
A semi-Lagrangian code for nonlinear global

simulations of electrostatic drift-kinetic

ITG modes

M. Brunetti a,∗, V. Grandgirard b, O. Sauter a, J. Vaclavik a and

L. Villard a

aCentre de Recherches en Physique des Plasmas, Association EURATOM -

Confédération Suisse, EPFL, 1015 Lausanne, Switzerland.

bDRFC Association Euratom-CEA CEA Cadarache,

19108 St Paul-lez-Durance, France.

Abstract

A semi-Lagrangian code for the solution of the electrostatic drift-kinetic equations

in straight cylinder configuration is presented. The code, CYGNE, is part of a project

with the long term aim of studying microturbulence in fusion devices. The code has

been constructed in such a way as to preserve a good control of the constants of

motion, possessed by the drift-kinetic equations, until the nonlinear saturation of

the ion-temperature-gradient modes occurs. Studies of convergence with phase space

resolution and time-step are presented and discussed. The code is benchmarked

against electrostatic Particle-in-Cell codes.

Key words: semi-Lagrangian, electrostatic, ion-temperature-gradient, drift-kinetic,

conservation laws

PACS: 52.65, 52.35.Q, 52.25.F, 52.55

Preprint submitted to Elsevier Science 1 April 2004
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147939443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Energy and particles losses observed experimentally in tokamaks are usually

well above those predicted by collisional neoclassical rates. Even when magne-

tohydrodynamic modes have been stabilized, the free energy associated with

the spatial variations of macroscopic quantities, such as mean density and tem-

perature, gives rise to low frequency micro-instabilities which are commonly

considered as leading candidates to explain anomalous transport in fusion de-

vices. The theoretical model for studying the evolution of micro-instabilities in

plasmas is provided by the nonlinear energy-conserving gyrokinetic Maxwell-

Vlasov equations [1,2]. Since the solution of the gyrokinetic equations consti-

tutes a computational physics ‘Grand Challenge’, numerical simulations rely

in general on simplifying approximations, such as electrostatic plasmas or ra-

dially local calculations, which will be relaxed when sufficient supercomputer

capabilities will be available.

Gyrokinetic equations have been solved numerically using algorithms based on

Lagrangian and Eulerian descriptions of phase space dynamics. Particle in Cell

(PIC) simulations [3–9] use the Lagrangian point of view since they are based

on the numerical solution of ‘superparticles’ trajectories. The main drawback

of PIC codes is that sampling the physical particles with ‘superparticles’ leads

to the introduction of statistical noise which can be reduced but not eliminated

by optimized loading techniques [10]. On the contrary, Eulerian codes [11–

13], which evolve the distribution function over fixed points in phase space,

are not affected by statistical noise. Moreover, by construction, the Eulerian

∗ Corresponding author: ph. +41-(0)21-693 65 29, fax: +41-(0)21-693 51 76

Email address: maura.brunetti@epfl.ch (M. Brunetti).

2

approach allows one to get information on the particle distribution function in

all phase space coordinates on a structured grid, while the same is not easily

reconstructed by PIC codes. The drawback of Eulerian codes is that they

tend to be computationally expensive due to the use of this fixed grid and

they use much smaller time-step than Lagrangian schemes. A third technique,

commonly used by the meteorology community for weather forecast models,

combines the Eulerian and the Lagrangian points of view and for this reason

can be called ‘semi-Lagrangian method’ [14,15]: the distribution function is

computed on a fixed grid (as in the Eulerian approach) and it is evolved (as in

the Lagrangian approach) by tracing back in time the trajectories of a different

set of particles at each time-step, namely the set of particles located at the

grid points.

In this work, we present a semi-Lagrangian code for the solution of the nonlin-

ear global electrostatic drift-kinetic equations in a straight cylinder configura-

tion. Within this framework, the positions of the particles and of the guiding

centers are the same, finite Larmor effects being neglected, the electrons are

treated as adiabatic, and electromagnetic fluctuations are not included. The

conservation properties of the physical model provide us with a powerful tool

for monitoring the quality of the simulations. The code CYGNE (which is

the acronym for CYlindrical Global Nonlinear Electrostatic, and it is also the

French word for ‘swan’) has been developed in such a way as to preserve to

a good accuracy the conservation of the constants of motion until the micro-

instability driven by the ion temperature gradient saturates.

These results have been achieved using numerical tools which upgrade the

ones described in Ref. [16,17] in several aspects. The Bulirsch-Stoer method

(see [18] and Section 3) is used now for the calculation of the characteristics.

3

Non-equidistant meshes have been introduced in r and v‖ directions in order to

increase resolution where the main physics takes place while still preserving a

reasonable CPU time per processor. Diagnostics have been improved in order

to avoid spurious results related to unsufficient phase space resolution and

negative values in the distribution function.

The code has been benchmarked against electrostatic PIC codes. The numer-

ical schemes of CYGNE have been implemented having in mind the future

developments aiming at solving gyrokinetic equations in tokamak geometry.

The paper is organized as follows. In Section 2, the governing equations and

their conservation properties are described. The numerical implementation

used for the results presented in this paper are discussed in Section 3. The

validation of the code is reported in Section 4, and conclusions are given in

Section 5. Details of the numerical implementation and results obtained with

a three-time-level integration scheme will be presented in another paper [19].

2 Physical model

We consider a periodic cylindrical plasma of radius a and length L, which can

be viewed as the limiting case of a stretched torus. The plasma is confined by

a uniform magnetic field of the form ~B = B0 ~ez, where ~ez is the unit vector

along the z direction. In the following, ‖ denotes the direction parallel and ⊥

the direction perpendicular to ~B.

When finite Larmor effects are neglected, the distribution function f reduces to

a four-dimensional function, the (conserved) magnetic moment µ = v2
⊥/(2B0)

being strictly zero in this approximation. The equations of motion for the

4

guiding centers in cylindrical coordinates (r, θ, z) are given by

~̇R = v‖~ez +
~ez ∧ ~∇φ

B0
= v‖~ez + ~vGC (1)

v̇‖ =−
qi

mi
~ez · ~∇φ =

qi

mi
Ez (2)

where qi = Zie and mi are the ion charge and mass, respectively, and we have

used ~E = −~∇φ, ~E being the electric field. The drift-kinetic Vlasov equation

for the ion distribution function is

∂f

∂t
+ ~vGC · ~∇⊥f + v‖

∂f

∂z
+ v̇‖

∂f

∂v‖
= 0 (3)

where ~∇⊥ = (∂/∂r, (1/r)∂/∂θ, 0). Assuming adiabatic electrons bound to the

field lines and including the linearized polarization-drift term, the quasi-neu-

trality equation reads:

−~∇⊥ ·

[
n0(r)

B0Ωi

~∇⊥φ

]
+

en0(r)

Te(r)
(φ − φ̄) =

∫
f(r, θ, z, v‖, t) dv‖ − n0(r) (4)

where Ωi = qiB0/mi is the ion cyclotron frequency, n0 and Te are the initial

density and electron temperature profiles, and φ̄ is the average of the electro-

static potential along the magnetic field lines given by

φ̄(r, θ, t) =
1

L

∫ L

0
φ(r, θ, z, t) dz (5)

The Vlasov equation (3) is Hamiltonian and can be put into the form

df

dt
≡

∂f

∂t
+ {H, f} = 0 (6)

where {, } are the Poisson brackets and H is the Hamiltonian, H = miv
2
‖/2 +

qiφ. This equation expresses the fact that the distribution function f is a

Lagrangian invariant, i.e., it is constant along the particle trajectories. As

a consequence, the integral over the entire phase space of the distribution

5

function is a constant, as well as the integral of any arbitrary (smooth) function

of f , C(f), since

dC(f)

dt
≡

∂C(f)

∂t
+ {H, C(f)} = 0 (7)

Thus, the evolution of the distribution function f is constrained by an infinite

number of constants of motion, such as, for example, the number of particles,

N =
∫

f d~R dv‖, the entropy, S = −
∫

f ln f d~R dv‖, or the L2-norm, L2 =

∫
f 2 d~R dv‖.

The set of equations (3) and (4) are energy conserving. Indeed, starting from

the definition of the (perturbed) kinetic energy

Ekin
.
=

mi

2

∫
(f − fM) v2

‖ d~R dv‖ (8)

(where fM is such that
∫

fM dv‖ = n0) one can easily show that the total

energy given by Etot = Ekin + Efield is conserved, provided that the field

energy is given by

Efield
.
=

qi

2

∫
(f − fM) φ d~R dv‖ (9)

and the electrostatic potential satisfies Dirichlet boundary conditions in a,

φ|r=a = 0.

3 Numerical method

From a numerical point of view, it is important to note that Hamiltonian

equations like (3) are known to develop, during their nonlinear evolution,

increasingly smaller scales (see, e.g., [20] and references therein), which even-

tually cannot be resolved by the (finite) numerical grid. Thus, it is non-trivial

6

to simulate such Hamiltonian systems without introducing spurious dissipa-

tive effects. We have tried to take advantage of the fact that, as shown in

the previous section, in the absence of collisions there is an infinite number

of conserved quantities and to construct the code CYGNE in such a way as to

preserve a good control of these constants of motion (namely, the number of

ions N , the entropy S, the L2-norm L2, and, of course, the total energy Etot).

3.1 Splitting scheme for the Vlasov equation

Eq. (3) is solved using a time-splitting technique. The four-dimensional (4D)

equation (3) can be reduced to a sequence of two 2D equations:

∂f

∂t
+ ~vGC · ~∇⊥f =0 (10)

∂f

∂t
+ v‖

∂f

∂z
+ v̇‖

∂f

∂v‖
=0 (11)

A formal implicit solution of Eqs. (10)-(11) can be written as

f ∗(r, θ, z, v‖)= fn(r − ∆r, θ − ∆θ, z, v‖) (12)

fn+1(r, θ, z, v‖)= f ∗(r, θ, z − ∆z, v‖ − ∆v‖) (13)

where ∆r, ∆θ, ∆z and ∆v‖ are computed solving the equations of motion (1)-

(2). In this way, the integration of the Vlasov equation is reduced to successive

interpolation problems, which are solved using cubic splines. Denoting by r̂θ/2

the shifting over half the time-step ∆t/2 in r-θ directions (see Eq. (12)), by

ẑv‖ the shifting over ∆t in z-v‖ directions (Eq. (13)) and by Q̂ the solution of

the quasi-neutrality equation (4), the time integration scheme can be written

symbolically as

S1 =
r̂θ

2
Q̂ ẑv‖ Q̂

r̂θ

2
. (14)

7

The composite operator S1 provides second order accuracy in time if the fac-

tors r̂θ and ẑv‖ are second order accurate, as predicted by the Strang splitting

method [21]. In order to reduce the complexity of the scheme, the combination

of r̂θ/2 at the end of one time-step and at the beginning of the next can be

replaced by the single operator r̂θ, the order of accuracy remaining still two.

Note that, in straight cylinder configuration, Eq. (11) can be further splitted

into two 1D equations and one can adopt equally well a time integration

scheme of the form:

S2 =
v̂‖
2

ẑ

2
Q̂ r̂θ

ẑ

2
Q̂

v̂‖
2

(15)

where shifting in z and v‖ are performed over half the time-step, ∆t/2 and

with first order accuracy, being given by equations of the form z(t) = z(t +

∆t) − v‖(t + ∆t)∆t and v‖(t) = v‖(t + ∆t) − qiEz(t)∆t/mi. It can be shown

that S2 provides second order accuracy, using analogous arguments developed

in the Cheng and Knorr splitting method [22]. Indeed, the composite operator

S2, when applied to the distribution function, gives

fn+1(r, θ, z, v‖) = S2 fn(r, θ, z, v‖)

≡ fn(r̄, θ̄, z − [v‖ − Ez(t)∆t/2]∆t, v‖ − [Ez(t) + Ez(t + ∆t)]∆t/2) (16)

where r̄ and θ̄ are the feet of the characteristics in r-θ which are supposed to

be calculated to second order accuracy (see the next subsection). Eq. (16) is

equivalent to the following integrated equations:

z(t) = z(t + ∆t) − [v‖(t + ∆t) − Ez(t)∆t/2] ∆t (17)

v‖(t)= v‖(t + ∆t) − [Ez(t) + Ez(t + ∆t)] ∆t/2 (18)

It is easily seen that Eq. (18) provides a second order accurate scheme, since

8

v‖(t + ∆t) − v‖(t) = [Ez(t) + Ez(t + ∆t)] ∆t/2

=Ez(t + ∆t/2)∆t + O(∆t3) (19)

Eq. (17) corresponds to the following two equations:

z(t) = z(t + ∆t) − [v‖(t + ∆t) − Ez(t)∆t/2] ∆t (20)

z(t − ∆t) = z(t) − [v‖(t) − Ez(t − ∆t)∆t/2] ∆t (21)

the difference of which, using Eq. (19), results to be second order accurate in

time:

z(t − ∆t) − 2z(t) + z(t + ∆t) = [v‖(t + ∆t) − v‖(t)] ∆t

+[Ez(t − ∆t) − Ez(t)] ∆t2/2

= [Ez(t + ∆t) + Ez(t − ∆t)] ∆t2/2 + O(∆t3)

=Ez(t) ∆t2 + O(∆t3) (22)

3.2 Equations of motion

We have tested two different methods for solving the equations of motion

(1)-(2).

The first method, implemented for the sequence (15), is based on the Newton-

Raphson algorithm which is used to obtain the starting points of the particle

trajectories in r-θ plane, as described in detail in Ref. [15]. We solve the

following equation in Cartesian coordinates with second order accuracy in

time

~X(t + ∆t) − ~X(t)

∆t
= ~vGC(~X(t + ∆t/2), t + ∆t/2)) (23)

where ~X = (x, y), z being a parameter in this context. Instead of using lin-

ear interpolation for the guiding centre velocity ~vGC = (Ey/B0,−Ex/B0, 0) as

suggested in Ref. [15], we use quadratic splines, the electric potential being

9

calculated with cubic splines in our code. Since ~vGC is not known at time

t+∆t/2, a two-time-level predictor-corrector scheme is used: with the predic-

tor, the particle positions ~X(t + ∆t/2) are given with first order accuracy in

time. Thus, from the interpolated values of the distribution function at these

positions and the solution of the quasi-neutrality equation, one can obtain the

electric field components at time t + ∆t/2. Finally, with the corrector, these

values are used for the right-hand side of Eq. (23).

The second method, implemented for both the sequences (14) and (15), is a

modified version of the Bulirsch-Stoer method. In order to solve first order

differential equations of the form

ẇ(t) = g(w, t) (24)

where the function g on the right-hand side is known, one can use the powerful

Bulirsch-Stoer technique [18] which is based on the modified midpoint rule,

which advances the vector w(t) from t to t + ∆t by a sequence on n substeps

h = ∆t/n, and rational function extrapolation.

In our problem, the equations of motion in r and θ directions are solved in

Cartesian coordinates and have the form of Eq. (24)

ẋ(t) =
Ey(x, y, t)

B0
, ẏ(t) = −

Ex(x, y, t)

B0
(25)

Thus, in our case, g corresponds to the electric field components which are de-

termined numerically, requiring (i) to calculate the distribution function, (ii)

to solve the quasi-neutrality equation and (iii) obtaining ~E = −~∇φ. Perform-

ing all these operations at every intermediate time t+h within each time-step

H = ∆t would be numerically too expensive. For this reason, we cannot use

the modified midpoint rule but the following first-order scheme. Denoting by

10

zm (with m = 0, . . . , n) the intermediate approximations of w in Eq. (24)

which march along in steps of h, the formulas are

z0 = w(t + H)

z1 = z0 − hg(t, z0)

zm+1 = zm−1 − 2hg(t, zm), ∀m = 1, 2, . . . , n − 1

w(t)∼wn =
1

2
[zn + zn−1 − hg(t, zn)] (26)

Thus, in this scheme the intermediate approximations are calculated explicitly

by interpolating g(zm, t) (since these functions are known in CYGNE only on

the grid points). We use then rational functions to extrapolate the values

obtained with different n to the limit h → 0.

In the case of sequence (14), we need to solve the second-order equation z̈ =

qiEz/mi. In order to do this in CYGNE, modifications analogous to those

performed to the modified midpoint method must be applied to the Stoermer’s

rule [18], since the knowledge of Ez at intermediate times is numerically too

expensive.

Despite the fact that the Bulirsch-Stoer method is formally first order accurate

in time (without considering the extrapolation procedure), we have found that

it gives more accurate results with respect to the Newton-Raphson method

(with predictor-corrector), as we will show in the next section. A possible ex-

planation relies on the spatial accuracy of these two methods. Indeed, while

the Bulirsch-Stoer technique requires only the calculation of the first deriva-

tives of the potential field φ, the Newton-Raphson algorithm is based on the

values of both the first and the second derivatives of φ, the latter being cal-

culated with linear splines. Moreover, the Bulirsch-Stoer method is slightly

faster as shown in Table 1, and the required memory is half that used in the

11

predictor-corrector scheme which needs to store the distribution function at

two different times. The latter property is to be taken into consideration when

we will move to a 5D distribution function to include finite Larmor radius ef-

fects.

3.3 Quasi-neutrality equation

Eq. (4) is Fourier transformed in θ and z, and it is solved along r by a standard

finite element procedure where the electrostatic potential is discretized as a

sum over a finite element (cubic spline) basis Λα(r) as

φmn(r, t) =
∑

α

ϕα(t) Λα(r) (27)

where φmn are the Fourier components of φ. The spline coefficients ϕα(t) are

determined by the following matrix equation

∑

β

Aαβ ϕβ(t) = bα(t) (28)

Aαβ
.
=
∫ a

0

[
n0

ΩiB0
Λ′

αΛ′
β +

(
m2n0

r2ΩiB0
+ (1 − δn0)

en0

Te

)
ΛαΛβ

]
r dr (29)

bα(t)
.
=
∫ a

0
[nmn(r, t) − n0(r)] Λα r dr (30)

where Λ′
α = dΛα/dr, δmn is the Kronecker symbol and nmn(r, t) are the Fourier

components of the ion density ni =
∫

f dv‖. While bα must be calculated at

every time-step, the matrix Aαβ, which is time-independent, can be calculated

only at initialisation. The matrix Aαβ is real, symmetric and positive definite.

Thus, Eq. (28) can be solved with standard methods of linear algebra.

12

3.4 Initial and boundary conditions

The radial profiles for the ion density n0, the ion temperature Ti and the

electron temperature Te are input functions and are computed at initialisation

from the derivative with respect to r given by

d

dr
lnG = −

κG

a
cosh−2

(
r − r0

∆rG a

)
(31)

where G = n0, Ti, Te. In Eq. (31), r0 is a point inside the cylinder, ∆rG and

κG are input parameters. Eq. (31) is defined such that it is easy to control

the driving term of the micro-instability to define a localised maximum κG at

r = r0 in the logarithmic derivative of the plasma profiles.

The plasma is initialised at time t = 0 by perturbing a Maxwellian distribution

function fM(r, v‖) = n0(mi/2πTi)
1/2 exp(−miv

2
‖/(2Ti)) with a superposition of

modes with random phases and amplitudes

f(r, θ, z, v‖, 0) = fM(r, v‖)

[
1 + εh(v‖)g(r)

∑

n,m

αnm cos(2πnz/L + mθ + 2πα′
mn)

]

(32)

where αmn, α′
mn are random numbers between 0 and 1, ε is the perturbation

amplitude, 1 ≤ n ≤ nmax, 1 ≤ m ≤ mmax (ε, nmax and mmax being input

parameters), h(v‖) and g(r) are Gaussian functions centered at v‖ = 0 and

r = r0, respectively. The ion distribution function is assumed periodic in θ

and z directions, while in r and v‖ directions fixed boundary conditions are

considered, i.e. f = fM at r = a and v‖ = ±vmax, where vmax is the cutoff

velocity. The same boundary conditions are considered for the calculation of

the trajectories: z and θ are periodic, while r and v‖ are such that if |v‖| > vmax,

we set |v‖| = vmax and if r > a, we set r = a.

13

We require that the electric field is uniquely defined and finite on the axis

r = 0, which means to impose the following boundary conditions for the

electric potential

φ′
m=0,n|r=0 = 0, ∀n (33)

φmn|r=0 = 0, ∀m 6= 0, ∀n (34)

Moreover, we choose that there is not tangential electric field on the outer

boundary giving

φmn|r=a = 0, ∀(m, n) 6= (0, 0) (35)

In addition, we set the zero of the potential at r = a, thus φm=0,n=0|r=a = 0.

3.5 Preservation of the positivity of f

As discussed at the beginning of this section, Hamiltonian systems develop

increasingly smaller scales as time evolves. Eventually, these scales become

smaller than the grid size and cannot be resolved correctly. As a consequence,

regions with negative distribution function can appear. Negative values in f

are due to high order interpolation schemes (as cubic splines used in CYGNE),

which have the tendency to produce overshoots and undershoots when fine-

scale filamentation develops unless some additional averaging (dissipative)

procedure is applied [23]. Different methods have been developed in the past

to get rid of these problems, examples being the ‘piecewise parabolic’ [24] or

the ‘positive flux conservative’ method [25], which impose the preservation of

monotonicity and/or positivity on f . The reason why we do not use them in

CYGNE is that this code is only a first step toward more complex geometry

and physics, and a ‘physical cutoff’, given by the Larmor radius ρ, will appear

14

in the system when we will move to gyrokinetic equations. Thus, it is expected

that scales in r and θ directions smaller than ρ will be physically eliminated

without introducing spurious numerical diffusion.

In CYGNE we have implemented another method to ensure the positivity of

f , which does not introduce any additional dissipation. This is performed by

interpolating the function (ln f) instead of f itself. This is accurately obtained

with cubic spline interpolation, for example in the radial direction:

ln f(r, θ, z, v‖, t) =
∑

α

c̃α(θ, z, v‖, t) Λα(r). (36)

We then use c̃α to interpolate the distribution function at the actual particle

position r∗ and to calculate ln f(r∗, θ, z, v‖, t). Inverting the logarithm now

gives the desired values of f(r∗, θ, z, v‖, t) which, by construction, are pos-

itive. Note that this scheme does not introduce any additional dissipation,

being just another way of performing cubic spline interpolation, as shown in

Fig. 1a-b, where the relative error in the entropy and the L2-norm are plotted

against time for cases without (solid line) and with (dashed line) logarithmic

interpolation.

This method has another practical advantage. When the smaller scales ap-

proach the grid size and the resolution is not sufficient to correctly resolve

them, the constants of motion can continue to be conserved due sometimes

to a significant proportion of negative f values. With this new interpolation

technique, imposing positive f values, the constants of motion are no longer

conserved when the simulation is dominated by features with scales smaller

than the grid size. Thus, the quality of the simulations is assured by looking

simply at the time evolution of the constants of motion. This is easier and

more systematic than by looking, for example, at the evolution of the spectra

15

of f to understand if unresolved small scales are present in the system.

3.6 Improved spatial accuracy

As mentioned before, it turns out that in our case the appearance of negative

f values is related to the loss of sufficient spatial accuracy to resolve small

scales features. An improvement has been obtained by using the Bulirsch-

Stoer algorithm, however this is not sufficient. In order to be able to increase

the spatial accuracy without increasing the required memory size and CPU

time per processor, we have generalized cubic splines to non-uniform grids, as

detailed in the Appendix. This is performed for the meshes in the non-periodic

directions, r and v‖. In general, a proper choice of the mesh points distribution

allows us to obtain the same physical results as those obtained with a uniform

grid with the double of points, which results in a gain of more than a factor of

two in both memory size and CPU time, as shown in Table 2. We will show a

comparison in the next section.

3.7 Parallelisation strategy

Since most of the computing time is spent on evolving the distribution func-

tion, we have distributed the values of f amongst the processors as follows.

During the advection in r-θ (see Eq. 12), each processor stores values of f for

all r and θ grid points for a different subset of z and v‖, which are treated

as parameters in this context, and viceversa during the advection in z-v‖ (see

Eq. 13). Communications between processors are needed to move between the

two kinds of storage and to calculate the ion density used in the right-hand

16

side of the quasi-neutrality equation (which is not parallelised). The code is

written in fortran 90 and it is parallelized using MPI library.

With relatively large grid, we are able to scale well up to 64 processors on

different machines [19]. A typical run with phase space resolution of Nr =

Nz = 64, Nθ = 256, Nv‖ = 32, non-equidistant meshes and time-step ∆t Ωi =

0.2 requires 80 h CPU time up to the saturation phase of the instability,

using 16 processors on Janus, a cluster of 25 ES45 HP-Compaq nodes with

Quadrics interconnections of the Ecole Polytechnique Fédérale de Lausanne.

The required memory can be estimated considering that the largest array

(that is, the distribution function) has size NrNθNzNv‖/Nproc, where Nproc

is the number of processors, and that we store four real 3D global arrays of

size NrNθNz (namely, the electric potential and the three components of the

electric field) and two complex 3D arrays during the solution of the quasi-

neutrality equation. Thus, the memory size per processor is roughly given

by

M ' NrNθNzNv‖/Nproc + 8NrNθNz (37)

During communications between processors, which require transposition of

the 4D array, the memory requirements are nearly double, ' 2M when the

first term in Eq. (37) is dominant. As an example, Table 2 shows the memory

requirements per processor with and without communications in the case of

Nproc = 4. In order to reduce both communications and required memory, a

method to avoid the transposition of the distribution function is under study.

17

4 Validation of the code

The code is validated in two different ways. First, we compare CYGNE results

with those obtained with electrostatic PIC codes which solve the same equa-

tions. Second, we study the convergence of the physical quantities, such as the

radial heat flux and the energy, as phase space resolution increases.

4.1 Comparisons with PIC codes

CYGNE has been benchmarked quantitatively against two PIC codes: the lin-

ear code LORB5 [26] and the nonlinear code ORB5 [8].

The parameters for the comparison case are listed in Table 3, where ρS =
√

Te(r0)/mi/Ωi, Ti0 = Ti(r0) and vthi0 =
√

Ti0/mi. Growthrates and frequen-

cies of the ITG modes obtained with CYGNE (crosses) and with LORB5 (cir-

cles) are shown in Fig. 2 (frames (a) and (b), respectively), for different values

of the mode numbers (m, n) in θ and z directions. The results are in good

agreement.

For the nonlinear regime, Fig. 3 shows the time evolution of the field energy.

Fourier components of the potential field φm,n=0(r), ∀m, are set to zero because

the code ORB5 does not treat these modes. It can be seen that the saturation

level of Efield obtained with CYGNE (solid line) agrees within a factor two

with the level obtained with ORB5 (dashed line).

18

4.2 Convergence studies

For this second validation of the code, we use parameters as in the comparison

case in Table 3 except for the value of the perturbation amplitude, which is

set to ε = 10−3 in order to shorten the linear regime during which, as we will

show below, physical quantities converge much faster than in the nonlinear

phase. Moreover, we include Fourier components φm,n=0(r), ∀m. We use a non-

equidistant mesh in r and v‖ directions, the Bulirsch-Stoer method described

in the previous section (with sequence (14) for the time splitting) and the

logarithmic interpolation for f .

We study the convergence of the field energy, the kinetic energy and the radial

heat flux, given by

Q =
mi

2

∫
v2
‖ ~vGC · ~er f d~R dv‖ (38)

with the number of points in phase space keeping a fixed time-step, ∆t Ωi =

0.2.

The time evolution of these three physical quantities is shown in Fig. 4,

where the solid line corresponds to (Nr, Nθ, Nz, Nv‖) = (64, 256, 64, 32), the

dashed line to (128, 256, 32, 32) and the dotted-dashed line to (32, 128, 32, 32).

In Fig. 4, we show for comparisons also the results obtained using the Newton-

Raphson algoritm and predictor-corrector with resolution (32, 128, 32, 32) (dot-

ted line) and those obtained using equidistant meshes in r and v‖ with the

same resolution, (32, 128, 32, 32) (dotted line and ’+’ markers).

In Fig. 5, we show the relative error in the constants of motion, namely the

19

number of ions (frame (a)), the total energy 1 (frame (b)), the entropy (frame

(c)) and the L2-norm (frame (d)) for the same simulations considered in Fig. 4.

As can be seen from Figs. 4-5, while convergence is reached during the linear

regime and the turnover phase of the radial heat flux, enhanced resolution is

required to describe the regime of nonlinear saturation, as appears from the

time evolution of the kinetic energy. The constants of motion are conserved

with a good accuracy until (unresolved) small scales develop, as discussed in

the previous section. The time at which the conservation is no longer satisfied

is delayed as resolution increases. From Figs. 4-5, the advantage of using non-

equidistant meshes is evident (compare dotted-dashed line with dotted line

and ’+’ markers): with the same number of points we gain in accuracy in the

conservation of all constants of motion. Finally, from these two figures the

Bulirsh-Stoer method turns out to give slightly more accurate results than

those obtained with the Newton-Raphson algoritm (compare dotted-dashed

line with dotted line).

In Figs. 6-7, the time evolution of the physical quantities and of the relative

error in the constants of motion are shown for the phase space resolution corre-

sponding to the solid line of Figs. 4-5, (Nr, Nθ, Nz, Nv‖) = (64, 256, 64, 32), and

different time-steps, ∆t Ωi = 0.2 (solid line), ∆t Ωi = 0.5 (dashed line) and

∆t Ωi = 1 (dotted-dashed line). The time-step in semi-Lagrangian codes is not

restricted by the Courant condition, ∆t < ∆x/ max |U |, but by the deforma-

tional Courant number, ∆t < (max(|∂U/∂x|))−1, where U is the velocity field

component along the x coordinate, which in general is less restrictive [14,15].

1 The relative error in the total energy is computed as ∆Etot(t)/∆Eavg(t), where

∆E = E(t) − E(0) and ∆Eavg = (|∆Efield| + |∆Ekin|)/2.

20

We have seen that in our problem small time-steps are required during the

nonlinear phase, because of the appearance of steep gradients in the velocity

field, while during the linear phase larger time-steps can be used.

Finally, we show in Fig. 8 the cross-section of the distribution function in the

r-θ plane at time t Ωi = 1200, that is during the nonlinear saturation regime.

Filaments appear in the distribution function which become finer and finer

as time evolves, and eventually cannot be resolved correctly by the (finite)

grid resolution of the simulation. In order to study the saturation phase for

a longer time, we need to move to a more complete physical model given by

gyroaveraged equations. In this case, it can be expected that scales smaller

than the ion Larmor radius in the perpendicular direction to the magnetic

field (r, θ directions) will be smoothed out, thus avoiding the problem of the

development of infinitesimally small scales as we found in the present drift-

kinetic model.

5 Conclusions

CYGNE is a massively parallel code which uses the semi-Lagrangian approach

to solve the drift-kinetic equations in a straight cylinder configuration. With

this code we are able to follow the development of the ion temperature gradient

driven instability until the nonlinear saturation occurs. The quality of the

global nonlinear simulations is measured by checking the evolution of the

constants of motion which are found to be conserved with a good accuracy

when sufficiently high phase space resolution is used. As time evolves, small

scales appear in the plasma which eventually become smaller than the grid

size and cannot be resolved correctly. We have not used diffusive interpolation

21

methods to regularize the smallest structures, because CYGNE is only a first

step toward a more general gyrokinetic formulation. When finite Larmor radius

effects will be included, a physical cutoff appears in the system and it can be

expected that scales in r and θ directions smaller than the Larmor radius

will be smoothed out, allowing us to study cases deeper into the nonlinear

saturation regime of ITG modes.

Acknowledgments

We are grateful to X. Garbet, one of those who initiated this project. We

would like to thank A. Bottino for LORB5 and ORB5 data results and T.M.

Tran for useful discussions on the performance of the code. Simulations were

performed on the parallel servers Eridan (SGI Origin3800) and Janus of the

Ecole Polytechnique Fédérale de Lausanne. This work was partly supported

by the Swiss National Science Foundation.

A Cubic splines for non-equidistant meshes

In order to generalize cubic splines to the case of non-equidistant meshes, we

start from the recurrence relation for constructing spline functions Bi,k [27]:

Bi,k(x) =
x − xi−2

xi+k−3 − xi−2
Bi,k−1(x) +

xi+k−2 − x

xi+k−2 − xi−1
Bi+1,k−1(x) (A.1)

22

where Bi,1(x) = 1 if xi−2 ≤ x ≤ xi−1 and 0 otherwise. If we call hi = xi −xi−1,

we obtain for the linear spline basis the following expression

Bi,2(x) =

(x − xi−2)/hi−1 if xi−2 ≤ x ≤ xi−1

(xi − x)/hi if xi−1 ≤ x ≤ xi

0 otherwise

for the quadratic spline basis:

Bi,3(x) =

(x − xi−2)
2/(hi−1h12) if xi−2 ≤ x ≤ xi−1

(xi − x)(x − xi−2)/(hih12)+

+(xi+1 − x)(x − xi−1)/(hih23) if xi−1 ≤ x ≤ xi

(xi+1 − x)2/(hi+1h23) if xi ≤ x ≤ xi+1

0 otherwise

where h12 = hi−1 + hi and h23 = hi + hi+1, and for the cubic spline basis:

Bi,4(x) =

(x − xi−2)
3/(hi−1h12h123) if xi−2 ≤ x ≤ xi−1

(xi − x)(x − xi−2)
2/(hih12h123)+

+(xi+1 − x)(x − xi−2)(x − xi−1)/(hih23h123)+

+(xi+2 − x)(x − xi−1)
2/(hih23h234) if xi−1 ≤ x ≤ xi

(xi+1 − x)2(x − xi−2)/(hi+1h23h123)+

+(xi+2 − x)(xi+1 − x)(x − xi−1)/(hi+1h23h234)+

+(xi+2 − x)2(x − xi)/(hi+1h34h234) if xi ≤ x ≤ xi+1

(xi+2 − x)3/(hi+2h34h234) if xi+1 ≤ x ≤ xi+2

0 otherwise

23

where h34 = hi+1 + hi+2, h123 = hi−1 + hi + hi+1 and h234 = hi + hi+1 + hi+2.

A 1D function g(x) can be written in terms of the cubic spline basis Bi,4(x)

for all x ∈ [x0, xN] as:

g(x) =
N+1∑

i=−1

ciBi,4(x) (A.2)

The coefficients ci are computed solving the following system of equations:

g(xj) =
N+1∑

i=−1

ciBi,4(xj) j = 0, . . . , N (A.3)

The system (A.3) can be written in the following matricial form:

B

(N+3)×(N+1)

c−1

...

cN+1

=

g(x0)

...

g(xN)

Thus, there are (N + 1) equations and (N + 3) unknowns. Imposing periodic

or non-periodic boundary conditions gives rise to other two equations.

A.1 Non-periodic boundary conditions

We suppose that the first derivate is known at the boundaries. Derivatives of

spline functions satisfy the following relation [27]

d

dx

N+1∑

i=−1

ciBi,k(x)

 =

N+2∑

i=−1

(k − 1)
ci − ci−1

xi+k−3 − xi−2
Bi,k−1(x) (A.4)

where c−2 = cN+2 = 0. Eq. (A.4) can be written as:

24

d

dx

N+1∑

i=−1

ciBi,k(x)

=

N+1∑

i=−1

(k − 1)ci

(
Bi,k−1(x)

xi+k−3 − xi−2

−
Bi+1,k−1(x)

xi+k−2 − xi−1

)

=
N+1∑

i=−1

ciB̃i,k−1(x) (A.5)

where

B̃i,3(x) = 3

(x − xi−2)
2/(hi−1h12h123) if xi−2 ≤ x ≤ xi−1

(xi − x)(x − xi−2)/(hih12h123)+

+(xi+1 − x)(x − xi−1)/(hih23h123)+

−(x − xi−1)
2/(hih23h234) if xi−1 ≤ x ≤ xi

(xi+1 − x)2/(hi+1h23h123)+

−(xi+1 − x)(x − xi−1)/(hi+1h23h234)+

−(xi+2 − x)(x − xi)/(hi+1h34h234) if xi ≤ x ≤ xi+1

−(xi+2 − x)2/(hi+2h34h234) if xi+1 ≤ x ≤ xi+2

0 otherwise

Using Eq. (A.4) (or, equivalently, Eq. (A.5)), we find that the following rela-

tions hold at the boundaries:

25

g′(x0) =
3

h0 + h1

(
c0 − c−1

x1 − x−2

h1 +
c1 − c0

x2 − x−1

h0

)

=
3

h0 + h1

[
c0

(
h1

x1 − x−2
−

h0

x2 − x−1

)
+

c1h0

x2 − x−1
−

c−1h1

x1 − x−2

]

= c0F0 + c1F1 + c−1F−1 (A.6)

g′(xN) =
3

hN + hN+1

(
cN − cN−1

xN+1 − xN−2
hN+1 +

cN+1 − cN

xN+2 − xN−1
hN

)

=
3

hN + hN+1
[cN

(
hN+1

xN+1 − xN−2
−

hN

xN+2 − xN−1

)

+
cN+1hN

xN+2 − xN−1
−

cN−1hN+1

xN+1 − xN−2
]

= cNFN + cN+1FN+1 + cN−1FN−1 (A.7)

which define the constants F−1, F0, F1, FN−1, FN and FN+1.

Using Eqs. (A.6)-(A.7) and the values of the cubic spline basis listed in Table 4,

the (N + 3, N + 3) matricial system to be solved becomes 2 :

F−1 F0 F1

D
(1)
−1 D

(0)
0 D

(−1)
1 0

D
(1)
0 D

(0)
1 D

(−1)
2

. . .
. . .

. . .

0 D
(1)
N−1 D

(0)
N D

(−1)
N+1

FN−1 FN FN+1

×

c−1

c0

...

...

cN

cN+1

=

g′(x0)

g(x0)

...

...

g(xN)

g′(xN)

(A.9)

2 The coefficients ci, for i = 0, . . . , N , are computed solving the following system

of equations

g(xj) =

N+1∑

i=−1

ciBi,4(xj) = cj−1D
(1)
j−1 + cjD

(0)
j + cj+1D

(−1)
j+1 (A.8)

where factors D
(−1,0,1)
j are defined in Table 4.

26

If we permute the matrix to keep the boundary conditions in the last two

rows, Eq. (A.9) reads:

Ã

u′

v′

=

u

v

where:

u′ = (c0, · · · , cN)t

v′ = (cN+1, c−1)
t

u = (g(x0), · · · , g(xN))t

v = (g′(xN), g′(x0))
t

(A.10)

and

Ã =

A γ

λ
ξ1 ξ2

ξ3 ξ4

(A.11)

where:

· A is the (N + 1) × (N + 1) tridiagonal matrix :

D
(0)
0 D

(−1)
1

D
(1)
0 D

(0)
1 D

(−1)
2

...
...

...
D

(1)
N−2 D

(0)
N−1 D

(−1)
N

D
(1)
N−1 D

(0)
N

· λ is the 2 × (N + 1) matrix :
(

0 ··· 0 FN−1 FN

F0 F1 0 ··· 0

)

· γ is the (N + 1) × 2 matrix :
(

D
(1)
−1 0 ··· 0

0 ··· 0 D
(−1)
N+1

)t

· δ =
(

ξ1 ξ2
ξ3 ξ4

)
=
(

FN+1 0
0 F−1

)

The system (A.10) can be solved with the same method described in Ref. [15]

using optimised library subroutines.

27

A.2 Integration of cubic splines

In order to calculate integrals of cubic splines in the case of non-equidistant

meshes, the following relations are needed

∫ xi−1

xi−2

Bi,4(x)dx =h3
i−1/(4h12h123) (A.12)

∫ xi+2

xi+1

Bi,4(x)dx =h3
i+2/(4h34h234) (A.13)

For
∫ xi

xi−1
Bi,4(x)dx and

∫ xi+1
xi

Bi,4(x)dx, Gaussian quadrature can be used. In-

deed, for a polynomial of degree three, results obtained with a 2-point Gaussian

quadrature are exact 3 . By the linear transformation

t = [2x − (xa + xb)]/(xb − xa), x = [(xb − xa)t + (xa + xb)]/2 (A.14)

the interval [xa, xb] can be transformed to [−1, 1] and one obtains:

∫ xb

xa

f(x)dx =
xb − xa

2

∫ 1

−1
f(t)dt

=xc[f(xm − xctG) + f(xm + xctG)] (A.15)

where xm = (xa + xb)/2, xc = (xb − xa)/2 and tG is the Gaussian point

tG = 0.577350269189626 (for the 2-point formula, the Gaussian weigth is

equal to 1).

3 For the integration of the product of two Bs, 4-points Gaussian quadrature is

needed, and the same rule can be generalized to integrate polynomials of higher

order.

28

A.3 Dirichlet boundary conditions

Dirichlet boundary conditions are imposed to solve the quasi-neutrality equa-

tion (4) as specified in Eqs. (34)-(35). Only the three splines nearest to the

boundary need to be changed. The transformation is such that the sum of

the basis functions at any given point remains equal to one 4 . In the case of

non-equidistant meshes, the transformation on the inside boundary is

B̂−1,4

B̂0,4

B̂1,4

=

E0 0 0

C0 1 0

A0 0 1

×

B−1,4

B0,4

B1,4

(A.16)

and on the outside boundary is:

B̂N−1,4

B̂N,4

B̂N+1,4

=

1 0 AN

0 1 CN

0 0 EN

×

BN−1,4

BN,4

BN+1,4

(A.17)

where:

4 One can easily check that this condition is satisfied by Bi,k. For k = 4, we have

indeed:

Bi,4(xi) + Bi−1,4(xi) + Bi+1,4(xi) =
1

h23

(
hi+1h12

h123
+

hih34

h234

)

+
h2

i

h23h234

+
h2

i+1

h23h123

=
1

h23
(hi + hi+1) = 1

29

A0 =−
h2

0(h−1 + h0 + h1)

h2
1(h0 + h1 + h2)

(A.18)

C0 =−[(h−1 + h0)/h1 (A.19)

+
h0(h1 + h2)(h−1 + h0 + h1)

h2
1(h0 + h1 + h2)

]

E0 = 1 − (A0 + C0) (A.20)

AN =−
h2

N+1(hN + hN+1 + hN+2

h2
N (hN−1 + hN + hN+1)

(A.21)

CN =−[(hN+1 + hN+2)/hN

+
hN+1(hN + hN−1)(hN + hN+1 + hN+2)

h2
N (hN−1 + hN + hN+1)

] (A.22)

EN = 1 − (AN + CN) (A.23)

30

References

[1] T.S. Hahm, Phys. Fluids 31 (1988) 2670.

[2] A. Brizard, J. Plasma Physics 41 (1989) 541.

[3] W.W. Lee, J. Comput. Phys. 72 (1987) 243.

[4] R. Sydora, V. Becyk and J. Bawson, Pl. Phys. Control. Fusion 38 (1996) A281.

[5] A. Dimits, Phys. Rev. Lett. 77 (1996) 71.

[6] Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang and R.B. White, Science 281 (1998)

1835.

[7] S. Parker, C. Kim and Y. Chen, Phy. of Plasmas 6 (1999) 1709.

[8] T.M. Tran, K. Appert, M. Fivaz, G. Jost, J. Vaclavik and L. Villard, in: Theory

of Fusion Plasmas, Int. Workshop (Ed. Compositori, Società italiana di Fisica,

Bologna, 1999), p. 45.

[9] Y. Idomura, S. Tokuda and Y. Kishimoto, Nuclear Fus. 43 (2003) 234.

[10] S.J. Allfrey and R. Hatzky, Comp. Phys. Comm. 154 (2003) 98.

[11] W. Dorland, F. Jenko, M. Kotschenreuther and B.N. Rogers, Phys. Rev. Lett.

85 (2000) 5579.

[12] F. Jenko, Comp. Phys. Comm. 125 (2000) 196.

[13] J. Candy and R.E. Waltz, J. Comput. Phys. 186 (2003) 545.

[14] A. Staniforth and J. Côté, Mon. Wea. Rev., 119 (1991) 2206.

[15] E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, J. Comput. Phys. 149

(1999) 201.

31

[16] V. Grandgirard et al., in: Proceedings of the 29th EPS Conference on Controlled

Fusion and Plasma Physics, Montreaux, 2002, ECA Vol. 26B, P4.095.

[17] M. Brunetti et al., in: Proceedings of the 29th EPS Conference on Controlled

Fusion and Plasma Physics, Montreaux, 2002, ECA Vol. 26B, P4.102.

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical

Recipes in Fortran, 2nd edition (Cambridge University Press, 1992), p. 716.

[19] V. Grandgirard et al., to be published.

[20] The Nature of Chaos, Ed. by T. Mullin (Oxford University Press, 1993) p. 262.

[21] G. Strang, SIAM J. Numer. Anal. 5 (1968) 506.

[22] C.Z. Cheng and G. Knorr, J. Comput. Phys. 22 (1976) 330.

[23] T.D. Arber and R.G.L. Vann, J. Comput. Phys. 180 (2002) 339.

[24] P. Colella and P.R. Woodward, J. Comput. Phys. 54 (1984) 174.

[25] F. Filbet, E. Sonnendrücker and P. Bertrand, J. Comput. Phys. 172 (2001) 166.

[26] A. Bottino, T.M. Tran, O. Sauter, J. Vaclavik and L. Villard, in: Theory of

Fusion Plasmas, Int. Workshop (Ed. Compositori, Società italiana di Fisica,

Bologna, 2001), p. 327; A. Bottino, A. G. Peeters, O. Sauter, J. Vaclavik, L.

Villard and ASDEX Upgrade Team, Phys. Plasmas 11 (2004) 198.

[27] C. deBoor, A practical guide to splines, Applied Mathematical Sciences, 27

(Springer-Verlag, New York, 2001).

32

Figure captions

(1) Time evolution of the relative error in the entropy (a) and the L2-norm

(b) without (solid line) and with (dashed line) logarithmic interpolation

for the case (Nr, Nθ, Nz, Nv‖) = (64, 64, 64, 64) and ∆t Ωi = 0.2.

(2) ITG growthrates (a) and frequencies (b): values obtained with CYGNE

(×) and LORB5 (o).

(3) Time evolution of the field energy obtained with CYGNE (solid line) and

ORB5 (dashed line).

(4) Time evolution of the field energy, the kinetic energy and the radial heat

flux for different phase space resolutions: (Nr, Nθ, Nz, Nv‖) = (64, 256, 64, 32)

in solid line, (128, 256, 32, 32) in dashed line, (32, 128, 32, 32) in dotted-

dashed line, (32, 128, 32, 32) with Newton-Raphson algorithm in dotted

line, and (32, 128, 32, 32) using equidistant meshes in dotted line and ’+’

markers.

(5) Time evolution of the relative error in the number of ions (frame (a)),

the total energy (b), the entropy (c) and the L2-norm (d) for differ-

ent phase space resolutions: (Nr, Nθ, Nz, Nv‖) = (64, 256, 64, 32) in solid

line, (128, 256, 32, 32) in dashed line, (32, 128, 32, 32) in dotted-dashed

line, (32, 128, 32, 32) with Newton-Raphson algorithm in dotted line, and

(32, 128, 32, 32) using equidistant meshes in dotted line and ’+’ markers.

(6) Time evolution of the field energy, the kinetic energy and the radial heat

flux for the same phase space resolution, (Nr, Nθ, Nz, Nv‖) = (64, 256, 64, 32),

and different time-steps: ∆t Ωi = 0.2 (solid line), ∆t Ωi = 0.5 (dashed

line) and ∆t Ωi = 1 (dotted-dashed line).

(7) Time evolution of the relative error in the number of ions (frame (a)),

the total energy (b), the entropy (c) and the L2-norm (d) for the same

33

resolution, (Nr, Nθ, Nz, Nv‖) = (64, 256, 64, 32), and different time-steps:

∆t Ωi = 0.2 (solid line), ∆t Ωi = 0.5 (dashed line) and ∆t Ωi = 1

(dotted-dashed line).

(8) Cross-section of the distribution function in r-θ plane at time t Ωi = 1200.

34

Table 1

CPU time (normalised to the time required in the case of Bulirsch-Stoer (BS)

and splitting sequence S2 given by Eq. (15)) for a grid (Nr, Nθ, Nz, Nv‖) =

(64, 256, 64, 32). NR means ‘Newton-Raphson’ and the splitting sequence S1 is given

by Eq. (14).

Method Splitting sequence CPU time

BS S2 1

BS S1 1.1

NR S2 1.3

Table 2

CPU time (normalised to the time required in the case with non-equidistant meshes)

and memory requirements per processor (the last column refers to the memory size

during communications) with and without equidistant meshes (EM) in r-v‖ direc-

tions, using Nproc = 4.

Memory size

(Nr, Nθ, Nz , Nv‖) mesh CPU time w/o with comm.

(64, 256, 64, 32) non-EM 1 128 MB 225 MB

(128, 256, 64, 64) EM 2.9 396 MB 768 MB

35

Table 3

Parameter set for the comparison case.

a/ρS L/ρS vmax/vthi0 r0 Ti0 nmax mmax

14.5 1508 4.15 0.5 a Te 4 12

kTe
kTi

kn0 ∆rTi
∆rn0 Zi ε

0 4 0.8 0.1 0.2 1 10−4

Table 4

Values of the spline basis Bi,4, Bi,3 and B̃i,3 at given points.

x xi−1 xi xi+1

Bi,4(x) D
(−1)
i =

h2
i−1

h12h123
D

(0)
i = 1

h23

(
hi+1h12

h123
+ hih34

h234

)
D

(1)
i =

h2
i+2

h34h234

Bi,3(x) hi−1/h12 hi+1/h23 0

B̃i,3(x) 3hi−1/(h12h123) 3(hi+1/h123 − hi/h234)/h23 −3hi+2/(h34h234)

0 200 400 600 800 1000 1200

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0 200 400 600 800 1000 1200

10
−10

10
−8

10
−6

10
−4

t Ω i
t Ω i

(a) (b)

Fig. 1.

36

2 4 6 8 10 12
0

1

2

3

4

5

6
x 10

−3

2 4 6 8 10 12

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

n=4n=2

m m

n=3

n=4

n=2
γ/

Ω
i

ω
/Ω

i

n=3

Fig. 2.

0 500 1000 1500 2000
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

E

/(

N
T

)
fi

el
d

tΩi

i0

Fig. 3.

37

0 200 400 600 800 1000 1200 1400
0

1

2

3

4
x 10

−5

i

fi
el

d

Ωt

E
/N

T i
0

0 200 400 600 800 1000 1200 1400
−4

−3

−2

−1

0
x 10

−5

ki
n

Ωt i

E
/N

T i
0

0 200 400 600 800 1000 1200 1400

0

2

4

6

8

10

12

x 10
−6

it Ω

Q
/(

N
v

th

i0
T

)

i0

Fig. 4.

38

0 200 400 600 800 1000 1200 1400

0

10

20
x 10

−6

tΩi

(a)

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

tΩi

(b)

0 200 400 600 800 1000 1200 1400

0

1

2

3

4

5

6

7

8

9

10
x 10

−6

tΩi

(c)

0 200 400 600 800 1000 1200 1400
0

1

2

3

4
x 10

−5

tΩi

(d)

Fig. 5.

39

0 200 400 600 800 1000 1200 1400
0

1

2

3

4
x 10

−5

i

fi
el

d

Ωt

E
/N

T i
0

0 200 400 600 800 1000 1200 1400

−3

−2

−1

0
x 10

−5

ki
n

Ωt i

E
/N

T i
0

0 200 400 600 800 1000 1200 1400

0

2

4

6

8

10

12

x 10
−6

it Ω

Q
/(

N
v

th

i0
T

)

i0

Fig. 6.

40

0 200 400 600 800 1000 1200 1400

0

2

4

6
x 10

−6

tΩi

(a)

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

tΩi

(b)

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

14

16

18

20
x 10

−7

tΩi

(c)

0 200 400 600 800 1000 1200 1400
0

5

10

15
x 10

−6

tΩi

(d)

Fig. 7.

41

r/ρS

θ

Fig. 8.

42

