ term is due to the stabilising effect of curvature [16], the

next is due to the polarisation current and is usually assumed stabilising [17]. The last term

of Eq. (1) relates to the modification of the local conductivity within the island by localised

heating [5]. Since it is usually smaller than the CD term, we shall not discuss it here. The

term ρs∆
′
cd is the current drive contribution we shall discuss in this paper, in relation to the

bootstrap term ρs∆
′
bs. The bootstrap contribution can be written as:

ρs∆
′
bs = ρsβp

abs w

w2 + w2
d

, (2)

where abs depends essentially on the q and pressure scalelengths as well as on geometrical

factors. Equation (1) is obtained through adequate averaging of Ohm’s law over helical flux

surfaces in the vicinity of the island. Following the detailed description in Ref. [18], we can

write (Eq. (103) of Ref. [18]):

δΨ

δt
cosα = − η(ρs)(δj‖ − δjbs − δjcd)− b · ∇Φ, (3)

where α is the helical phase (= θ− n
m

(φ−ωt)), Ψ the perturbed poloidal flux near the island, η

the resistivity, and δj‖, δjbs, δjcd are the total, bootstrap and non-inductive perturbed current

density. In this paper, we neglect the modification of the equilibrium current profile with

CD, which can modify the ∆′ contribution [19],[20]. It is convenient to define the helical

flux:

χ = −

ρ
∫

ρs

(1−
q

qs
)Bθdρ− Ψ(ρ)cos(mα), (4)

since (B+ δB) · ∇B = 0 and χ maps out the perturbed magnetic flux surfaces. Let us then

define the helical flux surface average using a similar notation as in Ref. [7]: ψ(= (χ−Ψ)/2Ψ)

is the helical flux surface label with ψ = −1 at the O-point of the island and ψ = 0 at the

X-point (however keeping w as the full island width):

< A >=
1

2π

2π
∫

0

dα
A

√

ψ + cos2(mα
2

)
. (5)

In this way the CD term is given by:

ρs∆
′
cd = −

16 µ0 ρs Lq

Bp w

∞
∫

−1

dψ
< jcd >

< 1 >
< cos mα >. (6)
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To evaluate further the CD contribution, one has to define the current drive profile jcd in

terms of ψ and α. Its normalisation is given by the total driven current Icd. If jcd is known in

real space (ρ, θ) or in terms of (ψ, α), one can normalise it as such, using jcd = jcd0 j̃cd(ψ, α):

Icd =
∫

ρ dρ dθ jcd(ρ, θ) =
jcd0 ρs w

2

∞
∫

−1

dψ
∫

dα
j̃cd(ψ, α)

√

ψ + cos2(mα
2

)
, (7)

with j̃cd(ρ− ρs, θ) → j̃cd(
w
2

√

ψ + cos2(mα
2

), α) and jcd0 used to single out the normalisation.

Therefore the term jcd in Eq. (6) can be evaluated substituting jcd0 by Icd using Eq. (7),

yielding:

ρs∆
′
cd = −

16 µ0 Lq Icd
π Bp w2

cd

η̃aux(
w

wcd

), (8)

with

η̃aux(w/wcd) =
w2

cd

w2

∞
∫

−1

dψ J(ψ) W (ψ)

∞
∫

−1

dψ J(ψ) V (ψ)
, (9)

and where we have used the functions defined in Ref. [7]:

J(ψ) =
1

V (ψ)

∫

dα
j̃cd(ψ, α)

√

ψ + cos2(mα
2

)
, (10)

W (ψ) =
∫

dα
cos(mα)

√

ψ + cos2(mα
2

)
, (11)

V (ψ) =
∫

dα
1

√

ψ + cos2(mα
2

)
. (12)

Note that these quantities are directly related to the terms in Eq.(6):

J(ψ) =
2 π

V (ψ)
< j̃cd >, (13)

W (ψ) = 2π < cos(mα) >, (14)

V (ψ) = 2π < 1 > . (15)

The part which is under discussion in this paper is the term η̃aux(w/wcd) defined in Eq.

(9), which contains all the terms depending on the island width w. If j̃cd(ψ, α) = j̃cd(ψ) is

a flux function, as assumed in [5], then η̃aux reduces to:

η̃aux(w/wcd) =
w2

cd

w2

∞
∫

−1

dψ W (ψ) j̃cd(ψ)

∞
∫

−1

dψ V (ψ) j̃cd(ψ)
. (16)

4



The total current, δj‖ in Eq.(3), has been assumed to be a flux function in order to evaluate

the classical ∆′ term in Eq. (1). In addition, the bounce and transit frequencies are much

larger than the collision frequency, as well as of the modulation frequency, of a few kHz,

proposed to drive current in the O-point of the island. For example the current profile

outside the island is calculated using bounce-averaged Fokker-Planck equations and ray-

tracing codes which typically give a flux surface current density profile of the form:

jcd(ρ) = jcd0 exp
[

−
4(ρ− ρcd)

2

w2
cd

]

, (17)

where ρcd is the deposition location and wcd the full e−1 current density width. Note that in

the torus, jcd = f(ψ)B, the poloidal variation of jcd follows the magnitude of B. Therefore

assuming that jcd is a flux function is in fact assuming that < jcd ·B > / < B2 > is equal

to jcd/B = f(ψ), where < . > are flux surface averages. The main point here is that f(psi)

applies even if the wave-particle interaction happens in a poloidally localised region of the

plasma. Following similar arguments, we can expect the current profile within the island to

also be a helical flux function and therefore Eq. (16) to apply.

In Ref. [5], j̃cd(ψ) was chosen as a box-type function given by a Heavyside function:

j̃cd(ψ) = j̃cd0 H(ψ0 − ψ), (18)

with ψ0 = ψbox = w2
cd/w

2 − 1. This corresponds to the ψ1 flux surface shown in Fig.1 (solid

circle). Since x = ±w
2

√

ψ + cos2(mα
2

), Eq.(18) corresponds to a current driven inside the

flux surface at x = wcd

2
, α = 0. Thus it simulates a modulation such that the current is

driven at the O-point, inside ψ1 = ψbox, with a small on-time corresponding to the box with

a small extension in the helical direction α as shown in Fig. 1 (solid line rectangle). Note

that if the modulation of the ECCD source is such that it is 50% on-50% off, centered at

the O-point, it would drive current in the dashed box marked on Fig. 1. Assuming a helical

flux function, the modulated ECCD source would effectively drive a non-zero current inside

ψ = ψ2, with ψ2 = ψbox + 1/2. In the case of no modulation, one sees that the current drive

density extends to the surface ψ3 = ψbox + 1, which is actually outside the island. In this

example, one immediatly sees that if ψbox >> 1, the difference between ψbox, ψbox + 1/2 and

ψbox + 1 is negligible. In other words, when w/wcd < 0.5, there is no difference between

modulation and continuous waveform (CW) in η̃aux, contrary to what is found if one allows

for non-flux surface current deposition as in Refs. [4], [6]-[9], as will be discussed below. In
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addition, as Icd is larger at constant power for the CW case, it would be more efficient to

keep CW-ECCD.

The box-type current deposition profile described above was used in order to obtain an

analytical form for η̃aux(w) [5]. However a more realistic deposition profile is the form given

in Eq. (17), which yields as a function of ψ:

j̃cd(ψ) = j̃cd0 exp
[

−
w2

w2
cd

(

ψ + cos2(
mα0

2
)
)]

, (19)

where mα0 corresponds to the maximum angle reached during the on-time. For example,

if the on-time is small, the current is driven only around the O-point as in the small box

case and mα0 ≈ 0. Note that replacing ψ by ψ1 = w2
cd/w

2 − 1, one finds j̃cd(ψ1) = j̃cd0 e
−1.

Thus we have replaced the box-type profile with a Gaussian profile of similar characteristic

width. The case of 50% on-time, with mα0 = π/2, corresponds to a Gaussian with e−1

width at ψ = ψ2 and the CW case is obtained with mα0 = π and e−1 at ψ = ψ3. An

important consequence of the function given in Eq. (19) is that the phase factor related

to the fraction of source modulation is independent of ψ. Therefore, once included in Eq.

(16), the numerator and denominator terms cancel exactly and η̃aux(w) is independent of

the modulation frequency.

The numerical calculations of η̃aux(w), Eq. (16), using j̃cd given by Eq. (18) with ψ0 = ψ1,

ψ2 or ψ3, and using Eq. (19), are shown in Fig. 2 as a function of w/wcd. The analytical

result of Ref. [5], Eq.(17), is also shown (dashed line) to check our numerical integration.

It compares well with the numerical result (solid line). As mentioned above, the box-type

results are similar when w/wcd < 0.5. Note that w/wcd ≈ 0.5 is actually the expected value

at full stabilisation in ITER-FEAT [11], assuming a characteristic deposition width of 10cm

and a marginal island width of the order of 5cm. The result of the flux surface (fs) Gaussian

profile (solid line with circles), using Eq. (19), can be fitted with:

η̃auxfs(w) =
6

(w/wcd)4 + 40
+

1

(w/wcd)2 + 10
(20)

If one does not assume flux surface functions for the current drive term, then Eq.(9) has

to be used with, for example, as proposed in Refs. [4], [6]-[9]:

j̃cd(ψ, α) = M(α) exp
[

−
w2

w2
cd

(

ψ + cos2(
mα

2
)
)]

, (21)

where M(α) is one for the helical extension α where the ECCD is turned on and zero

otherwise. Introducing Eq. (21) into Eq. (9), we obtain the results shown in Fig. 3 (50%-
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on solid, CW dashed). The function proposed in Ref. [21], f(w)/(w2/w2
cd) is also shown

(dashed-dotted). A better and simpler fit of the 50% on-case can be obtained with:

η̃auxloc(w, 50%) = 0.9 tanh(
w

2.5wcd

)
w2

cd

w2
. (22)

The CW case, assuming local current deposition, can be fitted with [22]:

η̃auxlocCW (w) =
0.25

1 + 2

3
( w

wcd

)2
. (23)

To really compare the different contributions, one has to add a factor related to the effective

total current driven in the case of modulation (0.5 for the 50% on-time case). This is shown

in Fig. 4 for the “fs” Gaussian profiles corresponding to η̃auxfs of Eq. (20) (solid line), to

0.5η̃auxloc(w, 50%) of Eq. (22) (dashed line), and to η̃auxlocCW of Eq. (23) (dashed-dotted

line). The dotted lines correspond to the respective fits referred to in these equations. It is

seen that the modulated case, assuming local current deposition, differs significantly from

the similar CW case only for w < wcd. In addition it is significantly larger than the flux-

surface Gaussian-type profile only for w/wcd < 0.5. The function used in Ref. [13] is also

shown (dotted line), without the factor 0.4, as it turns out to be very close to the present

proposed form, the latter being independent of modulation frequency.

III. FLUX SURFACE VS α-DEPENDENT CURRENT DRIVE PROFILE

Let us discuss in more detail the difference between the assumption proposed in this

paper, namely that the current density profile can be a helical ψ flux surface function, of

approximately Gaussian type in ρ, and a local current density which varies strongly along

the helical angle α, as given by the function M(α, τ) used in Eq. (21). The latter could lead

to a sharp poloidal variation of E‖, with different responses from electrons and ions, and

to the break-down of the quasi-neutrality condition. Thus a kinetic treatment is required,

taking into account the finite ion Larmor radius and banana widths. This is out of the

scope of this paper, but to be able to compare the two assumptions, we can construct the

equivalent flux surface current density contributing to the ∆′
cd term. It is given by:

j̄(ψ) =
J(ψ)

∫

dψJV
, (24)

where J(ψ) is given in Eq.(10). Note that if j̃cd(ψ, α) = j̃cd(ψ) is a flux function, then

J(ψ) = j̃cd(ψ).
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In Fig. 5, we show three different forms of M(α), (A, B and C) used to calculate the

current contribution, based on (0.5− 0.5 tanh((mα− ατ )/0.06)), with ατ = π/2, 3π/4 and

π. This function is used to avoid any discontinuities in M(α). Note that modifying the rate

of change (0.06 above), which can mimic the effective turn on and off of the gyrotrons, does

not change significantly the results as shown below. In Fig. (6a), we show the resulting j̄(ψ)

profiles for the three cases A, B and C, factorising in the effective current driven (Icd/ICW ,

e.g. 0.5 for A), as well as the fs profile, using Eq. (19), for comparison. Also shown in Fig.

(6b) is W (ψ) which represents the weight of the contribution of the local current density

to the ∆′
cd term (∼

∫

j̄W ). It is positive, stabilising, near the O-point, and very negative

in a small region near the X-point. This explains why any finite contribution of J near

mα = π is destabilising. Fig. (6a) shows that if j̃cd(ψ, π) = 0, there is a strong dip in j̄

near ψ = 0, which allows for the 1/w dependence of ∆′
cd as shown in Fig. 7. When non-zero

current is driven near mα = π, the contribution at, for example, w/wcd = 0.5 decreases

rapidly, until the 1/w dependence is lost as in the CW case. To illustrate this point we

have calculated ηaux with M(α) = 0.75− 0.25 tanh((mα − 3π/4)/δα), with δα = 0.06 and

0.4 (dotted lines, D, in Fig. 5). These give exactly the same result for ηaux, as shown in

Fig. 7 (circles), and lead to similar contributions at w/wcd = 0.5 as the fs flux-surface case,

ηaux ≈ 0.26. Note also that for the case C, ατ = π of Fig. 5, j̄(ψ) is actually larger than

the flux-surface case fs near the X-point. This is why the resulting ∆′
cd term is smaller in

the CW local case than assuming a flux surface function. Therefore the main question is if

the ”dip” in j̄(ψ) near ψ = 0 remains once 5D kinetic effects are taken into account self-

consistently, including the possible radial diffusion of fast particles as seen in the Tokamak

à configuration variable (TCV) [23], and in particular when the bounce frequency is non-

negligible with respect to the modulation frequency. This is actually a complex question

since the dip width is smaller than the ion banana width. Recently, this has been modeled

using fluid theory and including parallel/perpendicular diffusion of the electrons [24]. This

can lead to similar effective current density profiles as shown in Fig. (6a), depending on

parallel and perpendicular diffusion coefficients and on the slowing down time. This can

explain the decrease in stabilising efficiency when χ⊥ increases or when the slowing down

time increases.

From Eqs. (1) and (9), a simple figure of merit for the CD term is given by Icd/w
2
cd.

Since the CD term needs essentially to compensate for the Bootstrap drive at the maximum
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growth rate, which is usually obtained at w ≈ wmarg [15], we can use the condition:

−∆′
cd −∆′

≥ −∆′
cd ≥ ∆′

bs, (25)

to define the pessimistic figure of merit. However, since without ECCD we have −∆′ ∼ ∆′
bs

at marginal state, one cannot neglect the stabilising contribution from ∆′. Using f∆′ =

−∆′/∆′
bs, we can rewrite:

−∆′
cd ≥ (1 − f∆′) ∆′

bs. (26)

With ρs∆
′
bs = ρsβpabs/2wmarg and jbs = (p/Bp)(Lbs/Lp) [15], we obtain:

Fcd =
jcd
jbs

wmarg

wcd

η̃aux ≥ 0.1 (1 − f∆′). (27)

For the flux surface current assumption case, η̃aux ≈ 0.25 is constant for w ≤ wcd and we

have:

F fs
cd =

jcd
jbs

wmarg

wcd

≥ 0.4 (1 − f∆′). (28)

One sees that for the flux surface case it is also jcd/wcd which needs to be optimised, as in

the calculation using the effect on the “outer layer” [20], which also assumed flux surface

non-inductive current by construction. For ITER, we expect wmarg/wcd ≈ 0.5, thus we

obtain:

jcd
jbs

≥ 0.8 (1 − f∆′). (29)

f∆′ is actually related to the hysteresis parameter and is expected to be around 1/3-1/2 in

ITER, for βN ≈ 1.8, which means jcd/jbs ≥ 0.4 for the optimistic requirement. If wmarg <

wcd and modulation is able to lead to the 1/w dependence of η̃aux, we have 0.5η̃auxloc ≈

0.18/(wmarg/wcd) and then the figure of merit reduces to:

F loc,50%
cd =

jcd
jbs

≥ 0.55 (1 − f∆′), (30)

which is 30% better and where we have included the reduction of Icd due to the 50% on-

time. This shows that modulation is advantageous only in the case wmarg < 0.5 wcd and

if the current density can have such a poloidal dependence as in Eq. (21). Since it is

difficult to measure the effective contribution in experiments, at least a factor of 2 difference

is required in order to be able to distinguish between these two figure of merits (requiring

wmarg < 0.35 wcd). In ITER we should reach values of wmarg/wcd ≤ 0.5. It therefore follows

that experiments with and without modulation with wmarg/wcd < 0.5 are required.
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IV. CONCLUSION

In Conclusion, it has been shown that if flux surface current deposition profiles are as-

sumed, consistent with the usual assumption for ∆′ calculations and for the bounce-averaged

Fokker-Planck equations, no difference between modulated and CW CD cases is expected

with respect to the w-dependence. However the effective total driven current, at same in-

stalled power, favours the CW option. It is important to note that, once the bounce-average

calculations are projected on the helical flux surface coordinate, the deposition profiles are

not likely to be exactly of Gaussian form. However this should not lead to significant dif-

ferences as shown in the comparison with the box-type profiles. Moreover, the effective flux

surface profile, assuming an α-dependent deposition, is singular near the X-point, i.e. it is

negligible in a small region near the X-point. It is possible that other physical mechanisms

will ”fill” this dip of current near the X-point, like anomalous fast particle diffusion, and

strongly reduce the benefit of local modulation.

Finally it has been shown that experimental results with wmarg/wcd < 0.5 are required

in order to be able to discriminate between the 50% on-time local deposition assumption

used in Refs.[4], [6]-[9] and the present flux-surface exponential profile yielding η̃auxfs given

in Eq. (20). Consequently, specific experiments have to be designed to first measure wmarg

and then to broaden the current driven profile such that wcd > 2 wmarg.
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FIG. 1: Island helical flux surfaces ψ and the limiting ψ surfaces related to the box current profiles,

spanned with a deposition w/wcd < 1 assuming short on-time (ψ1), 50% on-time (ψ2) and CW

(ψ3).
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FIG. 2: ηaux(w/wcd), Eq. (16), using the box current density profiles given by Eq.(18) with

ψ0 = ψ1, ψ2 and ψ3, and using Eq.(19) (fs). The dashed line on top of the solid line for the

box(ψ1) case corresponds to the analytical result of Ref. 5 (Eq.(17) divided by (w/wcd)
2).
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FIG. 3: ηaux(w/wcd), Eq. (9), using the current density defined in Eq.(21) for the 50% on-time

(solid line) and CW cases (dashed line). The fit proposed in Ref. 21, Eq. (5), is also shown

(dashed-dotted line).
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FIG. 4: Comparison of the main results shown in Fig. 2 (fs) and Fig.3 (50% and CW), including

the effective total driven current factor Icd/IcdCW . The dotted lines correspond to the analytical

fits proposed in Eqs.(20), (22) and (23), respectively.

0

0.2

0.4

0.6

0.8

1

0 π/4 π/2 3π/4 π
m α

M
(α

)

A B C

D

FIG. 5: Various M(α) functions tested to calculate ηaux using Eq.(21). The profiles A and C

reproduce the results shown in Fig. 3, 50%-on and CW respectively. The profiles D yield similar

functions ηaux(w/wcd) as shown in Fig. 7 (solid lines with circles).
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FIG. 6: (a) Flux surface averaged current density profile for w/wcd = 0.5, Eq.(24), for the cases A,

B and C of Fig. 5, using Eq.(21), and for the fs profile, Eq.(19). (b) Weight function W (ψ) given

by Eq.(11).
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FIG. 7: ηaux(w/wcd) for the current density profiles shown in Fig.(6a), including a factor 0.5, 0.75

for A and B, and 0.87 for the solid line with circles (D cases of Fig. 5), accounting for the effective

total driven current.
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