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A novel method for inverting time-resolved line integrated interferometric plasma density mea-
surements is described. The method uses singular value decomposition of local density profiles from
Thomson scattering measurements obtained at low sampling rates in the same or equivalent plas-
mas to determine a set of orthogonal spatial basis functions which is well adapted to the physical
processes under investigation. The sought-for density profile is expanded into a limited series of
these functions and a solution is calculated by using a simple least-square fit method. The new
method is compared to the Minimum Fisher Information (MFI) inversion method using artificial
time-varying density profiles and is shown to be more accurate than MFI for reconstructing hollow
electron density profiles. The small number of computations required provides for a fast algorithm.
This method, which combines the high bandwidth of interferometer systems with the spatial ac-
curacy of Thomson scattering, is applied to invert interferometer measurements in the Tokamak à
Configuration Variable during normal and inverted sawtooth activity.

I. INTRODUCTION

Understanding and control of particle transport is an
important issue for thermonuclear fusion research since
it determines the transport of the reactants and reac-
tion products towards and away from the core of the
plasma. Particle transport studies in plasmas require
measurements of density profiles with high temporal and
spatial resolution. In fusion research devices, two dif-
ferent diagnostics are commonly used to perform these
measurements. Interferometer systems provide line in-
tegrated density measurements with high temporal res-
olution from the phase shift of a laser beam across the
plasma cross section. Thomson scattering systems pro-
vide local density measurements by detecting the scat-
tered laser light from a small volume of plasma. Al-
though Thomson scattering systems have the advantage
of providing local density profiles, their time resolution is
limited by the repetition rate of the laser system and is
usually inadequate for resolving fast transport phenom-
ena. In contrast, interferometer systems have high sam-
pling rates allowing fast changes of the line integrated
density to be measured. However, because they are line-
integrated they require solving an inverse problem for
calculating the local density profile. Due to access limi-
tations in tokamak devices, interferometer systems with
a single fan of probing beams are the practical choice1–3.
In this case, additional information about the structure of
the electron density is required to solve the inverse prob-
lem. One possibility is to require the solution to satisfy
some constraints. In the maximum entropy approach4,
the configurational entropy of the solution is minimized.
The Minimum Fisher Information (MFI) method is par-
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ticularly successful in inverting line-integrated interfero-
metric data2 by minimizing the Fisher Information5 of
the sought-for electron density distribution. The sec-
ond possibility is to reduce the degrees of freedom of the
problem by expanding the solution in series of orthog-
onal basis functions. In this approach, different func-
tional forms have been used for interferometer data, i.e.
Fourier-Bessel functions6 or Gaussian functions7. How-
ever, these basis functions give good results only for spe-
cific data sets. No general and physically justifiable func-
tional form exists for fitting electron density profiles in
tokamak plasmas.

In this article, we develop a novel approach to in-
verting line integrated interferometer data by expand-
ing the sought-for solution into a linear combination of
basis functions that are well adapted to the physics de-
termining the transport. The singular value decomposi-
tion (SVD) of the Thomson scattering measurements is
used to determine these basis functions. In the follow-
ing, we shall refer to the novel method, which combines
the advantages of interferometry with those of Thomson
scattering, as the Singular Value Decomposition Inver-
sion (SVD-I) method.

The remainder of the article is organized as follows. In
Sec. II, the far infrared interferometer and the Thomson
scattering system on the TCV tokamak are described. In
Sec. III, MFI and the expansion in basis function meth-
ods to perform interferometric inversion are presented. In
Sec. IV, the SVD-I method is developed and compared
to the MFI method using artificial data. Applications
to experimental interferometer data in sawtoothing dis-
charges in the Tokamak à Configuration Variable (TCV)
are discussed in Sec. V. Finally, the conclusions are
summarized in Sec. VI.
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FIG. 1: Far Infrared Interferometer on TCV. (a) Geometrical
arrangement of the 14 laser beams probing the plasma. Shown
as squares are also the 25 scattering volumes of the TCV
Thomson system. (b,c) Two extreme plasma shapes in TCV

II. EXPERIMENTAL SETUP

The TCV device8 has a major radius R0 = 0.89
m, minor radius a = 0.25 m and axial magnetic field
BT ≤ 1.54 T. The TCV vacuum vessel allows for plas-
mas with elongations up to 2.9. Plasma shaping is per-
formed with 16 independently controlled poloidal field
coils. The radiofrequency system provides 3 MW of EC
power for heating and current drive at the second cy-
clotron harmonic resonance (82.7 GHz) using the extraor-
dinary mode9.

Examples of an extremely elongated and an extremely
triangular plasma are shown respectively in Fig. 1(b) and
(c). The geometry of the magnetic flux surfaces is pro-
vided by the equilibrium reconstruction code LIUQE10.
For practical calculations a grid of 41 equispaced points
in the coordinate ρ is used, where we have defined

ρ =
√

Ψ−Ψ0

Ψa −Ψ0
(1)

Ψ0 is the poloidal flux at the magnetic axis and Ψa is
the poloidal flux at last closed flux surface. In Fig. 2, an
example of magnetic equilibrium reconstruction is given
for the TCV discharge No. 12819. In this figure, the
flux surfaces are shown at t = 0.7 s and correspond to
ρ = 0.1 · n, for n = 1, ..., 10.

On TCV, the electron density ne is obtained by inter-
ferometric and Thomson scattering measurements. The
far infrared interferometric (FIR) system3 uses an opti-
cally pumped CH2F2 laser with a wavelength λ = 214.6
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TCV discharge No. 12819, t=0.7s 

FIG. 2: Nested pixels corresponding to TCV magnetic flux
surfaces as calculated by the equilibrium code LIUQE. Shown
are magnetic flux surfaces corresponding to ρ = 0.1 · n for
n = 1, ..., 10. The electron density is assumed constant in
each pixel.

µm corresponding to the cutoff density nc ≈ 2.4 · 1022

m−3. The plasma is probed along 14 vertical chords of
diameter ≈ 20 mm in a single poloidal plane as shown
in Fig. 1(a). The phase shift ∆φi between a laser beam
passing through the plasma along a straight optical path
Li and a reference beam outside the plasma is measured
by a Mach-Zehnder interferometer using heterodyne de-
tection. The signal detectors (InSb hot electron bolome-
ters) provide a frequency response up 100 kHz. For all
experiments in TCV, the condition ne ¿ nc holds and
the phase shift ∆φi is proportional to the line integrated
electron density

∆φi = 6.0474 · 10−19

∫

Li

nedli, i = 1, ..., 14 (2)

where ne is expressed in m−3. At the selected wave-
length, only minor refraction effects are present, even at
high line averaged densities, ne ≈ 2.2 ·1020 m−2, and the
precision of the measurement is typically ∆ne ≈ 5 · 1017

m−2.
The TCV Thomson scattering system11 also provides

measurements of electron density profiles. Three nearly
co-linear laser beams (wavelength λ = 1.064 µm, repeti-
tion rate to 20 Hz.) are injected from the bottom of the
TCV vessel at the radial position R = 0.9 m. The light
scattered from 25 sampling volumes, shown in Fig. 1(a),
is collected with a spatial resolution of 40 mm in the
vertical direction and 3 mm in the radial and toroidal
directions. Sampling intervals down to 0.4 ms can be
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FIG. 3: Artificial local electron density measurements simu-
lating sawtooth activity in the plasma. Time evolution of the
electron density at different radial positions: (a) on axis; (b)
just outside the inversion radius; (c) electron density profiles
at different times indicated by different symbols in (a).

achieved in the so-called ’burst-mode’, when the three
lasers are triggered close together.

III. METHODS TO INVERT
INTERFEROMETRIC DATA

From the mathematical point of view, the calculation
of the local electron density profile ne from line integrated
measurements requires the solution of the system of inho-
mogeneous Fredholm equations of the first kind in Eqs.
2. This system is always underdetermined, since an infi-
nite number of measurements would be required to solve
the system exactly.

On TCV, strongly shaped plasma configurations are
produced so a simple Abel inversion12 of this system of
equations is not of much use. Under these circumstances,
additional information is required to obtain a local elec-
tron density. Provided that the plasma is not perturbed
by strong magnetohydrodynamic (MHD) activity, the
electron density is expected to be constant on a toroidally
symmetrical magnetic flux surface and depends on the
radial flux coordinate ρ alone, i.e. ne = ne(ρ).

The supplementary information provided by the flux
surfaces is introduced in the system of equations by
defining nested pixels, ρi ≤ ρ ≤ ρi+1, determined by
the geometry of the magnetic surfaces (shaded pixel in
Fig. 2), within which the electron density is considered
constant2,13. The electron density is discretized on this
grid of nested pixels and the system of integral equations
is thus transformed to a system of algebraic equations as

(ne)i =
∑

k=1,...,npix

Tik(ne)i, i = 1, ..., nl (3)

which can be arranged in matrix form
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FIG. 4: Singular value decomposition of simulated Thomson
scattering data. Thomson data are simulated by choosing a
temporal subset of the artificial electron density data in Fig.
3. The first three topos are shown on the left together with
the power distribution of the first twenty topo/chrono couples.
99.97% of the signal energy is stored in the first three topos.

ne = T · ne (4)

The matrix element Tik equals the length of the optical
path Li in pixel k. The line integrated measurements and
the density profile form respectively column vectors ne

of size nl (the number of line integrated measurements)
and ne of size npix (the number of pixels). In practical
situations, the number of line integrated measurements
is limited by plasma accessibility resulting in the condi-
tion nl < npix and therefore the number of solutions is
infinite.

One way to choose a physically sensible solution is to
choose a density profile such that the functional

F = χ2 + αR (5)

is minimized, where χ2 = (T ·ne−ne)T · (T ·ne−ne)
is the least-square term which provides the consistency
of the solution with the line integrated measurements, R
is a regularization functional and α is a positive definite
parameter. This parameter determines the weighting be-
tween the goodness of fit (represented by χ2) and the
requirements imposed on the solution by the functional
R.

One choice of R that is particularly successful in in-
verting interferometric data is the Fisher-Information
functional2

RFI =
∫

[n′e(ρ)]2

ne(ρ)
dρ (6)
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where n′e(ρ) is the derivative of the electron density
profile with respect to the radial flux coordinate ρ. In the
frame of soft x-ray tomography14,15, an efficient iterative
scheme to minimize the functional FFI = χ2 +αRFI has
been developed which utilizes the criterion χ2 ≈ nl to
determine the ”correct” value of the parameter α.

The second possibility to solve the system of Eqs. 3
is to reduce the degrees of freedom by expanding the
local electron density profile into a series of orthogonal
functions wk(ρ) such that

ne(ρ) =
∑

k=1,...,Kmax

ak · wk(ρ) (7)

which can be casted in the matrix form

ne = W · a (8)

Using the expansion in Eq. 8, the set of Eq. 3 can be
arranged in the matrix form

ne = T ·W · a (9)

where the coefficients a are the unknowns of the sys-
tem. The crucial issue in this approach is the choice of
the base functions wk(ρ) in Eq. 7 which results in the
condition nl ≥ npix. Provided that this condition is sat-
isfied, the system of Eqs. 9 becomes an over-determined
system for which a least squares solution can be deter-
mined by solving the set of normal equations16

(T ·W)T · (T ·W) · a = (T ·W)T · ne (10)

In the next section, Thomson scattering measurements
of electron density profiles are used to form the basis
functions, wk(ρ), for the expansion of the local electron
density profile as in Eq. 7.

IV. NEW INVERSION METHOD USING
SINGULAR VALUE DECOMPOSITION OF

THOMSON SCATTERING DATA

In tokamak transport experiments, the temporal evo-
lution of the electron density can be described by a time-
dependent linear combination of spatial eigenfunctions of
the operator that governs the dynamical response17,19.
Using these particular eigenfunctions, a small number
(typically from two to four) of components is usually
required to model the evolution of the electron density
profile17 and therefore they constitute well-adapted base
functions to reduce the dimensionality of the system of
Eqs. 7. The SVD is particularly effective in identify-
ing these basis functions from spatio-temporal data18.
The SVD has also been successfully used in the analy-
sis of soft x-ray19,20 and magnetic21 data and in image
processing22.

In this section, the SVD method and its fundamental
properties are presented with particular application to
Thomson scattering and interferometer data. Readers
interested in a more rigorous mathematical derivation of
the SVD can refer for example to Ref.23. The SVD-I
technique is developed and an example using artificial
electron density data is illustrated.

A. Theoretical background on SVD

The SVD provides a decomposition of a M×N matrix
Ne into three matrices U, S and V such that

Ne = U · S ·VT (11)

The matrices U and V are M ×M and N ×N unitary
matrices respectively, i.e. U · UT = V · VT = I. The
M ×N matrix S is diagonal, i.e. Skm = Skδkm, and the
elements Skm are either positive or equal to zero. Con-
ventionally, they are ordered in descending order such
that S1 ≥ S2 ≥ . . . ≥ SK , where K is equal to the rank
of the data matrix Ne.

This decomposition is the equivalent of the biorthog-
onal decomposition of the sampled signal19 in which the
data ne(ρj , tj) are decomposed into a set of orthogonal
spatial eigenmodes uk(ρj) composing the columns of U,
and orthogonal temporal eigenmodes vk(tj) composing
the columns of V, such that

ne(ρi, tj) =
∑

k=1,...,K

Skuk(ρi)vk(tj) (12)

where

M∑

i=1

uk(ρi)ul(ρi) =
N∑

j=1

vk(xj)vl(xj) = δkl. (13)

Following the nomenclature of Ref.19, the spatial eigen-
modes uk(ρ) will be called topos and the temporal eigen-
modes vk(t) will be called chronos. The weights Sk com-
posing the diagonal of S will be referred to as singular
values.

An important property of the SVD is its ability to
concentrate most of the signal features from many dy-
namical systems in a limited and usually small number
of biorthogonal components. For any L ≤ K, the trun-
cated expansion

y(xi, tj) =
∑

k=1,...,L

Skwk(xi)vk(tj) (14)

is the best approximation in the least-squares sense
of the data among all possible sums of L components.
In practice, the singular values are strongly ordered and
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FIG. 5: Inverted electron density profiles (solid lines) from
the simulated density profiles (dashed lines) shown in Fig. 3.
The MFI and SVD methods are compared for peaked and
hollow profiles.

the largest one exceeds the smallest one by a few orders
of magnitude. The relative amount of energy, which is
contained in each topo/chrono couple, is measured by the
dimensionless energy

pk =
Sk

2

E
(15)

where the global signal energy is defined as

E =
∑

k=1,...,K

(Sk)2 (16)

Another interesting property of the SVD method is the
occurrence of two identical and non-negligible singular
values in the presence of spatio-temporal symmetry of the
signal24. In plasma physics applications, this is observed
in the case of coherent phenomena such as rotating mode
structures related to MHD instabilities7,19,25.

B. Development of the SVD-I method and
comparison to MFI method

The basic idea of the SVD-I method to invert interfer-
ometric data is to expand the electron density profile in
Eq. 7 by using basis functions wk(ρ) which are obtained
from SVD analysis of Thomson scattering data. This
choice of basis functions is well adapted to the physics
determining the electron density profiles and therefore
reduces the number of significant coefficients, ak, in Eq.
9 allowing a least-square solution of the inverse prob-
lem as in Eq. 10. To illustrate the SVD-I method and

1

2

1.2

1.6

0 0.5 1 1.5
0

1

2

C
h
i2

t/τ       saw

(a)

(b)

(c)

[a
.u

.]
[a

.u
.]

FIG. 6: Artificial electron densities. Time evolution of the
electron density is shown as a dashed line, inversion of line
integrated measurement by minimizing the Fisher information
is shown as a light solid line, and inversion using the SVD is
shown as a dark solid line for different radial positions: (a)
on axis, and (b) just outside the inversion radius. Error of
inversion methods in ρ space is shown in (c) as a function of
time.

compare its performance to that of the MFI method, an
artificial set of local density data, n̂e, that simulates saw-
tooth activity has been generated (see Sec. V for details
on sawtooth activity). The temporal evolution of the ar-
tificial electron density is shown in Fig. 3(a,b) for two
different radial positions together with two profiles, Fig.
3(c), before and after the sawtooth crash. From these
artificial data sets the line integrated density, ne, is cal-
culated using Eq. 10. The transfer matrix T is obtained
from an actual TCV discharge. Reconstructed local den-
sity profiles ne are obtained from both SVD-I and MFI
method. The performance of the inversion techniques is
thus revealed from a final comparison between ne and
the initial n̂e input.

Thomson scattering measurements, which are used to
form the base functions, are simulated in this example
by choosing a temporal subset of n̂e.

To apply the SVD, Thomson scattering electron den-
sity profiles n̂e(ρi, tj) are arranged in matrix form as fol-
lows

Ne =




n̂e(ρ1, t1) · · · n̂e(ρ1, tN )
... · · · ...

n̂e(ρM , t1) · · · n̂e(ρM , tN )


 (17)

where M and N are respectively the number of spatial
and temporal Thomson scattering samples. On TCV,
the standard grid from the magnetic reconstruction code
LIUQE assumes M = 41. By solving for the SVD of this
matrix, as in Eq. 11, a set of orthogonal spatial eigen-
modes, uk(ρ), is formed from the topos. Because these
eigenmodes are determined from a direct local measure-
ment of the electron density, they carry with them infor-
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FIG. 7: Electron density profiles reconstructed using the SVD
method from artificial line-integrated measurements. Differ-
ent levels of noise are added on Thomson scattering profiles
used to calculate the basis functions.

mation about the spatial electron density distribution.
In Fig. 4, the first three topos are shown together with
the power distribution of the topos/chronos couples. As
can be seen in this figure, the singular values are strongly
ordered and 99.99% of the signal energy, as in Eq. 16,
is contained in the first three chronos/topos pairs. Here,
the local electron density is expanded as in Eq. 7 using
the first three topos as the base functions, wk(ρ), and a
simple least squares solution of Eq. 9 is found. A method
to determine the number of components that are needed
in the case of experimental data is presented in Sec. V.

In Figure 5, two artificial electron density profiles are
shown (dashed lines), before and after the sawtooth
crash, together with reconstructions from artificial line
integrated data. Figure 5(a) shows MFI method, Fig.
5(b) the SVD-I method. For the same set of artificial
data, the time evolution of the reconstructed electron
density using both methods is shown for two different ra-
dial positions in Fig. 6(a,b). The time evolution of the
artificial electron density is also shown as a dashed line for
comparison. In Fig. 6(c), the time evolution of the error
in the reconstruction defined as χ2 = (n̂e−ne)T ·(n̂e−ne)
is shown.

In the case of the peaked profile, a good reconstruction
is obtained with both methods for ρ ≤ 0.7. However, the
outermost region of the plasma, ρ ≥ 0.7, is more ac-
curately reconstructed by the SVD-I method. This is
due to the sensitivity of the MFI functional in Eq. 6
to boundary conditions. In the case of the hollow elec-
tron density profile, inversions obtained using the SVD-I
method are considerably more accurate than the MFI re-
constructed profiles. The SVD-I method yields an accu-
rate reconstruction through the entire plasma cross sec-
tion, whereas the MFI method fails in reconstructing the
strong density gradients in the region 0.4 ≤ ρ ≤ 0.7. In
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FIG. 8: Temporal evolution of line-integrated interferometric
measurements during normal (a,b) and inverted (c,d) saw-
teeth. Shown are measurements along a central chord (a,c)
and a chord just outside the sawtooth inversion radius (b,d).

this region, the smoothing imposed on the solution by
the Miminum-Fisher functional destroys features in the
electron density profile, while the SVD-I profile main-
tains these features. This strength of the SVD-I method
is obvious when we consider the time evolution of the χ2,
as can be seen in Fig. 6(c).

TABLE I: The performance of the MFI and SVD algorithms.
The CPU time on a PC workstation (Pentium 2, 600 MHz
processor, 1 GB of RAM) under MATLAB 6.0 is shown for
different numbers of time points.

Method 100pt 300pt 500pt

SVD 3.5 ms 5.1 ms 6.4 ms

MFI 15.9 s 42.9 s 73.9 s

The performance of the SVD-I method has also been
compared to that of the MFI method based on the run-
time necessary for both inversions. One of the great-
est strengths of the SVD-I method is the small num-
ber of computations required as compared to the MFI
method resulting in faster inversion process. In Table
I, a comparison of the time required to invert a set of
artificial electron density profiles using both methods is
shown. As the number of inversions is increased the time
required for the MFI method increases almost linearly,
while there is little change in the time required for the
SVD-I method. It is worth noting that the number of
inversions here is significantly less than the number of
points sampled in a single TCV shot, which can have an
average of 10, 000 temporal samples in the interferome-
ter measurement. Thus, the gain in computation time of
the SVD-I method is tremendous when applied to actual
data.
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C. The importance of errors in the Thomson data

For testing the effect of errors in the Thomson scatter-
ing measurements, reconstructions were produced from
artificial line integrated data with three different levels
of noise added on the simulated Thomson measurements:
2.5%, 5% and 10% respectively, the latter representing a
rather pessimistic case compared to available experimen-
tal data. Figure 7 displays reconstructed peaked and
hollow profiles for the different noise levels. As would be
expected, as the level of noise in the Thomson measure-
ments increases the level of noise in the reconstruction
increases as well. However, even for the worst case sce-
nario with 10% noise in the Thomson measurement, the
reconstruction still conveys the major features of the elec-
tron density profile. We should also note here that the
database of the local Thomson scattering profiles from
which the base functions are derived, needs to be rich
enough to contain sample profiles which are representa-
tive of all phases of the density profile evolution of in-
terest. It is also important to note that base functions
giving good reconstructions in a particular physical sit-
uation should not be expected to be suitable in different
situations.

V. APPLICATION TO TCV
INTERFEROMETRIC DATA

This section, which is not meant to be an exten-
sive physics study, illustrates applications of the SVD-I
method to experimental data during sawtooth activity in
TCV plasmas.

Sawtooth oscillations, named after the characteristic
shape of their soft x-ray time traces, were first observed
on the ST tokamak26 and are present in many tokamak

experiments. In ohmically heated plasmas, they consist
of periodic relaxations of the central electron tempera-
ture and density which develop when the safety factor
on axis drops below unity. The sawtooth behavior for
normal sawteeth is presented in Fig. 8(a,b) for TCV dis-
charge No. 15279. The temporal evolution of the line
integrated electron density, ne, is shown from a central
interferometer chord, Fig. 8(a), and from a chord out-
side the inversion radius (see definition below), Fig. 8(b).
Particle transport is ordinarily characterized by a nega-
tive (inward-directed) convective velocity that results in
a slow rise (sawtooth ramp) of the line integrated central
electron density ne0, Fig. 8(a), and moderately peaked
electron density profiles. The sawtooth ramp phase is fol-
lowed by a rapid drop (sawtooth crash) during which an
m/n = 1/1 MHD instability grows (as indicated by soft
x-ray tomographic reconstruction25) and particles are ex-
pelled from the central plasma region defined by ρ ≤ ρinv,
ρinv being the inversion radius.

Although sawteeth have been observed and studied in
all tokamaks, recent experiments have revealed new pecu-
liar features when electron cyclotron heating (ECH) and
electron cyclotron current drive (ECCD) are applied in
sawtoothing tokamak discharges. In particular on TCV,
with central ECH or ECCD, outward particle convection
is observed when a quasi continuous m/n = 1/1 mode
is present. This results in inverted sawteeth on the line
integrated central electron density and hollow electron
density profiles, whilst in the absence thereof, inward
convection between successive sawtooth crashes leads to
normal sawteeth25,27. The temporal evolution of line in-
tegrated interferometric data during inverted sawteeth is
presented in Fig. 8(c,d) for TCV discharge No. 18549.

The application of the SVD-I method to real data re-
quires the assessment of the number of components (NC)
that are needed in Eq. 7 to expand the electron density
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FIG. 10: SVD analysis od Thomson scattering measurements
for TCV discharge No. 18549. Shown are the topos corre-
sponding to the two largest singular values.

profile and whether or not these components can be re-
trieved from SVD analysis of Thomson scattering data.
Using TCV shot No. 18549 as an illustrative example,
we discuss a method to determine the NC by comparing
the SVD analysis of line integrated interferometric data
to the SVD analysis of Thomson scattering data.

To apply the SVD, line integrated data from the 14
interferometer channels ne(k, tj) are arranged in matrix
form as follows

ne =




ne(1, t1) · · · ne(14, tN )
... · · · ...

ne(1, t1) · · · ne(14, tN )


 (18)

where N is the number of temporal samples and k
refers to the channel number as shown in Fig. 1.

In Fig. 9(a-d), the first four topos are shown from
SVD analysis of the interferometric signals in the time
interval of interest t = 1.499 − 1.53 s in Fig. 8. The
power distribution of the singular values Sk, shown in
Fig. 9(e), reveals four significant components that con-
tain together more than 99.99% of the total signal energy.
The first topo, Fig. 9(a), corresponding to the largest
singular value, represents the contribution to the line
integrated data of the spatially-averaged electron den-
sity profile. The periodic peaking-flattening of the pro-
file during sawtooth activity is represented by the second
topo in Fig. 9(b). Analysis of the singular value distri-
bution shows two topos, corresponding to k = 3, 4 whose
singular values are close enough to suggest the presence
of rotating mode, Fig. 9(c,d). This is confirmed by the
corresponding chronos (not shown here) which are oscil-
lating at a frequency of ≈ 4 kHz and phase shifted by
π/2. This mode is localized at the positions of the in-
terferometer channels k = 6, 9, which cross the plasma
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FIG. 11: Temporal evolution of local electron density recon-
structed using the SVD method at different radial positions
during both normal and inverted sawteeth for two TCV dis-
charges shown in Fig. 8. (a,c) On-axis; (b,d) Just outside the
sawtooth inversion radius.

at opposite sides of the magnetic axis, and therefore ex-
hibits an m = 1 structure. This is also confirmed by soft
x-ray data as detailed in Furno et al.27. Topos/chronos
couples corresponding to higher singular values Sk > 4
are noise dominated and no coherent spatial and tempo-
ral structures are observed.

From this analysis, we can conclude that the SVD is
efficient in separating the dynamics of the sawtooth ac-
tivity (whose dominant structure is m = 0) from the rota-
tion of the m = 1 mode. In particular in the present case,
the sawtooth dynamics can be described by the truncated
expansion

ne(k, tj) =
∑

l=1,2

Slwl(k)vl(tj) (19)

where we have discarded topos/chronos couples that
are not poloidally symmetric, i.e. corresponding to
poloidal mode number m ≥ 1. Since we have assumed
a poloidally symmetric electron density distribution in
the development of the SVD-I method, the presence of
mode number m ≥ 1 would result in errors in the recon-
struction. Thus, the expansion in Eq. 19 provides the
poloidally symmetric component of the density that can
be inverted using the SVD-I method.

To assess whether or not the SVD of Thomson data can
provide the correct base functions to expand the electron
density, we apply the SVD to a set of Thomson scattering
profiles measured during the same discharge as detailed
in Sec. IV B. In Fig. 10, the first two topos obtained
from SVD analysis of 60 Thomson scattering profiles for
TCV discharge No. 18549 are shown. The first topo,
corresponding to the largest singular value, represents
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FIG. 12: Reconstructed electron density profiles using the
SVD method during normal (left) and inverted (right) saw-
teeth. Times correspond to different symbols in Fig. 11. (a,c)
Profiles before (circle symbols) and after (triangle symbols)
the sawtooth crash. (b,d) Profile during the sawtooth ramp
(square symbols) are compared with profiles as measured by
the Thomson scattering system (dashed line).

the spatially-averaged electron density profile. The sec-
ond topo represents the periodic flattening-peaking dur-
ing sawtooth activity. We can therefore conclude that
these two topos can be used to expand the electron den-
sity in Eq. 7 and a least-square solution can be found.

The same analysis has been performed for the normal
sawtooth case of Fig. 8 resulting in the identification
of two components describing the sawtooth dynamics.
Also in this case, the topos corresponding to the first two
largest singular values, as determined by SVD of Thom-
son scattering measurements, provide the correct basis
functions to model sawtooth activity.

The temporal evolution of local electron density recon-
structed using the SVD-I method is shown in Fig. 11 for
both normal (a,b) and inverted sawteeth (c,d). For the
same discharges, electron density profiles are shown in
Fig. 12 at times indicated by different symbols in Fig.
11. In Fig. 12(b,d), inverted electron density profiles
are compared with profiles as measured by the Thom-
son scattering system. In the normal sawtooth case, ne0

increases during the sawtooth ramp and then drops at
the sawtooth crash on a fast time scale (typically ≤ 100
µs) resulting in a flattening of the electron density pro-
file. After the sawtooth crash, the increase of ne0 results

from a particle flux in the direction of the density gra-
dient and hence from an inward particle convection, as
shown by the temporal evolution of the electron density
profile in Fig. 12(a,b). In the inverted sawtooth case,
the decrease in ne0 results from an outward particle flux
which results in a hollowing of the density profile fol-
lowed by a fast recovery at the sawtooth crash. In both
cases, the SVD-I method yields a reconstruction of the
electron density profile which is in excellent agreement
(≤ 5%) with the Thomson scattering profile as shown in
Fig. 12(b,d). This shows that the SVD-I method can be
successfully applied to experimental data.

VI. SUMMARY

The SVD-I inversion method combines the high band-
width of interferometer systems with the spatial accu-
racy of Thomson scattering. It uses SVD of temporally
sparse local electron density profile measurements from
a Thomson scattering system in the same or equivalent
plasmas to determine a set of orthogonal basis functions
which is well adapted to the physical processes under in-
vestigation. The sought-for density profile is expanded
into series of a small number of these functions and a
solution is calculated by using a simple least-square fit
method. An SVD analysis of line integrated interferome-
ter measurements allows the determination of the number
of components that are needed to reproduce the evolu-
tion of the density profile in a particular situation. This
information is used for optimizing the number of local
base functions to include in the inversion. Using artifi-
cial data, we have shown that the SVD-I method is more
efficient then the MFI method in reconstructing hollow
density profiles and provides a faster algorithm for in-
verting the data. The SVD-I method has been applied
to invert interferometric measurements from sawtoothing
TCV plasmas. The reconstructed profiles are in excellent
agreement with Thomson scattering measurements.
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