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Version abr égée

Lacompréhension du transport desimpuretés dans | es plasmas confinés magneti quement est
une question cruciale pour I’ optimisation d’ un futur réacteur a fusion thermonucléaire. Les
ions de petite a moyenne charge atomique comme le carbone, I’ oxygeéne et les métaux sont
présents dans presgue tous les plasmas de tokamak, et 1a production d’ hélium sera une con-
séquence intrinseque des réactions de fusion. Le rayonnement di aux impuretés jouera un
réle crucia dans le bilan de puissance dans les réacteurs de fusion. Le Tokamak a Configu-
ration Variable (TCV) afourni, pour ce travail, des plasmas-cible dans |esquels des impure-
tés a faible taux de recyclage ont été injectées en faibles quantité et instants connus. La
capacité de TCV a produire des plasmas d’ une grande variété de formes a permis |’ étude de
la géométrie du plasma sur |e transport des impuretés.

Un ensembl e étendu de diagnostics a été utilisé pour mesurer |’ évolution de la concentration
desimpuretés apres|’ ablation et I’ injection dans e plasma. Le systeme d’ ablation desimpu-
retés, qui utilise un laser arubis pulsé, a été construit, mis en opération et systématiquement
exploité pour la réalisation de cette thése. Le systéme de photodiodes pour rayons x-mous
(SXR) 2200 canaux a étéle diagnostic clé pour |lamesure de laradiation provenant du centre
du plasma, et un spectrometre SPRED a été utilisé pour la détection des émissions dans |’ ul-
traviolet rayonnées par des atomes partiellement ionisés au bord du plasma. Un certain nom-
bre d’outils d’analyse ont été utilisés, notamment la techniqgue GSVD pour séparer les
signaux provenant desimpuretés de la contribution a dents-de-scie des particul es du plasma.
Egalement on a exploité des techniques standard d’inversion tomographique pour la déter-
mination de la densité de puissance rayonnée par lesimpuretés, et des routines d’ gjustage de
parametres pour |’ évaluation de la décroissance exponentielle des signaux qui est reliée au
temps de confinement des impuretés. Le code 1D STRAHL a été largement utilisé pour la
reproduction del’ évolution temporelle des signaux SXR en fonction des paramétres mesurés
des plasmas et de profils radiaux choisis de la diffusivité et de la vitesse de convection des
impuretés. Ces profils ont été changés par des routines d’ ajustage de parameétres pour déter-
miner les valeurs pour lesgquelles les signaux simulés reproduisent le mieux les observations
expérimental es.

Afin d’ éudier les effets de la géométrie du plasma sur le transport, |’ élongation et la trian-



gularité ont été balayées en séries de décharges dédiées de plasmas ohmiques, limités, au
mode de bas confinement (mode L). Les effets de la géométrie sont évidents dans les deux
balayages. L e confinement desimpuretés suit |les mémes tendances que celui del’ énergie des
électrons dans le balayage de triangularité; cependant une augmentation de I’ é ongation du
plasma entraine une réduction du temps de confinement des impuretés aors que celui de la
chaleur reste sensiblement constant. Ce résultat pourrait avoir une grande importance dans
le cadre d’ un réacteur afusion, ou lalimitation de laconcentration d’ impuretés dans|e centre
du plasma constituera une exigence crucial. En plus, ces balayages ont conduit a |’ observa-
tion que le temps de confinement des impuretés décroit a champs magnétique élevé, en dé-
saccord avec ce qu’ on pourrait attendre a priori.

Des investigations ultérieures ont été effectuées avec le code STRAHL. La simulation nu-
meérique a permis de découvrir que les propriétés du confinement des impuretés dans TCV
sont trés sensibles au transport en périphérie du plasma. L’ activité de dents-de-scie au centre
S est révél ée moins déterminante sur le confinement, bien gu’ elle soit localement dominante
sur les autres formes de transport. La vitesse de convection, dans toutes | es situations explo-
rées, s est avérée positive, ¢’ est adire dirigé vers |’ extérieur du plasma, en désaccord avec
les observations effectuées sur autres tokamaks et avec les prédictions de la théorie néoclas-
sique du transport.

En conclusion, les possibilités du TCV de produire plasmas fortement fagonnés ont été ex-
ploitées pour I’ investigation des effets de |a géométrie sur les propriété de transport desim-
puretés pour un ensemble de plasmas. Les faibles valeurs du temps de confinement & hautes
€longations pourraient étre attrayantes pour le projet de réacteurs avances, si les mémesten-

dances seront confirmées dans les régimes d’ opération et de chauffage appropriés.



Abstract

Understanding the transport of impuritiesin magnetically confined plasmasisacrucial issue
for the optimization of afuture thermonuclear fusion reactor. Light and moderate-Z ions, like
carbon, oxygen or metals are constituents of almost all tokamak plasmas, and the production
of He ash will be an intrinsic consequence of fusion reactions. The radiation of impurities
will have a crucial role in the power balance of any fusion reactor. The Tokamak a Config-
uration Variable (TCV) has been used to produce target plasmas for the injection of trace,
non recycling impurities in known quantity at known times. The unique capability of TCV
in producing various plasma shapes has allowed the study of the effect of the plasma geom-
etry on the impurity transport.

A set of diagnostics have been exploited to produce the impurities and monitor the evolution
of their concentration after injection in plasmas. Theimpurity production system, usingasin-
gle pulseruby laser, was built, commissioned and systematically exploited for the realisation
of thiswork. The key diagnostic was the 200-channel soft x-ray (SXR) photodiode array for
measuring the radiation from the plasma core, while a SPRED spectrometer was used for
monitoring the ultraviolet emission from partially stripped ions at the plasma edge. A
number of analysistools have been used, namely the GSV D technique to separate the impu-
rity contribution to the signal from the sawtoothing background from the plasma particles,
standard techniques of tomographic inversion, fit routines for the evaluation of the confine-
ment time of impurities. The 1D code STRAHL has been widely used in order to reproduce
the time evolution of the line integrated SXR signals as a function of the measured plasma
parameters and of ad-hoc profiles of the impurity radial diffusivity and convective velocity.
These profiles were changed by bestfitting routinesin order to find the values for which the
reconstructed signals best matched the experimental observations.

For the study of transport on plasma geometry, the elongation and the triangularity were ex-
plored in series of dedicated discharges of ohmic L-mode limiter plasmas. The effect of ge-
ometry isevident in both scans, the confinement being in agreement with the electron energy
in the case of variation of triangularity, while an increase of the plasma elongation leads to
areduction of the confinement time of impurities without affecting that of heat. Such aresult

could be useful in environments like a fusion reactor in which one of the main requirements



will surely be the limitation of impurity concentrationsin the plasma core. These scans have
led to the observation that the impurity confinement time decreases with increasing magnetic
field.

Further investigation on these results has been performed using the 1D simulation code
STRAHL. This numerical smulation allowed to verify that the confinement properties of
impuritiesin TCV plasmas are more sensitive to the transport in the peripheral region, the
central sawtoothing activity being lessrelevant, even if locally dominant over other forms of
transport. Surprisingly, the convective velocity at the plasma edge has been always found to
be directed outward, in disagreement with observations made on other tokamaks and with
the predictions of the neoclassical theory of transport.

In conclusion, the extreme shaping possibilities of the TCV tokamak have been exploited for
the investigation of the effects of the plasma geometry on the transport of impurities for a
classof plasmas. Thelow values of the confinement times at high elongations may be attract-
ing for the designs of advanced reactors, if confirmed in the relevant auxiliary heated and

current driven regimes.
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1. INTRODUCTION

1.1 Nuclear fusion

The global need of primary energy is constantly increasing in concert with the growth of the
world population and economy. The consumption of petroleum, coal, natural gas, and elec-
trical energy of hydro, nuclear, geothermal, solar and wind origin increases with arate of a
few percent per year[1], being around 4.0* 10%°J/year in 1997. All kinds of projections fore-

see a substantial increase of energy consumption for the next 20 to 30 years, predicting an

average rise of 50% for 2020.
Fuel Proven Reserves Yearsof useat current consumption
Codl 1.0 10% tons 270
Crude Qil 950 10° barrels 40-50
Natural gas 120 102 m3 60-70
Uranium 2.0 10° tons 2400-3000
(33U + 238y in fast breeder reactors)

Table 1.1: Estimated world energy reserves

These amounts of proven fossil reserveg2] cannot provide a sustainable development on
time scales of thousands of years. Moreover it is clear that the necessary amount of energy
cannot be supplied by fuels which would rel ease gigantic quantities of CO, in the decadesto
come. The global warming of the planet due to greenhouse effect[3] can be expected to pro-
duce dramatic climate changes, and new sources of energy are nevertheless required to meet
the world demand.

One promising option for the future is controlled thermonuclear fusion, which is considered
to bealong term environmentally friendly energy source. The fact that anuclear fusion plant
would produce amost no high Z long-lived radioactive waste and the intrinsic safety in the
control of the reaction, together with the abundance of fuel in nature, will probably win the
public acceptance of such atechnology.

Among the nuclear reactions which can easily be produced on earth, the most promising is
the deuterium-tritium fusion reaction, which shows the highest cross section for relatively

low energies:
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D+T - He'(35MeV) + n(14.1MeV) (1.1)

The peak of therate coefficient, [o(v)v= 10 ?m3s ™, is obtained at temperatures around

10keV, thus easily accessible with the present technology.

The deuterium has a natural abundance in hydrogen of 1 part in 6700 and consequently isa
plentiful resource in water. While the oceans could provide enough deuterium for several
millionsyears, covering the global electricity production, tritium does not exist in nature, be-
ing radioactive with a half life of 12.3 years. However it can be produced from lithium by

means of the following nuclear reactions:

6

Li®+n - He'+ T +48Mev (1.2)

Li’+n - T+He' +n+25MeV (13)

and in principle it could be bred in fusion reactors. Lithium being very abundant in the earth

crust and in the sea water, fuel for fusion is potentially available for millions of years[4].

1.2 M agnetic confinement and tokamaks

At the temperatures required for nuclear fusion to occur, the hydrogen isotopes are fully ion-
ised. The electrostatic charge of the positive nuclel is compensated by an equal negative
charge by electrons, resulting in aneutral gas called plasma. In order to maintain theintegrity
of the containing machine, as well as the purity and temperature of the plasma, the contact
to material walls has to be minimised. The plasma being composed by charged particles, a
magnetic field can provide the necessary confinement. Due to the Lorentz force, aion or an
electron follows a helical path when moving in a magnetic field. While the parallel velocity
is not affected, in perpendicular direction the trgjectory has a radial extent, or gyro-radius,
given by:

= 0 14
T (14)

with v being the velocity perpendicular to the magnetic field B.
The particle motion is thus restricted to follow the direction of the magnetic field, which is
the basis of magnetic confinement. However, in a linear configuration with open ends the

magnetic field lines escape out of the vessel at both sides, and consequently such a device



1.2 Magnetic confinement and tokamaks

suffers from plasma losses.

The simplest way to overcome the edge losses is to close the magnetic field lines, producing
atoroidal configuration. The original idea of the tokamak (from the russian “ Toroidalnaya
Kamera Magnitnaya Katuschka’, meaning toroidal chamber with magnetic coils) was pro-
posed in the early 1950s by Igor Tamm and Andrei Sakharov. In 1968, in the frame of are-
search led by Lev Artsimovich, atokamak at the Kurchatov Institute produced much higher
plasma temperatures than in any other magnetic configuration at that time[5].Confirmation

of such result by independent groups led to a boom of tokamak experiments.

VA Wa Ya Y YaYaYa VaYaVaVAY VaVaVa Y
o JIUUIIIIUUIIIIIIIT T B
e
Fig.1.1 - Trajectories of charged particlesin a homogeneous magnetic field B

The toroidal magnetic field alone is not sufficient to produce plasma stability, as the radial
gradient and the curvature of the magnetic field would induce a vertical drift which would
displace the electrons and ion in opposite direction. The charge separation generates an elec-
tric field E perpendicular to the toroidal magnetic field and causes an outward E X %-drift
motion which expands the plasmaring.

This problem is overcome by twisting the field lines to an helical configuration by means of
apoloidal field, so that each field line passes the upper and lower part of the torus. Thus, an
averaging along the path of particles leads to a cancelling of the vertical drift motion and
avoids the build up of an electrical field. In tokamaks, the poloidal component of the field,
Bp is produced by a current flow in the plasma itself. The current is usualy generated by
transformer effect, in which the plasma acts as a single secondary winding, while a central
solenoid acts as the primary turns. In addition to the toroidal and the poloidal components of

the magnetic field, avertical magnetic field produced by external toroidal coilsisrequired to
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balance hoop forces arising from the radial decrease of the magnetic field pressure which
tend to expand the plasma along its minor radius.

The magnetic structure of atokamak plasma consists of aninfinite set of nested magnetic sur-
faces, called flux surfaces, which can be labelled by means of the toroidal or poloidal fluxes

of the magnetic field. A widely used univocal labelling is provided by the following expres-

g - l'|Jaxis
= /— 15
pp0| l'I"LCFS_ llJaxis ( )

in which the poloidal magnetic flux is defined:

son:

>—>
g = J’ A Bds (2.6)

with A, being an arbitrary toroidal cross section of aflux surface.
The twist of the field lines in each surface is characterised by the so-called safety factor q,
defined for ageneral geometry as:

_ 1,18y
gq= 2TLfRdeS .7
Theintegral iscarried out along asingle poloidal circuit around the flux surface, and theratio
B,/ B, can beidentified as the pitch of the field line. The safety factor can be identified as

Transformer winding
Torus I\I/Iain Axis (primary circuit)

|
Toroidal Field Coils———— /

Poloidal Magnetic Field

‘\K/‘

Minor radius a

Toroidal Magnetic field By

Plasma Current
(secondary circuit)

I Plasma column

Fig.1.2 - Schematics of a tokamak. The plasma is the single secondary loop of a trans-
former. The induced plasma current is necessary for a stable confinement.
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the number of toroidal turns afield line needs to perform asingle poloidal turn, and for large
aspect-ratio tokamak the following approximation holds:

B

r

9= ReE,
0=p

(1.8)
While the tokamak configuration has the advantage of retaining the toroidal symmetry, the
production of plasma current by induction allows only pulsed operation. Nevertheless, the
plasma current is used as a basic means of heating the plasma to temperatures up to a few
keV in large devices, but this method is ineffective for higher temperatures and hence addi-
tional heating is necessary for fusion to occur. A limitation to such heating is the rapid de-
crease of the plasma resistivity, which is mainly proportional to TZ3/2. Moreover, the

maximum plasma current is limited by an ideal kink instability which imposes Oedge > 2.

1.3 Fusion plant consider ations

In afusion power plant, the temperature of the D-T mixtureisin general sustained jointly by
the injection of power by means of a particle beam or electromagnetic radiation, and by the
the energy transfer of the 3.5MeV a-particles which are produced by the fusion reaction of
Eq.(1.1). A fusion power multiplication factor Q is defined, as the ratio of the fusion power
of the a-particles divided by the externally injected power density.

Being charged, the a-particles are confined in the plasmaby the magnetic field and can trans-
fer their energy by means of Coulomb collisions. It is important that their confinement is
good enough to allow them to equilibrate the plasmathermal energy in the bulk before leav-
ing the plasma.

In contrast to the a-particles, the neutrons have no interactions with the plasma and the mag-
netic field, and will be consequently absorbed in a lithium blanket surrounding the reactor
vessel. The neutrons, reacting with lithium according to Eq.(1.2) and (1.3), will breed the
necessary tritium for plasmarefuelling, and their energy will be transferred to suitable cool-
ants for the ultimate generation of electricity.

While the minimum economically useful Q valueis Q = 1[6], the most desirable operating
modefor afusion plant reactor isat Q = oo, where the plasmatemperature is sustained only
by the energy deposition of fusion a-particles; thisstateisreferred to as equilibrium ignition

condition. In order for ignition to occur, the following power balance gives an estimate of the
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requirement of afusion reaction. The reaction rate for a 50%-50% mixture of deuterium and
tritium is calculated by averaging the cross section, o, _¢, over athermal velocity distribu-
tion:

1

with n being the total ion density. The heating power density from a-particlesis then given
by p, = Rp_1E,, Where E, isthe kinetic energy of a generated o -particle. The energy
loss can be expressed by the energy confinement time T

_w _ [3nTaV

I:)Ioss - e (1-10)

e

In Eq.(1.10) the total energy W is expressed by the volume integral of the energy density,
which is given by %nT multiplied by 3 degrees of freedom for ion and el ectrons.

Taking constant electron density and temperature for simplicity, the following condition for

ignition can be derived:

12 T

EZ T v E
[Op_tVH Eq
The condition for the product density and temperature has a broad minimum around 30keV,
around which (o v, = 1.1 [10-24T2 m%s, T in keV, within a 10% approximation.The

nt (1.11)

substitution of thisvaluein Eq.(1.11) leadsto the ignition criterion for the triple product[4]:

A

ATt >5 07 m3keV s (1.12)

which refers to the peak values of density and temperature for parabolic profiles.

Fig.1.3 shows how the experimental achieved triple product has approached the reactor re-
quirement over the years. However, the condition emerging from Eq.(1.12) is an approxima-
tion, asit depends not only on the shape of the density and temperature profiles, but also on
the presence of impurities and helium ashes in plasma.

The criterion for ignition in Eq.(1.12) showsthat high densities at high plasma temperatures
are essential to meet the condition for a fusion power plant. Increasing the plasma pressure
p = nT means advancing towards economical power plant conditions. The dimensionless
parameter beta:

- P
B = 57 20 (1.13)




1.3 Fusion plant considerations

with [0 0 denoting the volume average, is particularly important since it is used as afigure
of merit for the efficiency of atokamak. While the plasma pressure is related to the possibil-
ity of achieving fusion, the size and price of the machine depends on the value of the mag-
netic field. The achievable beta is limited by magnetohydrodynamic instabilities in the
plasma. It has been shown[7] that the following semi-empirical ideal betalimit applies:

B< CT% (114)
with ¢ being a constant in the range 0.028 < ¢ <0.035. This limit has been verified ex-
perimentally in various tokamaks for arange of shapes and aspect ratios. Asthetotal plasma
current | isitself limited by the stability requirement g, > 2, the maximum plasma pressure

and consequently the triple product of Eq.(1.12) are set by the value of the magnetic field B.

102255 N REACTOR
1021+ O O

1020+ o
1019+ O

10181 O
1017

1016
o5 ©

ATT [m3s keV]

1014? | | | | | L | |
1955 1960 1965 1970 1975 1980 1985 1990 1995

year

Fig.1.3 - Progress in increasing the triple product ﬁ‘T'fE over the years, leading towards
reactor conditions.

In this frame, the presence of impurities in a fusion plasma plays a fundamental role in the
so-called fuel dilution, as an increased impurity density generally implies areduction of the
fuel density. Ideally, the replacement of a single hydrogen ion with an impurity of charge Z
would increase the el ectron density and hence the total plasma pressure. The sametotal pres-
sure would be obtained with the removal of (Z + 1)/2 hydrogenions.

A more refined evaluation of the ignition criterion must take into account not only the dilu-

tion of density of the D-T fuel in the plasma core, but also the increase in plasma radiation
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which is reflected in adifferent and lower value of the energy confinement time T

For an impurity concentration f, = n,/n, theratio between the density of the impurity of
charge Z and the electron density, the heating power density from a-particles is then given
by:

1
pa = 3EanZ(1- f2)2L0p 1L, (1.15)

in which the dilution of fuel has been taken into account. The power loss density isincreased
by the electromagnetic emission from impurities, which consists mainly of bremsstrahlung
at the typical temperatures of fusion plasmas in a reactor machine, except for very high Z
elements, which would not be compl etely stripped:

3an. T

Ploss = ﬁ +bng(np + ny) T2+ bZ2nn, T1/2 (1.16)

It has to be stressed that this constitutes only a lower limit, as different radiation processes
(recombination, charge-exchange, line emission) are not taken into account in these calcula-
tions.

The requirement p, > p,,ss Necessary to yield the plasmaignition leads to the relation[8]:

3T
%1(1- 12)206p_{VEq —bTY2(1— 1Z + 122)

(1.17)

N.Tg >

It isinteresting to evaluate the ratio between

the power loss due to bremsstrahlung and the
power provided by a-particles for a plasma

temperature of 10keV:

_ 2
Pos g 107112+ 127)
P (1-12)2

InFig.1l.4theratio of Eq.(1.18) isplotted ver-

sus concentrations of Fe, O, He which can be

(1.18)

He

0 : typically found in a fusion plasma. It is re-

10 10" 10

markable how afew percent of such impuri-

Fig.1.4 - Ratio between the power lost by
bremsstrahlung from impurities and the
power generated by a-particles of fusion fusion and prevent ignition. In the case of a
origin, for a 50-50% D-T plasma at the tem-
perature of 10keV.

ties can waste the whole power produced by

pure deuterium/tritium plasma, for which
f = 0, it would be found "8 10,107 indi-

a



1.3 Fusion plant considerations

cating that, in aignition configuration, 10% of the fusion power islost by bremsstrahlung of
electrons colliding against the deuterium ions.

The maximum permitted impurity fraction in a fusion plasma, or critical fraction f., de-
pends on the required multiplication factor Q, on the plasmatemperature and on the impurity
species. Such dependencies are discussed in Refs.[6, 8] in which a zero-dimensiona power
bal ance, based on the coronamodel (described in Section 2.1.3), has been applied. Moreover,
in those cases for which Q has a finite value, the plasma heating has been considered to be
performed by adeuterium beam. For agivenvaueof Q, includingignition (Q = o) thecrit-
ical fraction f . isprincipally dueto thefuel dilution in the case of light elements, while for
heavier onesit is dueto the strong radiation emission. In both cases, a higher value of Q im-

+-25 .
, while

plies lower vaues of .. For agiven plasmatemperature f,. scalesas 772
for increasing temperature the critical fraction increasesthanksto the higher fusion reactivity

and to the reduced radiation emission of partially stripped impurity ions.

23

10 T T

[ — Fe

| — Si

[ ‘ o >

: — W
o

?
E
L
[
Q
[
N 107 10"

1
fractional abundance f

Fig.1.5 - ngtg requirements in order to sustain ignition in a 50-50% D-T plasma at the tem-
perature (identical for electrons and ions) of 10keV, as a function of the impurity fractional
abundance f=njmp/Ne. The vertical dashed lines identify the fatal fractions fz.

Asfar asignition is concerned, the ngtg requirement in order to sustain this condition in a
50-50% D-T plasmaat the temperature of 10keV, following Eq.(1.17), isreported in Fig.(1.5)

as a function of the fractional abundance and the species of the impurity. It is evident that

minimal concentrations of high-Z elements|ike tungsten can even prevent ignition, while un-
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avoidablelow-Z elements can be present up to afew percent of the electron density. The crit-
ical fraction f,., sometimes called in this case “fatal fraction”, has been found[6] to be
proportional to 77> for the temperature range T, < 20keV beyond which a low-(3 reactor
will probably not operate.

In addition of the helium ashes, which constitute an unavoidable impurity in the plasmacore,
therewill be impurity sourcesfrom thefirst wall and the divertor. The cleanliness of afusion
plasmawill thus depend on many transport phenomena: the inward flux of fuel and outward
flux of helium ashes have to be sufficient to sustain ignition, and the impurity level hasto be
kept as low as possible. Their concentration f_ depends on their confinement time and on
the recycling rate from the wall, and it can be shown that an excessive value of T;,,,/ Tg can
prevent ignition in areactor. Thevalueof T;,, to be considered is the apparent confinement
time which takes recycling into account. The condition T, mp/ Tg 010 is considered an upper

limit beyond which no ignition can be reached, even for He poisoning[9, 10].

1.4 Energy confinement and shape dependencein TCV

141 TheTCV tokamak

The Tokamak a Configuration Variable (TCV) has started its operations in November 1992
at the Centre de Recherche en Physique des Plasmas (CRPP) site in Lausanne. It is a com-
pact, medium size tokamak designed to study the effect of different plasma shapes on con-
finement and stability[11]. The design parameters of TCV are reported in Table 1.2 and a
schematic view isshownin Fig.1.6.

TCV isequipped with an axial ohmic transformer for plasma current generation; the toroidal
magnetic field is produced by 16 poloidal coils which are connected in series. The unique
shaping capabilities of TCV are allowed by two groups of independent coils, which are
mounted internally and externally, and driven with an active feedback system. The external
group, mounted in vertical stacks and connected to a power supply whose time response is
inthe order of 1ms, isused for vertical stabilisation aswell. The in-vessel coils have amuch
faster time response (~0.1ms)[11] and are used only to provide stabilisation of highly elon-
gated plasmas (k>2). The vessel iscovered amost completely by graphitetiles and the stand-

ard bakeout and boronisation procedures allow a vacuum in the range of 10°8mbar during
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1.4 Energy confinement and shape dependencein TCV

standard operation. The carbon tiles have been put in place for several reasons, among which
thereisthereduction of plasmacontamination by metallicions. For agiven intrinsic impurity
density inside the plasma, carbon hasthe advantage of lower fuel dilution and radiation emis-
sion when compared with moderate or high-Z elements. Moreover, carbon does not melt in

case of heat overload, but sublimates at a significant rate at the temperature above ~2500K.

Parameters Symbol Value
Major radius Ry 0.88 m
Minor radius a 0.25m
Nominal aspect ratio e = Ry/a =35
Vacuum vessel elongation Ktcy 29
Maximum plasma current lp 1.2MA
Maximum central toroidal field By 154T
Maximum |loop voltage Vioop 10V
Discharge duration <4s
Table 1.2: Main parameters of TCV
Parameters Symbol Value
Central electron density Neo 1-20x 1019 m3
Central electron temperature Teo < 1.2 keV (ohmic)
<10 keV (ECH)
Central ion temperature Tio < 800 eV (ohmic)
<500 eV (ECH)
Electron cyclotron frequency f.e = €B/(2mm,) ~ 41 GHz
Elongation at the edge Ky 1-2.82
Triangularity at the edge 3, (-0.8) — ( +0.9)

Table 1.3: Typical parametersin ohmic and ECH TCV discharges

1.4.2 Plasma shapes and confinement of energy

TCV iscapable of producing alarge variety of plasmasin both limiter and diverted config-
urations, among which single (SND) and double null (DND) discharges; ohmic L-modesand
H-modes have been produced in diverted and limiter configurations. The geometric param-

eters span from -0.8 to 0.9 for triangularity, from 1 to 2.82 for elongation, rectangular shapes

11



Chapter 1. INTRODUCTION

and doublets have been produced. The plasma current can be sustained up to IMA and aval-
ue of 210kA has been obtained in purely non-inductive, ECCD driven mode. In Table 1.3
typical valuesof TCV plasma parameters are reported, whilein Fig.1.7 various extreme con-

figurations and shapes are shown.

[ ]
< A
==
i —— ~ 4 »
i)
‘/j:@.\!‘ 3 “
=y : ‘.,'.
T =~ N
U S
=
A

X
B\

!-i“fl

o\ 2\
Hus—
o $ .

B\

Fig.1.6 - Schematic view of the TCV tokamak: (A) the ohmic transformer coils, (B) the toroi-
dal field cails, (C) the vacuum vessel, (D) the shaping coils, (E) observation ports and (F)
internal fast shaping coils.

The main area of investigation which has been extensively studied in TCV plasmasisthe de-
pendence of shape on the confinement of energy[12, 13, 14, 15], which, asshown, isdirectly
related to the approach to reactor conditions. The energy confinement time, defined in
Eq.(1.10), has been systematically studied as a function of the plasma shape, the electron
density and temperature, the safety factor, the ELM activity in ohmic limited and diverted
plasmas in stationary conditions.

The extended study of the shape effect on the transport of energy is useful for the study of

theimpurity confinement aswell, asthe plasmageometry could have anal ogous consequenc-

12



1.4 Energy confinement and shape dependence in TCV
eson electrons, bulk ions and impurities. Asit iscommonly assumed, impurity confinement
times will probably have the same behaviour as energy confinement times.

For a given plasma shape, the ohmic energy confinement time follows12] the usual neo-Al-

3 #9849 - 1=0.50s b) #6010 - t=0.80s ) #5650 - t=0.80s 9 #8856 — t=0.29s

Limited (k=1.2, 8=0.0, SND upper (Ip=330kA) SND lower (Ip=335kA) DND (Ip=325kA)
) Ip=230kA) ) ) h)
#11368 — t=0.65s #18548 - t=1.50s 9 #6442 - t=0.50s #10159 - t=0.01s

Highest current, Highest fully ECCD driven Pear shape Doublet shape
i Ip=1.06MA i current, Ip=210kA ) (Ip=360KkA) ) (Ip=115KkA)
#19373 - t=0.42s J #8890 - t=0.75s #11928 - t=0.67s #11962 - t=1.00s

Highest elongation, Highest triangularity, Lowest tnangularlty Highest squareness,
K=2.80 6=0.86 6=-0.77 A=0.5

Fig.1.7 - Various plasma configurations and shapes produced in the TCV tokamak.
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cator scaling[16]. Scans of plasma current in many different fixed shapes show an increase
of T with the edge safety factor g, and alinear dependence on the line averaged electron
density n isobserved. Inall conditions, astrong dependence of T on the plasma shape has
been found as, for fixed q,, an improvement of the confinement with the plasma elongation
and a marked decrease with triangularity have been observed.

These variations in the energy confinement time are not found to be related to variations of
radiation losses or changes in the sawtooth dynamics, which will be described later in this
Section. Rather, the dependence of the global confinement on the plasma shape has been ex-
plained solely by the changesin the temperature gradientsinduced by the geometrical effects
of flux expansion and compression, which become important as the plasma shapeisfar from
being circular. Since the correlation between gradients and fluxes is a well established ex-
perimental fact[17], thethermal flux must be expected to be affected by the shaping for given
temperature profiles. Conventionally the heat flux as power per unit surface is expressed as
g = —nxOT where x isthethermal diffusivity. Due to the large diffusivity along the mag-
netic field lines, the ion and electron temperatures are assumed to be constant on each mag-

netic surface. The flux geometry can be highlighted by writing:

dT dr
g = —nx drdlpﬁp (.19

in which the effects of the plasma shape are described by the gradient geometrical factor
(dr/7dy) W . Inthe case of plasmas with negative triangularity or high elongation, extend-
ed zones with high flux expansion arise near the tips, while for positive triangularity the flux
surfaces are unfavourably compressed over awide region at the low field side[12].

To quantify the influence of the geometry alone, the energy confinement time of a shaped
plasmais compared to that of a cylindrical plasma with the same horizontal width, thermal
diffusivity profile x and heat flux averaged over magnetic surfaces g;,,. Assuming that the
thermal diffusion coefficient isindependent on the poloidal angle and the temperature gradi-
ent, the global energy confinement time of the cylindrical plasma can be calculated by inte-
gration. A parameter is defined, called shape enhancement factor, as the ratio of the
confinement time to that of the reference plasma with same profiles including temperature

and density:

o= gy = ST memara B[S v a2
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1.4 Energy confinement and shape dependencein TCV

where W is the total stored energy, P the total heating power, Srefers to the area of the last
close flux surface (LCFS) and theindex ‘O’ refersto the equivalent cylindrical plasma. It has
to be remarked that the practical evaluation of the shape enhancement factor is based on ex-
perimental temperature and density profilesand it is generally obtained for real plasmas.

Values of H > 1 imply an improvement of energy confinement with respect to a circular
plasma. The calculated shape enhancement factor is higher for negative triangularities and
high elongations, in agreement with the observed behaviour of the energy confinement time.
It has been shown[12] that the correction of the electron energy confinement time by the fac-
tor Hg explains almost completely the dependence on elongation and triangularity. Follow-
ing the definition given in EQ.(1.10), the electron energy confinement time is defined ag[15]:

§ NeTe
2 P

n

(1.21)

where P, , isthetotal heating power.

The phenomenon of power degradation can be accounted for aposteriori by assuming an em-
pirical power law of the form 1 O H(P,,/S)~/2.

The shape enhancement factor can be used in global scaling expressions to describe the ef-
fect of geometry. For example, the Neo-Alcator (NA) scaling law as given in Ref.[18]:

Tya = 007 (1020 [h[BR2 Eg%i[l +K2(1+ 252 - 1.259)] (122)
which integratesimplicitly the power degradation and itisvalid for cylindrical plasmaswith
pure ohmic heating, can be modified with H in order to account for the shape effects]14].
In Eq.(1.22), [hJ1is the volume averaged €lectron density. The scaling expression which
provides the bestfitting relationship between the experimental total energy confinement time

and the plasma parametersis written as 14]:
Tna_Toy = 0.23 (10-H [h[aRZ/ OH (1.23)

where 0H = pyR, 0¥ By isanon-dimensional current density which replacesthe 1/q,
dependence in Eq.(1.22).

In addition to the effects of geometry on temperature gradients and therefore on the confine-
ment of the energy, the shape of the plasmaisdirectly linked to MHD phenomena, like saw-
teeth and edge-localised modes (ELMs), which globally affect the transport of particles.
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Chapter 1. INTRODUCTION

1.4.3 Sawtooth and ELM activity in tokamaks

The sawtooth crashesin ohmically heated plasmas consist in periodic relaxations of the cen-
tral electron temperature and density which develop when the central safety factor g, drops
below unity[19]. A slow rise of temperature and density, determined by heat deposition and
transport, is followed by arapid drop of the central values, during typically = 100 ps, dur-
ing which a fast redistribution of the energy takes place inside the so-called mixing radius
rmix- 1he sawtooth crash is triggered by the instability of the internal m/n=1/1 kink mode
which develops on the g = 1 surface. The corresponding outward transport of energy de-

fines the inversion radius rip,, which separates the central region where energy islost, from
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Fig.1.8 - Line integrated soft x-ray signals along different chords, viewing the plasma centre
(line 69) and the plasma periphery outside the inversion radius (lines 73 and 75), observed
in shot #21022, for which pj,=0.48. The temporal signature of the sawtooth crashes is
inverted, as a net flow of energy takes place out of the plasma centre. The sawtooth signals
arevisible also in line 75, which does not intersect the mixing radius at pyyix=0.68.

an outer region between ri,,, and r yjx Where energy is deposited. However, the effects of saw-
teeth are extended beyond the mixing radius, as the heat pulse which follows the crash pro-

vokes an outward transport of energy with At DXl (Ar)2, whereX .o IS the energy
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1.4 Energy confinement and shape dependencein TCV

diffusion coefficient. Assuming Xj,.e = 10m?/s, the heat pulse can extend its effects of a
non negligible fraction of the minor radius, Ar 03 cm, in atime equal to the sawtooth crash
time. In Fig.1.8 the line integrated signals of the soft x-ray emissivity are shown. The signal
measured on the chords which receive most of their contribution from the plasma centre
show the typical fast intensity decrease when the sawtooth crash takes place, while the pe-
ripheric chords present the opposite behaviour and even the signals from chords outside the
mixing radius contain the typical sawtooth signature. The mixing radius can be hard to define
experimentally because the heat pulse can travel a substantial fraction of the minor radius.
The definition of the inversion radius is presented in Fig.1.9, on the basis of the profiles of
emissivity in the soft x-ray spectral range. Such profiles have been obtained by the tomo-
graphic inversion of the line integrated signals, which will be described in detail in Chapter
3. The main contribution to the sudden central decreaseis dueto the reduction of the electron
temperature.
Both the sawtooth period and the crash amplitude are observed to strongly depend on the
shape of the plasmapoloidal cross section[19]. Small sawteeth with short periods (1.5mstyp-
ically) are observed at high elongations or low and negative triangularity, while large saw-
teeth with long periods (6ms) are observed for low elongations or high triangularity[20]. The
sawtooth period is affected by the plasmaline averaged density, to which it is roughly pro-
portional[21]. It has to be remarked that at high triangularity the confinement degradation
cannot be ascribed to the sawtoothing activity alone.
The rapid transport which accompani es the sawtooth crash can involve alarge fraction of the
plasma and is supposed to produce the same mixing effects both on electrons and ions, in-
cluding moderate-Z impurities. In the simplest approximation, the profiles of the densities of
electrons, of bulk ion and of any impurity are flattened inside the mixing radius. This phe-
nomenon can lead to a net influx of impurities to the centre in the case of a hollow radial
profile which follows short impurity bursts at the plasmaedge, or anet outflux if their profile
IS peaked.
Since sawteeth are correl ated with the safety factor, the normalised inversion radius depends
mainly on the plasma current profile and on the toroidal magnetic field, and the following
approximated relation holds for ohmic plasmas[19, 22]:
O oRy _ OO

) Bo(Ko *+ Kgh) o

(1.24)

inv
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inwhich By OBy,,.(1 +0.054(1 - Bp) OOP), with OOH = 00U gRy/ Bgyac 1San accurate
approximation of paramagnetic and diamagnetic corrections.

The evaluation of the mixing radius can be done following the magnetic reconnection model
of a sawtooth crash which was proposed by Kadomtsev[23]. During the sawtooth crash, the
helical flux between the axisand the surfaceat g = 1 reconnectswith an equal and opposite
flux outsidethe g = 1 surface[4]. The process continues up to the plasma radius for which
the helical flux equals that at the magnetic axis. With the following definition of the helical
flux[4],

I
W(r) =] Bpar(r)(1—q(r))dr’ (1.25)
the mixing radiusis defined by the condition y(r,) = O.

In afuture fusion tokamak reactor the role of sawtooth activity is expected to be important

mi x

in view of the edge safety factor, g, = 3, at which diverted discharges are intended to oper-
ate. The repetitive flattening of the central temperature and density profiles would take place
over more than a half of the poloidal cross section, and would reduce the fusion yield when
compared to peaked profiles. On the other hand, the fast radial transport to which the saw-
tooth activity is related would improve the refuelling and the He ash removal from the plas-

ma centre, as well as prevent possible central accumulation of moderate-Z impurities.
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Fig.1.9 - \Vertical cut of the soft x-
ray emissivity profile along a cen-
tral chord in shot #21022. The two
profiles have been obtained just
before and after the sawtooth crash
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Edge-localised modes, which have been observed in TCV ohmic H-mode plasmag|24], are
found to expel anon negligible part of the electron content and energy from the plasma edge,

according to the ELM frequency and the size, as well asto the plasma configuration (Single
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1.5 Overview of experiments with laser blow-off impurities

Null, Double Null D-shape, limiter). In a series of dedicated discharges in which the ELM
frequency varied between 50Hz and 300Hz, it has been found[25] that in the DND configu-
rations each ELM event expels 2.2% of the electron content and 2.6% of the stored energy,
while for SN plasma configuration the corresponding numbers are 3.4% and 7.2%.

The particle loss at the plasma edge, following an ELM event, has been observed[24] to
cause ahigher flux of neutral particlesfrom thewalls. However, the balance of the measured
impurity content in the ELM phase in TCV shows that impurities are more likely to be ex-
pelled from the plasma edge, as their rate of change lies between 6% and 10% per event.
The ELM activity brings naturally to a reduction of the particles and energy confinement

times T, and 1., asdefined in Ref.[25], according to the expressions:

Tp = Typ(1-Typfem [ANVN)-1 (1.26)
To = Tye(1—Tyef gLy AW W)L

where“u” refersto the phase between consecutive ELM events. The reduction of the energy

confinement timeis evaluated to be around 18%, depending on the ELM frequency. Howev-

er, due to the enhanced expulsion of impurities with respect to the energy content, ELMs are

anatural way for removal of fusion produced He ashes as well[26].

1.5Overview of experimentswith laser blow-off impurities

Impurity injection by laser blow-off in fusion relevant plasmas is a proven technique which
has been widely used in the last three decadeg[27, 28, 29, 30, 31, 32]. The production of a
short beam of neutral atoms or clusters by means of a short-pulsed laser reproduces qualita-
tively the rel ease of metallic atoms coming from internal structuresinto the plasmaedge dur-
ing tokamak discharges[33]. The ablation technique allows the injection of solid state non
recycling impurities in controlled quantity and timing. The short duration of the puff, typi-
cally of the order of 300us[29], allows the observation of the influx phase alone without the
bias of a prolonged source. The use of non recycling elements allows the separate identifica-
tion of the influx and the depletion phase in the time evolution of the electromagnetic emis-
sion by the impurities. VUV and soft x-ray radiation produced by partialy stripped
moderate-Z ionsis usually observed with spectroscopic methods or broadband detectors and
the decay time of the central ion brightnessisidentified with the impurity confinement times

and are often used to compare different discharge regimes.
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The main components of most of the injection systems are a pulsed laser, a vacuum system
and atarget which is made of athin film, deposited on a glass substrate[29], of the material
to beinjected. The details of the ablation system on TCV are presented in Section 3.1.
Apart from the laser blow-off method, small pellets or macroscopic clusters[ 34, 35, 36] have
been injected in plasmas, aswell as gaseous impurities by means of short or continuous puffs
at the plasmaedge[ 37, 38]. In the following, results on impurity injections from present and
past experiments are summarised, with particular attention to non recycling ablated impuri-
ties, but observations from trace gasinjections are included as well.

In many experiments, particular interest has been given to the evaluation of the transport co-
efficients in the frame of a diffusive and convective transport of impurities 32, 37, 39, 40],
and global confinement times have been obtained for many discharges[41, 42, 43]. However,
the global impurity confinement times are machine-dependent, as the effect of the plasma
sizeontheir valuesisvery strong. The experimental energy confinement times are common-
ly compared between devices with different sizes by means of scaling laws which are used
for reactor size extrapolation. Nevertheless, data obtained on impurities are still sparse and
unsystematic, but providing asimilar scaling law for impuritiesis a goal of fusion research.
Comparabl e values can come from the transport parameters. The bestfitting radial profiles of
the transport coefficients have been compared with the values provided by the neoclassical
theory[32, 37, 44] (described in Section 2.3).

Asageneral result, the diffusion coefficient has been found to be much lower in the plasma
core rather than at the periphery: for example, typical values obtained in JET L-mode dis-
charges32, 39] are D;, = 0.1+ 0.3m%sand D, = 2+ 4m?s respectively, with a step
profile in the diffusivity, during Ni injections. The convective velocity is directed inward,
with a negligible value in the plasma core and of the order of 1.5m/s at the edge. The saw-
tooth activity ismodelled with asudden increase of the diffusivity insidetheinversion radius
tovaluesof D;, = 102 + 103m?/sfor the crash duration. In ASDEX Upgrade[37] the trans-
port of Ar has been simulated with an exponential profile for the diffusion coefficient rang-
ing between D,,, = 0.02m%sand D, = 2m?/swith no convective velocity. Results from
Tore Supra L-mode discharges40], with injection of Ni, verified the supposed existence of
atransition radius separating alow diffusivity region in the plasmacore, and a high diffusiv-

ity region at the periphery, with the observed valuesof D;, = 0.2 m%sand D, decreasi ng

out

after each sawtooth crash from 20m?%/s to 1m?/s; the edge inward velocity decreases as well
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from Vegge = 70M/S10 Vgyge = 6MI/s.
The effects of the electron density and the plasma current on the transport parameters have

been investigated in the TEXT tokamak[45], following injection of Sc by laser ablation. The

edge

transport coefficients D and v are almost not affected by different values of the electron den-
sity and of the plasma current. The transport coefficients which were obtained for scandium
have been used to calculate the equilibrium profiles of hydrogen, which appeared to be con-
sistent with the experimental observations. Moreover, the diffusion coefficient of scandium
is quantitatively very similar to that of the electron energy.

The experimental values for the diffusivity in the plasma core show in some cases a rather
good agreement with the neoclassical predictions, especialy for low-Z impurities[37, 43,
44]. In other observations, the neoclassical theory cannot account for the high values of the
diffusion coefficient both in centre and at the plasma edge. The central values are found to
be moderately anomalous with up afactor of 10in JET[39], and often strongly anomal ous at
the plasmaedge. In JET, the cal cul ated edge valuesof D, = 0.06m?sand Vedge = 0-4mM/
sfail by far to approach the experimental values reported above.

The Z dependence on the impurity transport has been investigated in ASDEX Upgrade[37],
JET[42] and Tore Supra[40]. No correlation to the ion charge was found in Tore Supra,
where the span of values of Z was quite limited, the injected impurities being Ni, Ti, Mn.
Thislack of dependence on theinjected elements confirmsthe results obtained at JET, where
Ti, Fe, Mo were used in consecutive shots and the same evol ution of soft x-ray radiation was
observed. Similar results were found in Alcator-C after laser blow-off injection of Al, Si, Ti,
Mo[46]. While the value of the diffusion coefficient isvery low in the centre and rises expo-
nentially in ASDEX Upgrade, the transport was found to become strongly convective with
increasing Z with inwardly directed convective velocities, leading to very peaked impurity
profiles. The pronounced peaking developed during the buildup phase of sawteeth and dis-
appeared during the crashes that produced flat or hollow profiles.

Most of these experiments were performed with the injection of trace quantities of impuri-
ties, and the plasma parameters were not affected by the moderately increased power emis-
sion during the transient phase of impurity transport in plasmas. However, when perturbative
guantities of metallic atoms wereinjected, effects on the plasmatemperature were found. In-
vestigationson JET[47, 48] reveal that the electron temperature in the plasma core following

ablation decreases with a time response which is not explained by the value of the electron
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thermal conductivity alone; this parameter can however explain the time scales of the follow-
ing relaxation phase. For larger amounts of injected material the whole plasma periphery is
involved in adramatic electron temperature drop whose propagation speed can be explained
only by anon local change of the of the heat transport coefficients. The plasma responds to
the edge perturbation by increasing its heat diffusivity practicaly instantly, even in areas

which cannot have been affected directly by the impurity induced edge cooling.

1.6 Aim and outline of thethes's

Thisthesisis part of ageneral study on the effects of the plasma geometry on the transport
of energy and particles, and addresses the behaviour of impurities.

Impurities determine radiation losses, contribute to fuel dilution and hence play an important
role in fusion plasmas. In view of advanced, strongly shaped reactor designs, one important
and frequently neglected aspect isthe effect of operating modes and plasma geometry on the
confinement of fuel particles and impurities, specifically in relation with the energy confine-
ment. In thisthesis, the spatial and temporal evolution of the impurity density and their radi-
ation will be studied by means of the laser blow-off technique, which allows the separate
observation of the inflow and depletion phases separately. The plasma elongation and trian-
gularity in particular, aswell as of magnetic field, current and electron density will berelated
to the impurity confinement time. The behaviour of this parameter will be compared to that
of energy confinement time for the same plasma discharges or for equivalent plasma condi-
tions. The determination of the transport coefficients of impurities in different operational
regimes and plasma shapes of TCV, by means of a standard ssmulation program, will be
made.

In this chapter an outline on the possible exploitation of nuclear fusion as a future energy
source has been given. The basic concepts on the present scientific and technological status
for the actual achievement of a controlled fusion reactor have been presented, together with
some considerations on the role of moderate-Z impurities and helium ashes on the energy
balance of areactor machine. Theresultsfrom TCV on the plasma shape dependence on the
energy confinement time have been described, together with a review of other experiments
on theinjection of non recycling impuritiesin plasmas. The possibility to extend the research

on impurity transport in non conventional plasma shapes, thanksto the unique TCV features,
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IS presented.

In Chapter 2 the theoretical background is given on the interactions of impurity ions and
plasma. The atomic physics which determines the populations of ion species and the
populations of bound electrons in excited states is described, together with the phenom-
ena which lead to the electromagnetic emission due to the ions in plasma. The corona
model, which provides a fairly good approximation to the measured populations in low
density plasmas, is presented. A well established theory on particle transport in plasma,
the neoclassical model, is described. The discrepancies between the theoretical predic-
tions and the transport measurements in many tokamak experiments are referred to as
anomal ous transport, whose theory is undevel oped especially when dealing with impuri-
ties. A general time-dependent model, in which the transport parameters are supposed to
be quantitatively determined by comparison of measured and simulated signals, is pre-
sented.

In Chapter 3 the TCV tokamak, the impurity injection system and the diagnostics which
are more relevant for the analysis of the impurity behaviour in TCV are described.
Details are given of the ruby laser system, the optical apparatus and the ablation target.
Among the diagnostic systems, a particular attention is given to the array of 200 soft x-
ray photodiodes, which allows the detailed tracking of the impurity concentrations in the
plasma core, and the SPRED ultraviolet spectrometer, which has been used to detect
light from partialy stripped impurities in the plasma edge.

A short description is given on the diagnostics which allow the plasma characterisation,

like the magnetic probe array and the Thomson scattering system.

Chapter 4 starts with the description of the time evolution of the signals which are col-
lected by the soft x-ray photodiodes, and how their shapes are correlated to the transport
of impuritiesin TCV. It is shown that the actual quantities of injected material do not per-
turb the plasma background in terms of electron density and temperature. The scan of
many parameters was performed with the aim of studying the behaviour of the lifetime
for different geometrical plasma configurations. Scans of the electron density, plasma
current, triangularity, elongation and toroidal magnetic field have been carried out in lim-

iter, ohmic L-mode plasmas.
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» Chapter 5 deals with the 1-D simulation code STRAHL, which simulates the soft x-ray
emissions from the impurities. The code cal cul ates the time evol ution of the x-ray signals
for any chosen radial dependence of transport parameters (diffusivity and convective
velocity), while the sawteeth radius and frequency, and the plasma parameters are given
as input parameters.

In the first part of the chapter the correlation between the transport parameters and the
shape of the simulated signals is presented. Simulations can also be performed for plas-
mas in which the sawteeth radius or frequency is different from the experimental values,
in order to determine their role in the transport of particles.

In the second part of the chapter the search of the bestfitting transport parametersis done
inrelation to the actual shapes of the line integrated signals. Many of the signals obtained
in the experimental campaign have been reproduced with chosen profiles of the diffusiv-
ity and the convective velocity, and these parameters have been correlated to the different
plasmaconditions. Particular attention has been given to those casesin which the lifetime

Is strongly affected by the variation of the plasma parameters.

* In Chapter 6 conclusions are drawn and suggestions for future experiments with impuri-

tiesin TCV are presented.
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2. THEORY OF RADIATION AND TRANSPORT
IN PLASMAS

Depending on operation conditions, 10-100% of the power delivered to the plasmaislostin
the form of radiation. The measurement of this electromagnetic emission by the plasmais of
fundamental importance to evaluate many plasma parameters. Relevant examples are the | o-
cal and global power emissions which are needed to evaluate the energy transport and con-
finement. A number of diagnostics, which are based on the detection of the plasmaradiation,
are used to measure the degree of plasma purity, the content of different ionized impurities
and their species[49], the particle transport in the plasma.

In order to correlate the radiation emission to the particlesin plasmas, it is necessary to know
the densities of free electrons, the fractional abundances of the bulk plasmaions and the mod-
erate-Z ionsin al the different charges, the populations of bound electrons in al possible
states. Depending on conditions, these popul ations can be in asteady state or can be changing
intime.

In current fusion plasma experiments there are particles whose popul ations can easily reach
a steady state equilibrium, like the electrons, the main plasma species, the main impurities
coming from the first wall of the vessel and aso deliberate impurity gas puffs, like argon or
neon. In this case, ssimple model s exist by means of which the various populations can be pre-
dicted with good precision. On the contrary, the analysis of transient eventslike the presence
of non recycling heavy impurities requires the cal culation of time varying fluxes, ionisation,
recombination and radiation emission.

Asfar as the atomic physics is concerned, two tractable plasma models refer either to very
low or very high electron densities, and are called the corona equilibrium model (Section
2.1.3) and the local thermodynamic equilibrium (LTE) model respectively. However, only
the former can find its applicability on plasmas like those produced in TCV, while the |atter
refersto far higher electron densities|50] and will not be detailed in this Chapter.

In almost all the experimental plasmas the transport of particles across zones where the plas-
ma parameters are not uniform leads to the existence of populations of ions which are not

described by either the corona or the LTE equilibria. Thisis for example the case for short-
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Chapter 2. THEORY OF RADIATION AND TRANSPORT IN PLASMAS

lived phenomena like the impurity contamination of the plasma by means of a blow-off in-
jection of moderate-Z non recycling particles. This phenomenon, arising from the radial
transport of the impuritiesin many different ionised stated, requires the use of time depend-
ent models for a quantitative description.

The only mature theory, which provides quantitative predictions for impurity transport isthe
neoclassical theory (Section 2.3) which provides the calculation of the parallel and radial
particle fluxes. The observed difference between the theoretical results and the experimental
observations show that the transport has anomalous contributions. However, a theory ex-
plaining the excess of particle transport is still undevel oped.

Theradial transport of ions and the subsequent transition between different ionised states are
often analysed by means of numerical codes, one of which, STRAHL[51], has been exten-
sively used for the interpretation of thiswork, using empirical transport coefficients.

In the following, the principal processes relevant to the balance in the populations of differ-

ent ionised states are briefly reviewed.

2.1 State balances

Collisional processes among particlesin a plasmahave afundamental role in the determina-
tion of the populations of bound electronsin different energy level§52], and of different ion
species following aionisation or recombination event. In laboratory plasmas such as those
produced in TCV, the radiative events, generated by the collisions between ions-or neutrals-
and photons are much less frequent than the collisional events between particles, because of
the low density of the radiation, and in the following will often be neglected. The events
which changetheion charge are the collisional ionisation, which is not accompanied by el ec-
tromagnetic emission, and the radiative, dielectronic and charge exchange recombinations
which normally leave the ion in an excited state and are followed by the emission of one or
more photons. The collisional excitation does not change the charge of the involved ion -or
neutral atom- but the excited state decays with the emission of a photon.

Inwhat follows, the rate coefficients of each event, taken from Ref.[52], are briefly presented

and correlated to the fractional abundances of impurity ionsin a plasma.
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2.1 State balances

2.1.1 lonisation state distribution

Caoallisional ionisation. Most ionisations result from collisions of free e ectrons with neutral

atoms or partially stripped ions, in which the part of the energy of the free electron is used to

remove a bound electron. The process can be written
AZ+e - AZ*1+2e, (2.1)

A semi-empirical formula for the rate coefficient (number of events per unit density and

time) of a given bound state i can be found in Ref.[52]:

T b2 .
[b,vI= 1.7 (10~ 149%5%%%D exp%—_lég[l exp X } [m3/s] (2.2)
e

where g = 1+ (Jé/n)ln|1 +T¢/X| isthe Maxwellian-averaged Gaunt factor, x; is the
ionisation potential of the state considered and Ry the Rydberg constant. The total rate co-

efficient is the sum on all contributing electrons in the ion, but usually only the uppermost

levels of theion have to be considered.

Radiative and diel ectronic recombination. Radiative recombinationsis the capture by anion

AZ+1 of charge Z + 1 of afree electron into an excited bound state. This processis accom-

panied by the emission of a photon and can be described as:
AZ*li+e , AZ+hv (2.9

The rate coefficient for a radiative recombination to the bound state nin theion i is usually

calculated using the Kramer’s formula[52] :

20, i exp L R 3
[0, M 5210 20gZD_I_—eD PEr DE'DT g [m*/s] (2.9

Thisrate coefficient hasto be multiplied by the fraction of free holesin partially filled elec-
tron shellsin theion. In Eq.(2.4) the Gaunt factor § can be taken equal to 1 and

Ei(y) = J’:%ds (2.5)

For high-Z ions the dielectronic recombination can play an important role in the charge state
balance and contribute significantly to the power radiated by impuritiesin the plasma. This
phenomenon occurs when a free electron is captured into a highly excited state and the re-

leased energy is used by ainner bound electron to move to a higher bound state. The final
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Chapter 2. THEORY OF RADIATION AND TRANSPORT IN PLASMAS

result of such aprocessisanionin doubleexcited, very unstable state which normally decays
radiatively:

AZ+lye , AZ° L AZ +hy o AZ+hy (2.6)

but which can also lead to an autoionisation process in which the captured electron is ex-
pelled again.
A widely used expression for the rate coefficient is based on empirical fitsto avariety of the-

oretical calculations;

3/2 E.
[5;, V0= 8.8 (10-18f,, 2%/ 3%’?% R”expD T”E[m%] 2.7)

where f; j is the dimensionless oscillator strength[52], whose magnitude is in the order of

unity.

Charge exchange recombination. A further process which takes place in apopulation of par-

tially stripped ions in plasmas is charge exchange, in which an electron, during a collision,
istransferred to an ion normally from a neutral atom. This reaction is most likely to happen

when an impurity collides with a neutral hydrogen (or D, T) atom:
AZ+*1+HO , AZ+Hl+hv -~ AZ-1+H1+hv (2.8)

The details on the rate coefficient LoV} of this process can be found in Ref.[53].

In hot plasma experiments, the total rate of charge exchange recombination events, whichis

I L 1 L
10 10 10° 10 10 102
T_[eV] T, [eV]

Fig.2.1 - (a) The collisional ionisation rate coefficients for carbon ions versus the electron
temperature. (b) The collisional recombination rate coefficients for carbon ions versus the
electron temperature.
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2.1 State balances

equal to nyn, LoV, Where n, isthe density of neutrals, is far smaller if compared to the
competitive recombination processes as the number of neutralsis much less that the number
of electrons. Normally the charge exchange effect becomes significant only when neutral

beams are injected in the plasma.

As an example concerning typical TCV plasmas, the collisional rate coefficients for carbon
areshown in Fig.2.1. In the plasmacentre of TCV the electron density can be assumed to be
around 5 (11029 m3, thus the typical characteristic time for the slowest ionisation, from C°*
to C 8, isabout 10™s, which is much less the time scales of most of the transport processes
(except sawtooth crashes). As shown in Fig.2.2, for an electron temperature higher than
~120eV, the ionisation rate exceeds recombination and consequently fully stripped carbonis
the dominant form over most of the plasma cross section.

On the other hand, even in the peripheral part of the plasma, where the electron temperature

10*15

1071 : ionisation to C%

Fig.2.2 - The collisional ionisation
and radiative rate coefficients for

radiative. .:

10k dielectronic atve.....
recombination

‘recombination ‘;‘7‘ : or
fromc® [ [ fomE the transition between C °* and
107 . E— - . C® versus the electron tempera-
10 10 10 10 10
T, [eV] ture.

is of the order of 1eV, the total collisional recombination rate for the process C S toCis
never higher than afew 10"¥m%/s. In this case the characteristic recombination time is about
10ms or more, considering that the electron density can be lower than the central value. As
this time is of the same order of the transport times across the minor radius of the plasma,
highly ionised impurities may be found even at the plasmalast closed flux surface where the

€l ectron temperature would be too low to produce them by ionisation.
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Chapter 2. THEORY OF RADIATION AND TRANSPORT IN PLASMAS

2.1.2 Excited statesdistribution

In a plasmain which the interactions with photons are negligible because of alow radiation
density, the populations of bound electrons in excited states are produced by two processes
which result to an excited bound electron. Recombination described in the previous Section
normally lead to an excited state in the ion or neutral after the electron capture, and the rate
coefficients relative to the particular final excited states, of the form given in Eqgs.(2.4, 2.7)
can be found in Ref.[52].

In plasmas, most populations of excited electrons in bound states derive from collisions be-
tween ionsin ground state and free electrons which are not captured in the reaction. Therate
coefficient can be obtained by means of the perturbation theory in quantum mechanics for

the levels of the e ectronsin theion, and reads:

2R
(o= 3.15 (1023, E’?% EyexpD T'JDg [m3g] (2.9)

where f, J- is the dimensionless oscillator strength. The Gaunt factor g can be chosen equal
to the one for bremsstrahlung, which will presented in Section 2.2.1.

The populations of electrons in excited states are then influenced by the decay to a lower
state, whose process is accompanied by the emission of a photon. The decay can be sponta-
neous or triggered by a collision with a photon or a free electron. While the collisional rate
for the decay is dependent on the electron or photon density, the timescale of the radiative
spontaneous decay is determined by atomic physics considerations alone and it is quantified
by the Einstein coefficients A, i A given Einstein coefficient A, j defines the probability per
unit time of a spontaneous transition from a state i to a state j, and the expression

j<i
defines the radiative lifetime of the statei.
A rough approximation[52] for the Einstein coefficientsis given by

A= 107824 (2.12)

and consequently the spontaneous relaxation times from excited levels are very short com-
pared to the typical transport and ionisation/recombination times. Exceptions exist in which
metastabl e states are formed and the scaling law given in Eq.(2.11) isno longer valid; an ex-

ampleisgivenin Section 2.1.3 and is presented as alimit of the coronamodel.
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2.1 State balances

The collisional processes can be neglected as soon as the electron and radiation densities are
low enough. Thisis one of the assumptions for the validity of the corona model, which is

described in the following Section.

2.1.3 Corona model

In the early 1950s, the corona model was proposed to explain some observed features in the
spectrum of the solar corona and it has also been applied in the description of low density
laboratory plasmas. The fundamental approximation of thismodel isthat all the upward tran-
sitionsare collisional (sincetheradiation density islow) and al the downward transitions are
radiative. The plasma has to be optically thin, thus all photons smply escape the plasma
without being reabsorbed, and the downward transitions are spontaneous and independent of
electron density.

Each excited state has a population arising from the equilibrium between the collisional ex-
citation and the spontaneous radiative decay, without transport of ionsfrom regions with dif-
ferent temperature. In the case of excitation from the ground state to the level i, the following
balance holds:

= (N[0, /5y A (2.12)

n;
ng 3
where the summation involves all the Einstein coefficients for the decay from the state i to
al the statesj.

A similar balance occurs between different ion species, in which it is assumed that the ioni-

sation and recombination rate coefficients do not depend on the excitation states of the ions:

n Lo
Z — VI:%‘I']_—»Z (2.13)

Nz+1 EUVQ -Z+1
inwhich [ov, 5, isthecollisional ionisation rate coefficient and [oV, , ; | , thera

diative recombination rate coefficient. Eq.(2.13) shows that the ratios of ion species of agiv-
en element are independent of the electron density and only depend on the electron
temperature.

In Fig.2.3 thedistribution of carbonion speciesin plasmasis shown as afunction of the el ec-
tron temperature. The assumption of corona equilibrium is made, thus the representation is
very general and device-independent, when the requirements for the model to be valid are
satisfied.
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Some features of such distributions are correlated to atomic physics properties of the energy
levels. For example, the broad temperature range in which the C** ion exists is due to the
relative stability of the helium-like ion. This stability can be observed in Fig.2.1, which
showsthat the ionisation rate coefficient for the C** to the C>* ionisation is much lower than

the rates for the previous steps.

0.8

0.6

0.4

0.2

o NS SN
10 100
T [eV]

Fig.2.3 - Fractional abundances of different ionisation states of carbon in corona equilib-
rium as a function of the electron temperature.

Fig.2.4 shows the ion distribution in the case of Si, for which again some particularly stable
configurations become dominant, like the Ne-like state at the plasma periphery and the He-
like state which dominates in plasma centre. In the core of Ohmic TCV plasmas (at 700-
1200eV) this state coexists with H-like and fully stripped silicon. Only for temperatures
above 5keV, which are obtained in TCV plasmas with auxiliary heating, amost al the sili-
con ions are fully stripped.

A simple way to approximate the highest ionised stage which is reached by impuritiesin a

plasma can be given by means of the following formulg52]:

Z=,[5T/R,. (2.14)

The coronamodel can be applied aslong as radiative de-excitation dominates over collision-
al processes. As far as the electron density is concerned, the limit is reached at the point

where collisions of the ions with free electrons induce the transition of the excited electrons
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2.1 State balances

to a neighbouring excited level at non negligible rate[50]. In this way the radiative decay of
the excited level isreduced. A criterion for the use of the corona model can be obtained by
assuming that for a given electron density there are as many radiative decays as collisional
transitions out of a level, thus resulting in aline intensity which deviates of 50% from the
coronamodel value. This criterion can be written as:

Ne[oVh< Y Aps (2.15)

s<p

where LoV, isthe collisional rate coefficient for the transition from the excited state p to

gand Aps the Einstein coefficients for the radiative decay to a state s.

si**
Ne-like -

fractional abundances

Fig.2.4 - Fractional abundances of different ionized states of silicon as a function of elec-
tron temperature in corona model.

Ideally the density limit should be set in order to respect Eq.(2.15) for al the states p. How-
ever, adetailed inspection of the values of the various coefficients indicates that there is al-
ways some level for which the criterion is not satisfied, as for higher principal quantum
numbers the probability of a spontaneous decay is decreased with respect to that of a colli-
sional decay. As an example, the limit density for a hydrogenic ion of charge Z, and avalue
p = 6 can be evauated to give[50]:

=~ 6.5 (10"%(Z + 1)8 [T 212+ D/ Te [y (2.16)

ne, crit
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and in the case of carbon in a plasma with T, = 100eV, the found limit density is

n = 3 (102 m3 which is 2-3 orders of magnitude larger than the common electron den-

e crit
sitiesin fusion plasmas. Such considerations however do not take into account the possible
existence of metastabl e states where collisional decays may be significant compared to radi-
ative decays, like for example the 2s2p 3P state of the C2* ion.

In conclusion, the coronamodel can be auseful tool to give an estimate of theionised species
of moderate-Z impuritiesin TCV, as the predictions are general, machine independent and
the plasma temperature is the only sensitive parameter as soon as the model hypothesis are
valid. However, theradial transport of impurities may play an important role on the fraction-
al abundances of impurity ions, especially in view of the fairly low recombination rate. Asa
consequence, theion densities and the radiation distribution need to be described with amore

general model which takes transport into account.

2.2 Radiation from plasmas

In Section 2.1 the description was given of the theory which gives a quantitative evaluation
of the transition rates of the different ionised and excited states for ions in a plasma, which
participate in the balance of the various states. Most of the transitions which have been de-
scribed are accompanied by the emission of electromagnetic radiation, which contributes to
thetotal emitted power with acontinuum spectrum or discrete spectral lines. These processes

are the most relevant and will be detailed in the following:

» Bremsstrahlung radiation arises from electron-ion collisions, which normally consist of
small angle deviations of electrons as aresult of Coulomb scattering in the electric field
of the ions. The bremsstrahlung radiation results from a free-free interaction, as the ini-
tial and final states of the electrons are not bound, and its spectrum is consequently a

continuum.

» Recombination radiation produces a continuum spectrum as the initial state of the
involved electron isfree. The final state is bound and usually excited as result of the cap-

ture of the electron by an ion and usually aradiative decay follows the capture.

» Lineradiation originates from the transition of a bound electron from an excited state of

an ion to another state of lower energy. A photon of energy E = hv = E;,—Ej,, is
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2.2 Radiation from plasmas

emitted and the overall spectrum, in theionsrest frame, is discrete.

» Cyclotron radiation arises from the gyromotion of charged particles around the magnetic
field lines. Electrons, due to their low mass and consequently high cyclotron frequency
w = eB/m,, provide the most of the radiation, while the contribution from main and
impurity ions is negligible. In the case of typical fusion experiments, in which
B = 1+ 10T, the radiation is mainly emitted in the microwave spectral range. An esti-
mate of the emitted power density is given in Ref.[54] in the assumption of an optically
thick plasma for the spectral range of interest. For typical TCV plasmas the emitted
cyclotron radiation power is in the order of 1W and can be neglected in comparison of

other 1oss mechanisms.

2.2.1 Bremsstrahlung
In fusion plasmas the main contribution to bremsstrahlung radiation comesfrom electron-ion
interactions. The contribution from electron-electron Coulomb collisions is generally negli-
giblefor non-relativistic energies astheinvariance in the motion of the centre of charge does
not produce dipole emission.
Theradiation per unit volume of the plasmacan be obtained by integration of the power emit-
ted by each event of electron-ion scattering, integrated on the velocity distribution and the
collision parameter. In the case of a Maxwellian isotropic distribution, and in the classical
approximation, the power per unit frequency is given by[52]:

j(v) = Gnenzzzaf%%: ;3?;;03 Eﬁ{%mexp E—%E

where g is the Maxwellian-averaged Gaunt factor. Corrections due to quantum mechanics

(2.17)

aswell as relativistic effects are generally taken into account inside the Gaunt factor. This
factor, intheclassical limit, isplotted in Fig.2.5 asafunction of hv/ T for different approx-
imations, which are correlated to the typical scattering angle of an electron in a plasma.

For T, « 22Ry and low frequency, the following Kramers approximation is valid:
g = §In|3.24 m0°Tokev] *hvikev] 2} (2.18)

For T,» ZZRy the Born approximation can be used:

~_ B, ghvpo ghv
g = - KOEQTeDeXpEQTeD (2.19)
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where K is the modified Henkel function of order O.

It has to be remarked that the Gaunt factor lies between 0.3 and 2 for a wide range of tem-
peratures which can be found in typical fusion plasmas experiments. Therefore, amost all
the temperature and radiation frequency dependence of the emitted power is found in the
ToY2exp(-hv/T,) term, and consequently the average photon energy is approximately
equal to the electron temperature. For plasmas of interest in thermonuclear fusion the

bremsstrahlung emission is mainly in the x-ray spectral range.

| — Born |
— - Low Frequency Kramers

Fig.2.5 - Maxwellian-averaged Gaunt factor as

: : calculated from Kramers and Born analytical

1072 1 10> approximations given respectively in Eq.(2.18)
hv/ T and Eq.(2.19).

Let gpart a small effect on the Gaunt factor (Fig.2.5), the effect of high-Z ionsin a typical
hydrogen plasma is evident from EQ.(2.17). The emitted power by bremsstrahlung grows
with aZ2 law and a small quantity of heavy impurities can easily lead to an important loss
of energy from the plasma core where impurities can concentrate and be fully stripped.

When bremsstrahlung dominates, however, provided the Gaunt factor to be the same for all

species, the emission is proportiona to:
> NeMZE = NGZq (2.20)
|

in which the definition of Z is included. Using the quasi-neutrality condition

Ne = Z NZ;, Zg; Can be equivalently be expressed as:

Zs = ZniZiZ/ZniZi. (2.21)

Z; isameasure of theimpurity contamination of fusion plasmas. It isusually derived from

measurements in the visible and near infrared, where recombination radiation is negligible.
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2.2.2 Recombination radiation

In theframe of free electron collisionswith ionsamajor rolein the determination of the emit-
ted radiation is taken by the recombination process in which the final state of the electronis
bound. Thefinal spectrum of recombination is continuous and reflectsthe kinetic energy dis-
tribution of the electrons of the plasma, as each electron contributes with its kinetic energy
to the spectral distribution of the emitted power. The subsequent decay of the captured el ec-
tron in an excited state causes the emission of a photon, according to the processes described
in Section 2.2.3.

Asfar asthe continuum contribution is concerned, it hasto be observed that any given atomic

level contributes to the spectrum only with photons of energy

2
hv = %mv2 + Ry% (2.22)

To obtain the total recombination continuum radiation from the plasma, the recombination

rates given in Egs.(2.4, 2.7) have to be taken into account. The power contribution from free

electrons of energy [E, E + dE] recombining to thelevel i is given by:

dng

where dn./ dE isthe energy distribution of the free electrons, which can normally be Max-
wellian. The total recombination power is obtained by integration of Eq.(2.23) on the whole
energy spectrum of the electrons and summing on al free states of the ions. The explicit ex-

pressions can be found in Ref.[52].

2.2.3 Lineradiation

Depending on plasma conditions, a large contribution to the total emitted power may come
from transitions of bound electrons between different energy levels of neutral or partialy
ionized impurities. The radiation is produced in the form of narrow spectral lines without a
continuum background, as single photons are emitted at the energy corresponding to the dif-
ference of energies of theinitial and final state of theion, hv = E; —E;.

Provided the plasmais optically thin, the power density relative to the spectral line arising

from this transition is given by[52]:

log = Nz oAz, qu(hv pq) (2.24)
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where A, pq Is the Einstein coefficient giving the probability of transition from the state p
toginion Z per unittimeand n; 0 isthe density of ions with charge Z which have an elec-
tron in the excited state p. In order to determine the total line radiation |oss from the plasma,
it is necessary to know the abundance of each population of ions with given excited states.
For tokamak plasma conditions, each abundance n; |, has to be determined from the colli-
sional excitation and the recombination rate coefficient. A simplified evaluation can be de-
rived for example by assuming the validity of the corona equilibrium model, as described in
Section 2.1.3. In this frame, from Eq.(2.12) the population of electronsin the level p of the

ion Z is determined:

Nz, p = NeNz gLOMY 4 Z Az, bq (2.25)
q<p

inwhich LoV}, isthe collisional excitation coefficient from the ground level of theion
Z to the excited state p. The total power emitted can thus be expressed as.

_ 0
lpg = NaNz, o (OVL, gp%xz pq/qz Az o(V ) (2.26)
p

which only requiresthe knowledge of the ground state population n; , of eachionic species.

2.2.4 Energy integrated spectral emissivity

For practical purposes, the calculation of the total emitted local power of an ion population
in a plasma can be expressed as function of temperature, without distinguishing the kind of
€l ectromagnetic emission. Thetotal plasma emissivity is obtained by summing the contribu-
tions of all ion species, including the main plasmaion, and is given by the following expres-

sion:
E(r) = Zsz(r)ne(r)nz(r) (2.27)

which has the advantage to correlate the emissivity to local parameters only and to include
all the contributions in the energy integrated spectral emissivity, shortly called radiation pa-
rameter €,(r) . This parameter, which correspondsto the power emitted by aspecies per unit
electron and its own density, depends on the excited and ionised populations for each ele-
ment, thus it is affected by the electron temperature and the transport.

Assuming atransport free coronal equilibrium, it is possible to evaluate this parameter in a

general configuration and machine independent situation, as it depends only on the electron
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temperature. Moreover it can take into account filtering and the sensitivity of detectors, with-
out loss of generality. As an example, the corona radiation parameter €(r) is shown in

Fig.2.6 for silicon and carbon. It can be remarked that the highest values of the emissivity

HHE H L |

1 2 ‘ — ‘
10 10 T [eV] 10 10

Fig.2.6 - The total radiation parameters for silicon and carbon as obtained by STRAHL
database. For silicon the partial radiation parameters are shown. R corresponds to the
emission by an ion in corona equilibrium with plasma, given per unit electron and impurity
density.

are found at low temperature. Impurities, depending on their concentration and on the elec-
tron density, can dominate the power balance in the low temperature regions of the plasma.
For silicon, the partial contributionsto the total radiation parameter are shown in Fig.2.6. At
low electron temperature, recombination and bremsstrahlung are negligible, while they be-
come moreimportant above 100eV. For higher temperatures beyond 5keV, only the bremsst-
rahlung contribution is important for silicon, since there are no more bound electrons to
contribute to the line radiation, and the recombination rate is dramatically reduced. In this
case, thetotal emitted bremsstrahlung power from different elementsfollowsthe Z2 depend-

ence, as shown in Eq.(2.17).
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2.3Particletransport models

In the basic corona model, bulk transport of different ion species in the plasmais not taken
into account. In many situations the populations are not in corona equilibrium, as the char-
acteristic times of transport are in the same order of magnitude as the times needed to reach
the equilibrium. Moreover, any steady state model cannot take into account transient phe-
nomena which are common during perturbations in the plasma density, temperature or com-
position.

The problem of the quantitative evaluation of the transport propertiesin a plasmais of fun-
damental importance as they affect the confinement time of any species, including bulk ions
and electrons. Over the decades, models accounting for the radial transport of particles, due
to various local microscopic or global plasma properties, have been proposed[55, 56, 57].
The classical theory takesinto account Coulomb collisions between charged particles which
affect the Larmor orbits, whereas the so-called neoclassical transport is caused by collisions
affecting the guiding centre orbits created by the magnetic field of the toroidal confinement
system. Thistheory, while being used as a comparison reference for most of the experimental
data, cannot explain the observed radia transport occurring in tokamaks, which in the ma-
jority of conditions is significantly larger than the one which can be ascribed only to colli-
sional effects. The amount of transport which cannot be explained by the neoclassical theory
is called anomalous.

In the following Section the classical approach to the collision-driven transport in plasmasis
presented. The theory of neoclassical transport, which makes quantitative predictions of the
radial fluxes of particlesin atypical toroidal plasmafor experimental fusion, isdescribed in
Section 2.3.2. The general time dependent evolution of transient phenomena of transport of

impurity ionsin aplasmawill be presented in Section 2.3.4.

2.3.1 Classical approach of particletransport

The basic property of both the classical and the neoclassical transport theories is the concept
of Coulomb collision frequency between the considered test particle and the surrounding
species. Depending on the particlesinvolved, adeviation of the trajectory takes place whose
intensity depends on the charges, masses and the impact parameter. However, in case of
heavy ions, the assumption can be safely made that collisions with electrons do not affect the

ion trgectories. Without entering in the details of Coulomb scattering, it can be found[58,
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59] that the collision frequency of aspecies‘a with aspecies‘b’ can be expressed, for equal

_42met 1 | mymy Z3ZZInA
3 Mg\ M, + m, (KT)

in which InA isthe Coulomb logarithm. The total collision frequency of the species‘a is

temperatures, as:

thesumv, =  v,, referring to all the ‘b’ ion species present in the plasma.

The test particle of the species ‘@ can be assumed to follow a random walk driven by inde-
pendent scattering events (Brownian random process)[58], and the diffusion coefficient can
be thus calcul ated:

Ar)2
p - Hen, 22
where Ar istheradial displacement of the test particle for collisionstaking place at timein-
tervals t;. The expression in Eq.(2.29) is valid for awide class of problems relating to the

random walk diffusion. In the case of motion through a magnetic field, the relation holds:
[Ar)20 = 2p? (2.30)

p, being the Larmor radius. From Egs.(2.29, 2.30), the classical diffusion coefficient

Dc. = pPv, isobtained.

2.3.2 Neoclassical transport

A step beyond in the analysis of the transport of particles in toroidal geometry is based on
thefact that, in acollisionless plasma, the guiding centres of electronsand ionstend to follow
orbits which imply a natural radial displacement along their natural motion. These can be
passing orbits, which involve full toroidal turns or the so-called banana orbitg 4], the latter
being most important for transport. In real plasmas, the effects of Coulomb collisions super-
poseto theradial motion and make particlesmoveto different orbits. The collision frequency
is a parameter upon which different transport regimes are identified. The different regimes
arise from the possibility for trapped particles to complete a bounce orbit before being devi-
ated to a different orbit by a collisional event.

The condition for which the bounce frequency islower than the frequency of events (one or
more collisions) for which a particle deviates its trajectory enough to be detrapped can be
expressed as.
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v.0= V,aR

a

<1 231
e32y, (2.31)

In Eq.(2.31), which contains the definition of the collisionaity vU, q isthe safety factor and
€ = a/R istheinverse plasma aspect ratio. While this inequality typically holds for elec-
tronsand mainionsin low density, high temperature plasmasfor which the collision frequen-
cy islow enough, the Z2 dependence of the collision frequency reported in Eq.(2.28) does
not allow moderate-Z ions to perform complete banana orbits without collisions.

Asfar as collisionadlity in TCV plasmas is concerned, an expression can be obtained by re-
placing Eq.(2.28) in EQ.(2.31) and substituting the TCV parameters(R = 0.9m, e = 1/35
at the plasma edge, less in the centre). The numerical coefficients have been calculated for

silicon in a deuterium plasma containing carbon as an intrinsic impurity:

Z2q Ng n
- -16_5 1 2 S 2 91
vgH = 1.03 10 > nD%l +2.747Z§ s + 2.302Cn 0 (2.32)

D
where the densities (in m3), the temperature (in eV) and the safety factor g vary along the
minor radius of the plasma.

It can be remarked that a concentration of fully ionised carbon of 1.5%, which isfound in
clean TCV plasmas, provides a contribution to the overall collisionality equal to that of deu-
terium alone. The strong effect given by ZZ isbalanced by the usually low concentration of
injected silicon in the plasma, however in case of H-like silicon with ng/ny = 2 [10~* the
contribution to v U is 10% of that of deuterium.

The collisionality has been calculated for many of the discharges in which silicon has been
injected by meansof laser ablation. The profile of v qUisawaysincreasing towardsthe plas-
ma edge because of the dominance of the increase of the q/ T2 factor over the decrease of
Np - Inthe centre the minimum value of v 00.6 wasfound for high temperature, low den-
sity plasmas (T 5 = 11506V, Ny, = 2.5 (109 m3) with about 2% of carbon, while at the op-
posite end of the TCV operating domain (T = 600eV, n =9 [10%° m3) the central
collisionality was vgHO9.

Depending on the collisionality v of a given species, the transport can be in different re-
gimes. At low collisionality, for which vl< £3/2 (0.15in TCV), the bounce frequency of the
trapped particlesis higher than the detrapping collision frequency and the trajectory of most
particles of the species follow atrgjectory determined by the toroidal geometry. The radial

extent of the orbits is larger than the Larmor radius and consequently the diffusion coeffi-
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cient is larger than the classical one. In thisregime, called banana regime after the shape of

the collisionless trapped orbits, the diffusion coefficient can be approximated with[4]:

92
D 055vp? (2.33)

which has been obtained in analogy of Eq.(2.29), using the width of the banana orbit and the
fact that only afraction 0€1/2 of all particlesistrapped. This coefficient exceeds the classi-
cal value by thelargefactor g2/ £3/2 whichisof the order of 10in the centreof TCV plasmas
and up to 50 at the plasma edge. However, as shown above, the collisionality of the silicon
impuritiesin TCV makes them very unlikely to bein thisregime.

At high collisionality almost all particles are scattered before an orbit is completed. The low-
er limit of collisionality for this regime, called Pfirsch-SchllUter regime[57, 60], is found
when the trapping of particlesin the low field side becomes negligible[4] and it is given by
vU> 1. The particle fluxes can be obtained by means of fluid equations which are justified
by the high collisionality, where the hoop force arising from the plasma pressureistaken into
account.

The solution of the fluid equations leads to the fact that the radial fluxes of particles show
two components, the diffusiveterm D(r) depending on the impurity density gradient, and a
velocity term v(r) which locally implies the convective radial motion of particles. Without
entering in the details of the calculations, the magnetic surface averaged radia flux of parti-
cles can be written as:

T,0= gi]DCLEIL +2 Hq% E@ZB“’D (2.34)
in which n isthe electrical conductivity of the plasma (in parallel and perpendicular direc-
tions), Es thetoroidal electric field corresponding to the loop voltage, D, theclassical dif-
fusivity given by Egs.(2.29, 2.30). The term which multiplies the density gradient is the
Pfirsch-Schiter diffusion coefficient. A second contribution to theradial flux isgiven by the
term proportional to the particle density, whose coefficient has the dimension of a velocity.
This contribution, called Ware pinch[61], predicts an inward flux of particles originated by
the interaction between the parallel electric field with the trapped particles.

For collisionality values given by £3/2 < vU< 1, the diffusion is said to be in the plateau re-

gime, as the diffusion coefficient is independent on collisionality and its value is given by

Vind

D O—-p? (2.35)
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which matches the Pfirsch-Schiiter coefficient for vl = 1.

It has been shown that the collisionality of moderate-Z impurities is strongly dependent on
plasma conditions. The calculated valuesfor siliconin TCV show that v spans over part of
the plateau regime and can be well inside the Pfirsch-Schllter regime for plasma regions
with lower temperature.

Generally speaking, heavy impuritiestend to liein thisregime because of their lower thermal
velocity and higher charge compared to the plasmaions. The steady state solution of thefluid
equations for the radial distribution of impurities gives|62] n,(r) O [ny(r)]4 which would
imply astrongly peaked impurity concentration in the plasma core, with dangerous implica-
tions for the confinement of the energy and fuel dilution. However, more realistic calcula-
tions of the neoclassical fluxes for ignited plasmag63] show that the mean convective
velocities are positive, i.e. dways outwardly directed and may cause an effective screening
for the high-Z elements. The neoclassical diffusion coefficients are typically found to bein
the range of 102 m?/s in the plasma centre for low-Z and moderate-Z impurities, which can
be a problem for helium ash removal. If the positive convective velocitiesin ignited plasmas
is measured in a future experimental ignited plasma, central accumulation of helium ashes
and impurities would be prevented.

The calculated and measured diffusion coefficients for low-Z and high-Z impurities have
been compared for many experimental data on a number of machineg 37, 39, 40, 64]. While
for lighter elements the agreement has been reported to befairly good, strong deviations have
been observed for heavier elements, whose transport can be an order of magnitude larger.
In TCV, the neoclassical coefficients D, D

and v have been calculated for many

edge edge

shots in which silicon and aluminum have been injected as non recycling impurities. Their
values have been compared to the experimental transport coefficients, and the results will be
shown in Chapter 5. In particular, the comparison is needed to determine if the transport of

the injected impuritiesin TCV has an anomal ous component, and to which extent.

2.3.3 Anomaloustransport

As stated above, in many experiments the observed radial transport occurring in tokamaks
turns out to be significantly larger than the one which can be ascribed to collisional effects
alone. The additional contribution to the neoclassical transport parametersis referred to as

anomalous transport.



2.3 Particle transport models

Up to date, the development of atheory which accounts for the increased transport of parti-
clesin atokamak plasmaisin progress as far as el ectrons and main ions are concerned[65-
70]. A theory which describes the behaviour of impuritiesin plasmasisstill largely undevel -
oped. Some mechanisms which are taken into account for the formulation of atheory of the
anomalous transport of electrons may prove to be valid also for impurities. Examples are
plasma instabilities which can drive turbulence and MHD fluctuations in plasmag[71], or
electrostatic fluctuationsin or near the scrape-off layer. It has been reported[ 71] that theratio
of the electron and ion diffusivities x ./ D, at the plasmaedge may be strongly dependent on
the instability modes and consequently there may be no direct correlation with other plasma
parameters.

A recent study on TCV[72] correlates the observed el ectron anomal ous pinch to predictions
of models based on the Ware pinch, the anomal ous thermodiffusion and the curvature pinch.
While thefirst is proportional to the loop voltage and it is predicted by the neoclassical the-
ory, the others are consequences of the temperature gradient and the gradient of the safety
factor respectively. The curvature pinch seems to provide a good description on the electron
profile peaking if a turbulent transport is assumed, in which trapped and passing particles

give the same contribution to overall transport.

2.3.4 General time dependent evolution

The neoclassical theory offers the possibility to describe the flux of impurities as the sum of
two contributions, a diffusive part characterised by a coefficient D, and a convective part
characterised by a convective velocity V7 , both of which depend on the local plasma param-
eters aswell as on the charge of the ions. The convective velocity lumps together all contri-
butions which are not proportional to the impurity density gradient, such as the gradients of
Te, Ty 22, N 27 . The same mathematical form applies to the anomalous transport.

In order to take into account the anomal ous transport in an empirical manner, the basic idea
IS to retain the same description in terms of radia profiles of diffusivity and convective ve-
locity, without correlating their values to physical parameters like electron temperature and
density, collisionality and magnetic fields. The profiles of the coefficients D, and U, are
supposed to be quantitatively determined by comparison of simulated and measured signals
from real plasmas.

For each ionised species an equation stating the conservation of the number of particles has

45



Chapter 2. THEORY OF RADIATION AND TRANSPORT IN PLASMAS

to be written, while it is not necessary to consider transients in the equilibrium between ex-
cited states, as the distribution of populations follow a much faster dynamics.

The equation for asingle ion speciesiswritten as:

dn >
d_tz =-00z+(Nz_1S7_1_2%tN72.01S701.2)—Nx(Sz . 221+S; . 741) (2.36)

which states that the variation in the density of an ion species equals the net influx from the
surrounding plasma plus the variations due to ionisation and recombinations to and from the
neighbour states.

In analogy with the neoclassical formulation, the particle flux density isassumed to be of the

form:
9
[z = —D,0n, +Vzn,. (2.37)

All the values of density, transport coefficients and atomic physics coefficients depend on
the position in the plasma. Eq.(2.36) is a system of equationsin the number of Z + 1, being
Z thetotal charge of the element in consideration. The solution isin general obtained numer-
ically by simulation codes, in which the external source of neutrals, the electron density and
temperature are provided as external known parameters.

Once the set of Egs.(2.36) has been solved, the populations of bound electrons in excited
states can be evaluated with the corona-or any other- model and the impurity emission eval-
uated. On TCV, the above set of equationsis solved by means of the STRAHL [51] code (pre-
sented in more detail in Chapter 5), which then calculates the total and SXR radiation from

each ionised state of impurities.

2.3.5 Roleof transport on impurity distribution in TCV

Asit wasdiscussed in Section 2.1.1, the distribution of populations of different ionised states
Is strongly affected by the rather long recombination time. A rough evaluation showed it to
be of the order of tens of milliseconds, thus being comparable to the characteristic times of
particle transport in TCV. This fact leads to a distribution of ionised states which is not in
equilibrium with the electron temperature as it would be determined according to the corona
model. A calculation performed with STRAHL using the measured el ectron temperature and
density profiles (from shot #21164) is shown in Fig.2.7, where the different distributions are

compared in the case of corona equilibrium and in a case where an Ansatz on the diffusivity
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and convective velocity profiles has been done. These resulting calculated profiles include
the effect of sawteeth, which are supposed for ssimplicity to flatten the distribution of each
ion species inside the mixing radius.

Thetypical effect of transport can be described as a broadening of the peaks for each ionised
species along the minor radius. This effect is more visible in the edge part of the plasma,
wherethe temperature gradients are high and the radial spread of each speciesisvery limited.
Moreover, neoclassical and anomal ous transport are stronger in the plasmaedge and contrib-
ute more evidently to the peak broadening of low-Z ions concentrations.

These differences in the fractional abundances of the various ionised states of silicon may
lead to discrepancies between the radiation parameters in the corona model and a general
configuration in which transport is taken into account. In Fig.2.9 the radiation parameter is
shown as afunction of the normalised radius for shot #21164. The profile of €(r) incorona
equilibrium has been calculated from the data in the STRAHL database, and depends only
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Fig.2.7 - lonisation equilibria for silicon with experimental electron density and tempera-
ture from shot #21164. In (a) and (b) corona equilibriumisassumed, whilein (c) and (d) the
transport parameters were chosen to be D = 0.05 + 0.35p2, mP/s and v = 4.5p nvs
outward. In this case the peaks of each ionised species are broader, lower and displaced
towards the centre. The electron density and temperature profiles are shown in Fig.2.8. The
profiles with transport have been evaluated during the depletion phase when all signals are
decreasing exponentially, about 30ms after the end of the source.
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on the electron temperature profile. The transport corrected €(r) have been obtained by

means of a STRAHL simulation, using the bestfitting parameters which are found for the re-

production of the line integrated SXR signals (for details see Chapters 4 and 5). Following

the simulation, which calculates the local emission of each ionised state separately, the cor-

rected radiation parameter can be calculated using the definition of Eq.(2.27):
E(r)

Ne(r)nz(r)’

10 In the example of Fig.2.9, the spectral sensitiv-
. ity of the actual SXR photodiodes is included.

Thelocal SXR emissivity E(r), thelocal total

impurity density n,(r) are the simulated val-

e(r) O (2.38)
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2.4 Conclusion

In this Chapter, the theoretical determination of the impurity populationsin plasmas, aswell
as the mechanisms of their el ectromagnetic emission have been described. With reference to
typica TCV ohmic plasmas, moderate-Z impurities like silicon are found to be stripped to
the He-like and H-like states (Fig.2.4) in the plasma core, where the electron temperature is
of the order of several hundreds of €V. The electromagnetic emissions, which are composed
mainly by line and recombination radiation, lie in the soft x-ray part of the spectrum in the
plasma core, while VUV lines are emitted by partially stripped impurity ions in the plasma
periphery.

According to these remarks, injected impurities in TCV plasmas will be observed with the
array of SXR photodiodes, whose features will be described in Chapter 3. VUV lines from
the peripheric parts are recorded by means of the SPRED spectrometer calibrated on the
main lines of partially stripped ions, to complement the observations of the SXR photodiodes
which are insensitive to the low temperature parts of plasmas.

A simulation code like STRAHL isrequired to calcul ate the simultaneous phenomena of ra-
dial transport of impurities and the ionisation processes which depend on plasma conditions.
The electromagnetic emissions are evaluated with Eq.(2.27) and the line integrated signal
compared to the experimental resultsin order to determine the bestfitting set of transport pa-

rameters.
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3. INJECTION AND DIAGNOSTICSOF TRACE
IMPURITIESIN TCV

The theory of electromagnetic emission from impuritiesin aplasma, presented in Chapter 2,
shows that the radiation of moderate-Z impurities lies in the VUV and soft x-ray spectral
range when the electron temperature in the plasma coreis of the order of 1keV, whichistyp-
ical of ohmically heated TCV plasmas. The laser blow-off injection of elementslike Al or Si
is well suited for the investigation of transient impurity transport in TCV. Various reasons
lead to this choice of materials: their radiation matches the available diagnostics and, as non
recycling impurities, they provide the direct measure of the impurity confinement timein the
plasma. Moreover they were acceptable by the TCV community after some initial concern
about impurities sticking on the carbon tiles which cover most of the vessel walls.

Silicon and aluminum are ionised to the He-like and H-like states in the plasma core, and
their lineradiation is detected by the soft x-ray photodiodes system. The spatial and temporal
resolution of its detectors allows the precise localisation of the radiation source, but thereis
theinconveniencethat all ionic species contribute to the detected signal. However, this meth-
od isadvantageous as the impurity contribution is obtained by subtraction of the background.
The detection of partially ionised species from the plasma edge, where the electron temper-
ature is of the order of hundreds of eV, is performed with a spectrometer calibrated on se-
lected linesin the VUV spectral range.

This chapter provides the description of the hardware systems which were used for thiswork.
The blow-off of impurities has been performed with aruby laser apparatus, which isdescribed
in the following, together with the optical system for the laser beam delivery to the ablation
target. Section 3.3 provides a presentation of a number of diagnostics, which supplied the
most relevant data for the analysis of impurity transport in TCV plasmas. These include basic
plasmadiagnostics, like the Thomson scattering system and the FIR interferometer for the de-
termination of the electron temperature and density profiles, the magnetic probe system for
the reconstruction of the plasma equilibrium and the determination of the geometry of flux
surfaces and specific diagnostics for impurity monitoring, like the soft x-ray photodiode array,
the spectrometers SPRED for VUV and the OMA for visible light from neutrals.
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Chapter 3. INJECTION AND DIAGNOSTICS OF TRACE IMPURITIESIN TCV

3.1 Theablation laser apparatus

The ruby laser used for the impurity injection experiment by laser blow-off is a device[ 73]
which was commercially available (Apollo Laser, model 35) when first used for Thomson
scattering on TCA in 1981. It isatwo stage laser, consisting of a combined oscillator-ampli-
fier unit emitting at the wavelength of A=694.3nm. The very long charging time, of about
30s, allows no more than one single injection for each TCV discharge. The typica output in
Q-switched operation is a pulse of the duration of about 20ng 73] with a maximum energy
of 5J/shot, with the beam vertically polarised. Table 3.1 summarizes the current setup for
standard operation in the experiment.

Before it was taken into service again in 1997, many parts of the laser system have been
heavily refurbished in order to provide a more reliable operation and to ease possible modi-
ficationsin the structure and locations. Inside the cavities, new flashlamps are fed viathicker
electrical rodsin order to improvethe electrical conductivity. The areaaround the flashlamp-
rod connection has been surrounded with ateflon protection to minimize the risk of an elec-
tric arc to the cavity main body. The coaxial wires leading to the flashlamps from the power
supply have been fitted with fast connectors, alowing an easy separation of the different
components.

The laser apparatus, including the power supply and the cooling water recirculator, have
been placed in the TCV restricted area at level -1, in front of sector 3, asit is schematically
shown in Fig.3.1. All components have been placed on wheeled chariots for easily moving

the system in case a wide access to the torus at sector 3 is needed.

Parameters Value

Main flashlamp voltage 10.0kV
Amplification stage flashlamp voltage 10.0kV
Q-switch voltage 3.0kV

Q-switch timing after flashlamp trigger 600us

Table 3.1: Current parameters of the electrical configuration of the ruby laser.
3.1.1 Accessories

The water recirculator (model LabPlus CFT75/PD2) provides a cooling water flow of about
5l/min., which is constantly checked by means of a flow rate threshold gauge. The pump
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worksin alow pressure configuration, which was obtained by putting the two cavitiesin par-

alel. The actual flow and operating pressure can be regulated by means of a manual bypass.
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Fig.3.1 - Schematic view of the ablation system. At level -1 of the TCV hall inside the
restricted area there are the laser body, the power supply and the cooling water recircula-
tor. In front of the laser output an optical table, described in Sect.2.2, is placed. At level 0
the main component is the vacuum ablation chamber, containing the target and its motion

system.
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In order to minimise the electrical conductivity of the circulating water, a deionizer has been
put in series with the main water circuit external to the pump. The schematic layout of the
cooling circuit isshown in Fig.3.2.

The energy necessary to the flashlamps dischargeis stored in 8 capacitors of 17.5uF each for
high voltage operation up to 12kV, which are slowly charged via atransformer-rectifier sys-

tem.
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Fig.3.2 - Schematic view of the water recirculating system.

The dangers which are common to any high power laser system required anumber of intrin-
sic features and automatised safety checks in order to be allowed to interface to the TCV
tokamak. Security is provided not only via the built-in protections in normal operation, but
also in view of possible abnormal events.

For screening against the laser beam, al the optical tables and the beam path were included
in opague PV C pipes and aluminum boxes. A remotely controlled beamstop with a gravita-
tional shutter has been placed into the main optical cavity of the laser.

Protection from high voltage is provided by an interlock wire with microswitches on all ac-
cess panelsin the laser body and power supply, and by a grounding piston whose contact is
open exclusively during the charging of the high voltage capacitors. Moreover, the piston is
kept lifted for no more than 40s when the capacitors are charged and the laser isready tofire.
The high voltage supply of thelaser can only be enabled when the entrance gates to the TCV

experimental hall are locked.



3.2 Optical system for the laser beam

3.20ptical system for the laser beam

At the laser output, the beam has a diameter of 12mm and a divergence of about 1mrad when
the laser is operated at full energy. The size of the beam and the divergence are corrected by

means of a couple of borosilicate BK7 glass lenses in telescopic disposition. The resulting

Elements Details Distanc_efrom
previous

Lens f=-200mm Planoconcave, 27, first part of telescope --
Lensf=+500mm | Planoconvex, 2", second part of telescope 306.5mm
Flat mirror 2", steering to pillar section 50mm
Beamsplitter 2", 10% of light to calorimeter 130mm
- Lensf=-200mm | 2", beam size increase for calorimeter protection | ~200mm
Mirror 2", steering up to level 0 ~0.9m
Mirror 2", steering horizontally to target ~6m
Lensf=+300mm | 2", focusing to target, at a distance of 260mm ~0.8m

Table 3.2: Optics on the beam path from the laser to the target

beam of 30mm in diameter is steered with 2 BK7 mirrors along the pillar to the TCV level
0, and with a third mirror to the vacuum chamber containing the target. The beam passes
through a BK7 focusing lens just in front of the vacuum chamber window, and its diameter
Isreduced to thetypical value of 4mm when hitting the target with an energy density of about
30Jcm?. It is possible to vary the spot size and the beam energy density on the target, as the
focusing lensis mounted on achariot allowing an axia displacement of 25mm. The sequence
of optics on the beamlineisreported in Table 3.2.

After expanding the beam size, still inside the first optical table (Fig.3.3), a beamsplitter
sends 10% of the light towards a volume calorimeter (Scientech AC5001) with the aim of
checking the laser energy shot by shot. The calorimeter damage threshold is 30J/pulse, but
for further protection from an excessive energy density, an additional diverging lenshasbeen
placed in front of the entrance. The time response of the calorimeter is 3s and thereading is
done remotely viaa RS232 connection to the TCV plant control system.

The alignement of the whole optical path is performed by means of a HeNe laser which is
mounted on the back of the ruby laser in coaxia position. All mirrors have been coated such

asto be highly reflective (>98%) at the ruby laser wavelength, while having adequate reflec-

55



Chapter 3. INJECTION AND DIAGNOSTICS OF TRACE IMPURITIESIN TCV

tivity (>80%) for the HeNe laser (A=632nm).

\
Mirror 2" Diaphragm  Beamsplitter 2"

ens 2! f=+500mnf

QU

| Lens 2" f=-200mn |

| Calorimeter

| Fig.3.3 - Layout of the first opti-
: cal table The beam (in gray
| shade) is expanded of a factor 2.5
Lens 2" f=-200mm| T and its waist extended to keep its
I size roughly constant on all its
2 g omm path. It is then split in two parts,
Laser 10% to the calorimeter and 90%
to the target.

3.21 Impurity blow-off chamber

The target onto which the laser beam is focused is placed inside a vacuum chamber which
has been designed and manufactured at KFK1, Budapest, in the frame of a collaboration with
CRPP. Thetarget isplaced at adistance of approximately 70cm fromthe TCV first wall. The
connection to the TCV vessal includes a stainless steel bellow, which decouples small me-
chanical movements, mainly dueto vibrations and thermally induced expansions. A ceramic
ring provides electrical insulation and avoids undesirable ground |oops between the torus to
the vacuum chamber groundings. Finaly, a gate valve, which is always kept closed, except
during the blow-off phase, separates the vacuum of the chamber from the main TCV vacuum
and allows independent access to the target chamber. The ablation chamber is pumped down

to the 10 °mbar range via a standard turbomolecular pump and does not require bakeout due
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to its small dimensions (@g=250mm, height=200mm).

Inside the chamber thereisa2-axes moving mechanism for the target displacement (Fig.3.4).
Two stepper motors (Phytron ZSS.32 for in-vacuum applications) move the target holder for
amaximum run extension of 50mm in each direction, thus allowing the laser beam to reach
thetarget in 144 spots of 4mm of diameter. Thetarget spot ismuch larger than the focal spot,
which has adiameter of lessthat 0.1mm, such asto provide anumber of ablated atomslarge
enough for clear signals. The best ablation results, in terms of largest and most reproducible
signals, were obtained when the focus were placed dightly in front of the target, rather than
behind it.

SIDE-VIEW

Fig.3.4 - View of the two-chariots moving mechanism for the ablation target. The holder
contains a square glass of 50mm side. The stepper motors and the transmission system
allow a precision in positioning of 1/160mm

The typical target consists of athin film of a moderate-Z element deposited on a glass sub-
strate. For the realization of thiswork, aluminum and silicon films have been used, with typ-
ical thicknesses of 200nm to 2um. The number of ablated atoms is of the order of 1017-1018
per pulse. Dueto the fact that the laser beam reaches the target through the glass, the material
isaccel erated toward the plasma by means of pressure action, especially inthe case of thicker

films. Consequently, the ablated material entersthe plasmaedgein form of clustersor flakes,
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rather than individual atoms.
A video camera has been used to visually monitor the movements and the ablated “ holes’ of

the target directly from the control room during TCV operation.

3.3Diagnostics

3.3.1 Magnetic measurements

Magnetic diagnostics alow the direct measure of some global parameters, like the plasma
current, the stored energy, the loop voltage, the plasma position and geometry, magnetohy-
drodynamical (MHD) modes and instabilities, as well as of the equilibrium profiles of cur-

rent density and plasma pressure. The measurements used for equilibrium reconstruction and

FIR-interferometer = Thomson scattering system Soft x-ray system
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Fig.3.5 - Geometry of (a) the 14 diagnostic chords of the FIR interferometer (the central
chord is highlighted), (b) the laser and the 35 viewing chords of the Thomson scattering
diagnostic and (c) the 200 lines of sight of the soft x-ray photodiodes used for the detection
of the plasma emissivity.

the monitoring of MHD activity on TCV are performed by Mirnov coilg[74]. At four differ-
ent toroidal locations, poloidal arrays of 38 probes are placed behind the graphitetilesinside
the vacuum vessel. Two of them, together with flux loops placed outside the vessel, are used

for the equilibrium reconstruction. The toroidal MHD activity is monitored by means of
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threein-vessdl toroidal arraysof 17 probeseach which are placed at different heightsin order
to alow larger signals for shifted plasmas.

The TCV equilibria are reconstructed using the Grad-Shafranov solver LIUQE[75], which
providesthe geometrical description of the plasmaflux surfaces. The standard reconstruction
Is calculated immediately after each discharge. The accuracy of the LIUQE reconstruction
depends on the plasma size and current, which affect the number of useful magnetic meas-
urements from the probe array. The reconstruction can be cross-checked with other measure-

ments from the Thomson scattering and the soft x-ray photodiodes.

3.3.2 Thomson scattering and FIR systems

TCV isequipped with amulti-point Thomson scattering diagnostic for measurements of the
electron temperature and density[76]. The measurement is based on the spectral analysis of
light which is scattered by free electronsin the plasma. If thewave vector k; of the input wave
is sufficiently large, yielding kiAp » 1, where Ay is the plasma Debye length, particle cor-
relations can be ignored and the scattered power can be obtained as an incoherent sum of
powers from single electrons. The spectral broadening of the scattered radiation, which is
dueto Doppler effect, providesthe electron temperature and itsintensity the electron density.
The TCV scattering system[77] is shown in Fig.3.5(b). Three aimost colinear Q-switched
Nd:YAG lasers operate at a pulse rate of 20Hz each with a wavelength of A=1064nm. The
laser beams are injected from the bottom of the TCV vessel at theradial position of R=0.9m.
The light scattered from 35 points is collected resulting in a spatial resolution of 40mm in
vertical direction along the beam and of 3mm in radial and toroidal directions. Thelasers can
operate at equidistant temporal separation, thus providing measurements with the rate of
60Hz, or they can be triggered independently.

The electron density measurement is complemented with the data from the FIR diagnostics,
whose signals are acquired at a frequency of 100kHz by means of a Mach-Zehnder interfer-
ometer using the heterodyne double frequency detection[ 78]. The system usesthe density de-
pendence of the refraction index of an electromagnetic wave crossing the plasma. The

refractive index is independent of the direction of propagation and its value i5[52]:

N = /1-w3/w? (3.1

If the incident wave penetrates (°°p < w) and the plasma properties vary sufficiently slowly,
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the phase of the wave crossing the plasmais shifted by:

(8g), = %ﬂ /%L—E—CD— }di (32)

in which the definition of cutoff density, n, = m.g,w?/e? has been introduced.
For sufficiently low values of the plasma density with respect to the cutoff density, the fol-

lowing approximation holds:

(Ag); = ch Jn Al (3.3)

in which the integral represents the line integrated electron density n, = I nedl; .

On TCV, the phase difference between two laser beams is measured, one of which probes
the plasma. The e€lectrical field of the probing beam can be expressed as
Eprop = €@ W™ Poail inwhich d(t) isthe density driven phase shift, and @, o, &
constant. The reference beam, known as Local Oscillator (LO) iscreated by Doppler diffrac-
tion on a rotating grid[79] and has a frequency offset of Aw = 100kHz from the probing
beam. Its electric field can be represented by E, 5 = E,e/[(A@)t* wt+ ol

The two beams are recombined and the resulting intensity is given by:

Sorob = |ELo * Eprot| = E + E3 + 2 [E4E,008[ (Aw)t — D(t) — @ o (3.4)
The phase shift ®(t) can be determined by comparing the phase of the recombined wave
and the phase of areference signal. The reference signal is obtained by the recombination of
the LO beam and a beam not probing the plasma.

The detection system consists of 15 InSb hot electron bolometersin aliquid helium cryostat.
The density resolution limit is set by the accuracy of the phase shift measurement, which is
around 20 degrees and |eads to an approximate limit of An,=5 10" m2 on the line inte-
grated density. The line density measurement is used to check and renormalise the density

measurements by the Thomson scattering.

3.3.3 The 200-channel soft x-ray detection system

The soft x-ray emission from a plasma originates from electron-ion and electron-impurity
bremsstrahlung, recombination radiation and line emission of moderate- and high-Z impuri-
ties. In TCV, soft x-ray emission from the plasmais measured with Si photodiodes, which

are sensitive up to 10keV. Photons with energy below 1keV, which can originate from im-
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Sourceions | A [A] | Ey[keV]
AT XTI 6.6 1.86
7.7 1.60
Al X111 6.1 2.05
7.2 1.73
Si X1l 52 2.37
6.6 1.86
Si X1V 4.7 2.64
52 2.37
6.2 2.00

Table 3.3: Mainimpurity SXRlines
detected by the photodiode system.
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purity line emission, are filtered by a beryllium foil
of 47um thickness, while the active substrate is too
thin to absorb high energy photons from hard x-rays.
Thusthe overall efficiency of the photodiodes, which
Is shown in Fig.3.6, allows measurements of emis-
sion from the hot core of the plasma. In Fig.3.7 the
filtering by the beryllium foil and the sensitivity of
the photodiodes have been taken into account and the
equivalent radiation parameter for silicon in corona
equilibrium is shown as a function of the electron

temperature. It is evident how photons of energy of

gl

10
Photon Energy [KeV]

Fig.3.6 - The efficiency n(v) as a function of the photon energy of a TCV SXR detector
alone (dashed line) and filtered by 47um Be filter (continuous line). The photodiode is pas-
sivated by 55nm S3N,4. A dead layer of 0.8um and an effective thickness of 200 um are

assumed.

at least 1keV which contribute to the signal are emitted only by electrons whose temperature

Is above approximately 400eV .

Aluminum and silicon have been chosen to be the injected elementsin TCV plasmas accord-

ing to the central temperature in typical ohmic discharges, which is in the range of 600-

900eV. At these temperatures the impurities are ionised to the He-like and H-like states and
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provide a strong line emission in the soft x-ray spectrum, above the sensitivity threshold of
the TCV photodiode array. As shown in Fig.2.4 for corona equilibrium, a fraction of fully
stripped silicon is present in the plasma centre for the above temperatures, which contributes
to the signal with bremsstrahlung radiation.

Asfar asLi-likeionsare concerned, the most energetic photon energiesin line emission have
energies of 499V and 421eV for Si XII and Al X1 respectively; therefore the filtering prop-
erties of the system do not allow the detection of such contributions.

The TCV SXR photodiode system[80] consists of 10 pinhole cameras, each comprising one
strip of 20 silicon pin diodes. The cameras are distributed in 9 ports of asingle poloidal sec-
tor, fully covering the poloidal section of the TCV vessel, as shown in Fig.3.5(c). The result-
ing integrated signals from the 200 lines of sight can be used to perform a tomographic
reconstruction of the local x-ray emissivity for all plasma configurations, with a spatial res-
olution of 30-40mm. The advantage of a high number of viewchordsliesin the possibility to
resolve any soft x-ray distribution regardless of asymmetries in the emission and of plasma
geometry. In particular, hollow profilesin the SXR emission, caused by the increased emis-

sivity of soft x-rays at the plasma edge during the influx phase of impurities, can be spatially

!Radiation parameters for Si, total ‘and filtered

Total

_ Filtered (47um Be)

10 wwwwll I " R S |

10 10

3 4

10 10

T, [eV]
e
Fig.3.7 - Total and filtered radiation parameter of S ions in corona equilibrium as functior

of the electron temperature. Filtering takes into account both the 47um Be foil and the spec
tral sensitivity of the photodiodes.
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detailed. A brief exposition of the inversion principlesis given in Section 3.3.4.

Thetemporal resolution islimited by the acquisition system, allowing a maximum sampling
rate of 80kHz, which is far faster than typical phenomena of particle transport and allows a
detailed resolution of sawtoothing events. The spatial and temporal resolutions allow among
other the precise determination of the sawtooth inversion radius and the role of sawteeth in

the transport of impuritiesin the plasma core.

3.3.4 Tomographicinversion

The principle of tomography consistsin the reconstruction of thelocal propertiesof an object
by means of line integrated measurements. In plasma physics the spatial distribution of the
radiation emitted by a plasmais collected along viewchords by means of photodiodes and it
is reconstructed via mathematical methods. Usually the emissivity distribution is recon-
structed on a 2-D poloidal plane by means of a number of detectors of the order of 100. In
absence of MHD activity with very high toroidal mode number, in atokamak plasmathera-
diation is assumed to be constant in toroidal direction on the size of collimated viewchords
(about 1.5cm in TCV).

Provided the plasma is optically thin in the considered spectral range, it can be shown[19]

that the total measured power P; reaching the detector i through an aperture can be written as:

_ (AQ), ]
P, = 4—T[J'LidIIG(r,v)ni(v)dv (3.5

where (AQ); isthe geometrical etendue of the system detector-aperture, G(r, v) isthelocal
spectral emissivity of the plasmaalong the viewchord axis L; (called also line of sight) and
n;(v) isthe efficiency of the detector-filter combination.

Eq.(3.5) isgeneraly put in the form:

I:)i — =
fi Dm _ILiCig(r)dl (36)

inwhich the term at |eft is measured by the acquisition system, g(F) DJ’G(F, v)dv istheto-
tal plasmaemissivity and ¢; isacalibration factor for each detector, which includes efficien-
cy and filtering and provides a spectrum averaged photodiodes response to plasma
emissivity[80]. The tomographic problem is thus reduced to the mathematical research of a
solution of a system of integral equations of the form of EQ.(3.6), in which the distribution
g(F) hasto be determined.
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The resolution of the system for TCV plasmas is usually performed by means of a pixel
method with a Minimum Fisher Information (MFI) constraint[19]. The plasma cross section
isdivided into arbitrary shaped pixels which have to be small enough so that in each one the
emissivity can be considered constant. On the other hand, their number has to be limited in
order to keep areasonable tractability of the system of equations.

The measured power of each detector can be expressed as:
Ti191+ Tix0a + ... + Tjn Oy = P (3.7)

where g; isthe plasmaemissivity inside the pixel j and the coefficients Tj; represent the frac-
tion of the radiation emitted by the pixel j and measured by the detector i. The problem is
usually posed in the matrix form:

f =Ty (3.8)

In the simplest approximation the element Tj; equals the length of the line of sight L; inside
the pixel j. In the most common case, in which the number of pixels nyy is bigger than the
number of detectors nyg, the problem is underdetermined and an exact solution can always
be found in the (Nyix-Nget)-dimensional space of the kernel of Eq.(3.8). In order to get a
unique and sensible solution it is necessary to minimise afunctional ¢ which can be written

as.
_1,
Q= §X +aR (3.9

where Ris aregularising functional, a is a definite positive weight parameter and )(2 isthe
error functional defined as x2 = ('T' [g— ?)T E('T’ g— ?) . The abbreviations fi = ?i/oi
and 'T’ij = T,j/ 0; have been used, with o; being the error of the measurement of the chord
brightness f;.

dx

As an example, R can be set as to be a functiona like R = QQJZ +
smooth solutions g. In this case we can discretise the problem an

Q_QHZ which leads to
dy

write

R = (Ox9)T dOxg) + (Dyg)T [(Dyg) =H [ (3.10)

in which the definition of H is included. The solution to the tomographic problem can be

found by minimising the functional

0= 3(frg-7) 0f g-T)+ag" H [y (3.12)
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Setting all partial derivatives 0@/ dg j to zero in Eq.(3.11), the set of nyjy equations can be
obtained:

(TTT +aH) g = TT Of (3.12)

which has to be solved for g. The correct parameter a is iteratively found by means of an
iteration in which guesses on its values are made until an interpolated valueis obtained so to
minimise the corresponding functional @.

While this choice of the regularising functional tendsto provide too flat emissivity profiles,
adifferent definition can be introduced, which is empirically found to be more satisfactory
than asimplefirst order regularisation[81]. This aternative choice is based on the Fisher in-
formation of adistribution g(x) , which is defined as:

J’gg(();))zdx (3.13)
wherethe prime* denotes the derivative with respect to the variable x. The MFI techniqueis
essentially a smoothing principle whose weight is stronger in zones where the distribution is
low. This property iswell suited for SXR tomographic inversion asit preferentially smooths
the emissivity in regions of poor signal-to-noise ratios and allows more freedom where the
signal is high. From the mathematical point of view, the MFI requirement is fulfilled[19] in
an iterative way, by defining the regularising matrix H as:

H™ = oTwmo, + oW, (3.14)
in which W() isthe identity matrix. Then the system of equations
(TT O + (:(H(”))g(n+ D= TTOf (3.15)

is solved and the solution g(”) is used to calculate the new weight matrix
Wi+ = §,/g,"

The iteration continues until the difference between g(”) and g(n+ 1) becomes negligible and
in practice n=2 is sufficient. The correct parameter a is iteratively found for each n by re-
quiring that X2 = Ny, .

An example of the tomographic reconstruction of the plasma emissivity in the SXR part of
the spectrum is shown in Fig.3.8. The poloidal cross section in Fig.3.8(a) has been taken at
t=0.6s just before the impurity injection, while in Fig.3.8(b) the time evolution of the SXR
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emissivity along avertical cut through the plasma centre is reported.

It hasto be remarked that the tomographic reconstruction of the soft x-ray emissivity requires
further mathematical treatment in order to separate the bulk plasmaand the injected impurity
contributions. If the background intensity is constant on average and regular sawteeth are
present, it is possible to take it into account by subtracting the plasma emissivity at a given
time before injection, for which the time differenceis an integer multiple of the sawtooth pe-
riod.

(b)
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Fig.3.8 - (a) The tomographic reconstruction of the plasma emissivity in the soft x-ray spec-
tral range at t=0.6s. (b) The time evolution of the plasma emissivity along a vertical cut
during an impurity injection, shot #21022.

3.3.5 SPRED spectrometer

The electromagnetic emission in the VUV spectral region from TCV plasmasis detected us-
ing the SPRED spectrometer[82, 83], which is particularly useful to monitor moderate- and
high-Z impurities in medium ionized states present in the plasma periphery.

The heart of the optical system isadiffraction grating whose grooves are holographically re-
corded in a curved pattern in order to correct for aberrations, astigmatism in particular, and
to maximize the spectral sensitivity. In the basic configuration, the detection system is com-

posed by a single microchannel plate (MCP) coupled viaoptical fibersto a photodiode array

66



3.3 Diagnostics

(PDA). A VUV photon hitting the MCP is converted into a photoel ectron which undergoes
a cascade multiplication towards a phosphor screen normally held at a potential of +4keV;
the electrons are thus converted on the screen to visible light. The fiber optic image conduit
can allow the reduction of the image in the case the MCP and the PDA have different sizes.
The MCPisin optical contact with the PDA, which contains 1024 pixels of 25um of size.
In TCV the SPRED (focal length 0.3m) is equipped with two gratings which allow detection
of ultraviolet radiation in the range 180-1500A (with 450g/mm) and in the range 140-440A
(with 2105g/mm). The detection system has been modified with respect to the basic config-
uration asthe MCP has asize of 50mm and is coupled in a1:1 scale with two standard PDAS
covering the same size and holding together 2048 pixels.

On TCV the SPRED is mounted to the bottom part of the vessel and its line of sight is ori-
ented vertically. Asthe acquisition system allows one spectrum to be read out every 5ms, the
time resolution does not allow the detailed observation of the impurity influx phase. Howev-
er, the observation of the depletion phase of low ionised stages of injected impurities can be
donein the case their confinement time is comparable to that of the impuritiesin the plasma

core.

3.3.6 OMA gpectrometer

The spectrometer contains an ACTON monochromator of Czerny-Turner type (1m of focal
length) equipped with a holographic diffraction grating of 1200, 1800 or 2400 g/mm. The
Optical Multichannel Analyser detector works on the same principle as of the SPRED spec-
trometer, which has been described above, and allows the observation along a single
viewline. The light, which is brought to the detector by means of an objective and an optical
fiber, is collected through a window which is placed at the side of the injection system.

The signa acquisition has been performed with a maximum temporal resolution of 1.3ms,
which has been sufficient to obtain a number of points during the injection phase. The spec-
tral window has been centred on the neutral silicon lineat A=5708.4A and the acquisition has
been limited to a narrow range of wavelengths in order to improve the temporal resolution.
Thetime evolution of the signal isvery similar for all the analysed injections, and one exam-
pleisreported in Fig.3.9. Therecorded signal being biased by the relatively long decay time
of the phosphor screen, a deconvolution is necessary in order to determine the actual evolu-

tion of the source.
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In the first order case, the response of the system can be described by a differential equation
of the type

= -cf+s (3.16)

inwhich f isthe output signal, t is the constant decay time of the phosphor and Sthe source.
The value of 1, which depends on the integration time during the spectra acquisition, is de-

termined by means of an exponential fit performed on the tail of the OMA signal.
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Fig.3.9 - Time evolution of the OMA signal (blue line) and of the deconvolution (red line),
made according to Eq.(3.16) with a time constant t=4.5ms, following silicon injection in
shot #19631. This value of T has been determined by means of a fit of the tail of the signal.

The results of the deconvolution are shown in Fig.3.9. Typically the decay of the signal has
atime constant t in the range of 4-5ms when the acquisition is performed at maximum rate.
The deconvolution (red line), which suffers of a higher noise because of the differentiation,
shows a peak of duration of about 4ms, and is our best indication for the time evolution of
the source of neutrals following injection. An estimation of the characteristic time for the

first ionisation of silicon at the plasma edge can be done with the following expression:

1
tion = ij[he (317)
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which at the plasma edge (T, =10eV providing [ovil=10-3m¥g84], n = 108m3)
givest;,, = 10 us. We can thus conclude that the ionisation is far faster than the characteris-
tic time of relaxation of the phosphor and can be neglected in the deconvolution. Moreover,
the ionisation time is much shorter than the source duration which has been presented above.
Thisdifference can bejustified by the spread in the time-of-flight of impurity clustersaswell

as by the time necessary for their complete corrosion by the plasma.

3.4 Concluding remarks

The study of transient phenomenaof transport of moderate-Z impurity particlesin TCV plas-
mas requires diagnostics capable of detecting ultraviolet and soft x-ray line radiation from
partialy stripped ions in order to cover al plasma regions. The repetition rate of the acqui-
sition provided by the SXR photodiodes system allows the observation of fast transport phe-
nomena like sawtooth activity, which can affect the confinement of impurities. Asit will be
shown in Section 4.1, in the case of silicon only the radiation from the He-like and H-like
ions contributesto the enhanced x-ray emission, while al other line emission from lower ion-
ised states is filtered out.

In addition to the characterisation of the impurity behaviour, relevant plasma parameters
have to be measured. The main parameters are the el ectron temperature and density, as well
as the plasma geometry which is fundamental for the study of its effects on the impurity

transport.
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4. EXPERIMENTAL RESULTSON IMPURITY
CONFINEMENT IN TCV

Unwanted moderate-Z impurities are common constituents of many tokamak plasmas, as
metallic atoms are easily produced at the plasma edge by sputtering, arcing on internal struc-
tureslikewalls, limiters, antennas, diagnostics. Astheseimpurities may radiate enough pow-
er to affect the energy confinement time, it is very important to understand their behaviour
and to look for possible plasma configurations that may provide high energy confinement
times and as low as possible impurity confinement times. The possible accumulation of im-
purities in the plasma core has been presented in Section 2.3 in the frame of the neoclassical
theory of transport, and it has been observed in several investigations 64, 85, 86].

Impurity control techniques can range from thewall conditioning, ergodization of the bound-
ary magnetic surfaces in order to distribute the heat flux to the walls, build-up of transport
barriers with additional heating in order to possibly keep the heat in the plasma core and the
impurities outside] 62]. Other mechanismsinclude MHD eventslike sawtooth activity to pre-
vent central accumulation and ELMs for fast impurity expulsion from the plasma edge.
The TCV tokamak offers the unique possibility to investigate the effects of plasma geomet-
rical shaping on the confinement times of energy and impurities. In this Chapter, the main
results of several impurity injection campaigns are presented, in which the plasma geometry
was explored together with the variation of different plasmaparameters, liketoroidal current,
electron density and toroidal magnetic field. The global impurity confinement time, whose
definition will be given in the following, has been evaluated from the exponential decay of
thelineintegrated soft x-ray signals, and different configurations of parametersareidentified
for which theratio T;,,,/ g, shows favourable trends.

For the realisation of this work, ailmost all the injections have been performed in deuterium
plasmas, except in a few cases in which a variable mixture of deuterium and helium were
used.
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4.1 Impurity signalsin TCV

In this Section the raw signals which have been detected from TCV plasmas following im-
purity injection by means of the laser blow-off technique are presented. As it was described
in Chapter 3, the ablation apparatus produces a short burst of metal atoms entering the vac-
uum vessel inradial direction at the height of z = 40 cm above the mid-plane. At the typical
temperatures of an ohmic TCV discharge, aluminum or silicon areionised to the He-like and
H-like states and provide a strong line emission in the soft x-ray spectrum, which can be eas-
ily detected by the SXR photodiode array[49]. Theion state distribution of silicon asafunc-
tion of plasmatemperaturein the coronamodel approximationisshowninFig.2.4. Itisclear
that the He-like state is largely dominant in all the central part of TCV plasmas where the
temperatures lie over the 400eV. The fully stripped state which would contribute only with
the bremsstrahlung radiation appears in very low concentrations.

In similar experiments performed in JET[39], Tore
Supra[40] and ASDEX Upgrade[37] heavier ele-

0.25

02l ] ments were injected, like Fe, Ni, Ag, Mn, Ti. The

S higher temperatures reached in such experiments

§°'15 alow the measurement of line emissions over a
g wider span of different ionised states.

§ " Electromagnetic emission from the plasma periph-

) 0.05} ] ery isbest detected by VUV spectrometers, likethe

SPRED, whichfor injectionsin TCV has been used

o os 09 ] to measure the Si*'* line at 499.4A. We note that

ppol

Fig.4.1 - STRAHL simulation of the
fractional abundance of S11* ionsas Ci€s mostly come from very narrow areas at the

a function of the normalised radius  plasma edge[31], where the temperature gradients

for shot #19785, in which transport _ _ . 114
has been taken into account. The &€ high. In Fig.4.1, the localisation of the S

transport parameters were chosen t0  jons is shown for atypical plasma in which trans-
be D = 0.05+0.25p2, nf/s and _ _
v = 43p, /s outward. port is taken into account.

The signals considered in the following are in gen-

line emission from asingle moderately ionised spe-

eral line integrated measurements, whose temporal evolution will be heuristically described
taking asexample areal signal from the SXR system. A correlation with the transport param-

eters, i.e. radia diffusivity, convective velocity, sawtooth radius and frequency will be made
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in Chapter 5, in which the measured signals will be reproduced by means of the code
STRAHL.

4.1.1 Lineintegrated SXR signals

Broadband el ectromagnetic radiation, as produced by injected impurities, is measured by the
200 channel soft x-ray photodiode system. Basically three components contribute to thetime
evolution of raw signals during the impurity residence time in a plasma. The first contribu-
tionisamostly constant background coming from the main plasma particles and light intrin-
sicimpurities like carbon. As described in Section 2.2, the radiation from the plasma centre
is produced mainly by bremsstrahlung from electrons colliding with fully stripped hydrogen
and carbon ions, and by recombination radiation from carbon. The second contribution to the
signal shape is given by the sawtooth activity, whose typical temporal signature isshownin
Fig.1.8. Thethird oneis provided by the moderate-Z injected impurities, whose signal hasto
be clearly distinguished from the previous ones in order to obtain a quantitative analysis of
Impurity transport in the plasma.

The sawtooth amplitude is often of the same order of magnitude as the typical pulse shaped
signal dueto impurities, and the removal by means of mathematical techniquesis necessary.
Provided that the background signal and the sawtooth activity are regular, they can easily be
separated from the impurity contribution by means of the Generalised Singular Vaue De-
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Fig.4.2 - Plot of the ionic species contribution to the radiation power in the soft x-ray spec-
trum after filtering as a function of the poloidal flux label. Data are based on a STRAHL
simulation on shot #21022 (D = 0.05+0.61p3,, v = 3.8p,), for which the plasma
parameters are plotted aside. The hollow distribution in the power density reflects the hol-
low profiles of the electron density and temperature.
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Chapter 4. EXPERIMENTAL RESULTSON IMPURITY CONFINEMENT IN TCV

composition method (GSVD)[87], which isdescribed in Appendix A. The clearest lineinte-
grated signals are obtained when the background is constant or linearly changing and when
the period of sawteeth is constant.

Asfar assignalsfrom the TCV soft x-ray photodiodes are concerned, the spectral sensitivity
of the system has to be taken into account in order to determine what part of the silicon pop-
ulation in a plasma really contributes to the recorded signal. This is achieved by means of
STRAHL calculations which consider the filtering properties of the beryllium foil and the
passivation layer on the photodiodes surface, together with the effective thickness of the di-
odes. As described in Section 3.3.3, only line radiation coming from hydrogen-like and he-
lium-like contribute to the soft-x ray recorded signals, together with part of the
bremsstrahlung and recombination radiation (Fig.4.2). Calculations with STRAHL, not de-
tailed here, show that ailmost the totality of the latter contribution comes from lithium-like or
more highly ionised species. The major consegquence isthat the analysis of the soft x-ray sig-
nals produces information mainly from the plasma centre, while there is little contribution

from the edge. The analysis of many injectionsin TCV showsthat lineintegrated signals can
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Fig.4.3 - Raw line integrated signals from TCV ohmic discharge #19785 following silicon
Injection at t=0.8s. Sgnals from various selected chords show the impurity peak superposed
to a constant background and sawtooth activity. In the case of peripheric viewchords the
increase of emissivity is of the same intensity as sawteeth.
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4.1 Impurity signalsin TCV

be considered useful if the closest point of the viewchord liesinside p,,; = 0.75, and only
inthe case GSVD provides clean filtered data. Otherwise, the typical peak-shaped signal due
to impurities can still be found, but the uncertainty on itsintensity becomes very high asthe
noise and the sawteeth are amost of the same size.

Typical raw signalsfrom asilicon injectionin TCV are shown in Fig.4.3, where the peak in-
tensity against the background is shown to be varying with the position of the chords. It can
be qualitatively observed that the line integrated signal from chord 34 does not allow an easy
separation of the impurity and the sawteeth contributions.

An example of alineintegrated signal following GSVD is shown in Fig.4.4. In this case the
laser ablation of the silicon thin film has been performedat t = 0.6 s, whilethe signal starts
deviating from the background about 2ms later, due to the time of flight of impurities and to
the diffusion toward hotter parts of the plasma. The parameters of the target plasma are
A, = 3.5109m3line averaged, T, =900eV, k = 1.60, 5 = 0.25, |, = 355KA. The

first part of the signal presents sudden increases in the emissivity at the times corresponding
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Fig.4.4 - Temporal evolution of a line integrated signal from impurities after background
and sawteeth removal. (a) Sudden increases in the signals corresponding to sawtooth
crashes; (b) full width half maximum (fwhm) of the signal; (c) exponential decay of the sig-
nal, with the fitted exponential function superposed; (d) asymptotic residual signal dueto a
weak recycling fromwalls. In the inset, the raw signal before GSVD treatment.

75



Chapter 4. EXPERIMENTAL RESULTSON IMPURITY CONFINEMENT IN TCV

to sawtooth crashes. This phenomenon can be observed also in the raw signals provided the
contribution of sawtooth activity in the background does not dominate the signal shape, so
that the increased emissivity due to the injected impurities overtakes the reduction of emis-
sivity deriving from the main plasmaand theintrinsicimpurities. The so-called inverted saw-
tooth, which has been observed in many similar experiments[ 32, 37], isaconsequence of the
hollow impurity radial profile just after injection, and of the sawtooth dynamics (Fig.4.5).
The central part of the density profile of siliconisflattened during the sawtooth crash through
an abrupt inward movement of particles, while peaked profiles of particle densities, includ-
ing electrons and intrinsic ions, are flattened by an outward movement. This phenomenon of

redistribution takes place inside the sawtooth mixing radius.
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The distribution of the SXR emissivity from impurities during the influx phase is shown in
Fig.4.6 adlong avertical cut passing through the centre of the plasma. It is clear how the pro-
file is transiently hollow except at the end of the first sawtooth crash, which suddenly in-
creases the impurity concentration in the plasma centre. In the following, the transport of
impurities from the plasma periphery makes the SXR profile hollow again, up to the second
crash.

During the outflux phase when the signals are decreasing, the sawtooth activity contributes
with an intensity of the same magnitude as before the injection, as shown in Fig.A.3(b). In
this phase the central profile is mainly flat due to sawtooth activity despite the low value of
the central diffusivity, except around the mixing radius of sawteeth, where anet flow of par-

ticlesis exchanged with the peripheral part of the plasma.
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4.1 Impurity signalsin TCV

An evidence of the hollow profilein TCV discharge #20165 can be highlighted by means of
the tomographic reconstruction[19] of the soft x-ray emissivity during the impurity transport
in the plasma. The reconstructed profiles have been filtered with the Singular VValue Decom-
position technique[88] or SVD, which identifies a set of spatial eigenfuctions whosefirst el-

ements (topos) contain most of the information of the profile. Their relative temporally

(b)

(& 1200

m3L
(o] o
o o
Q (=)

signal intensity [A.U.]

SXR emissivity [W/

04 0506 061 062 0.63 064
t[s

ozz[m]o.3
Fig.4.6 - (a) Vertical cuts of the SXR emissivity distribution during impurity influx in shot
#21022. The full lines are taken at intervals of 1ms, while the dashed lines, separated by
100us, are taken just before and after the sawtooth crashes as shown in (b). The back-

ground has been removed by assuming a constant sawtooth activity in frequency and inten-
sity from the bulk plasma, as stated in Section 3.3.4.

varying eigenvalues are called chronos. As the eigenmodes are sorted as to concentrate the
dominant featuresin the first elements of the set, often all the subsequent can be discarded,
astheir relative weights, called singular values, are much smaller. For clarity, in Fig.4.7 only
the two first topos-chronos couples are shown. The first one (Fig.4.7(a,b)) includes most of
the background plus the information of the soft x-ray emission by the impurities during and
after the influx phase towards the plasma centre. Many of the features on the emissivity dis-
tribution during the influx phase anyway are included in the second topos-chronos couple
(Fig.4.7(c,d)) inwhich asignificant increase of the el genmode weight can be observed in the
first milliseconds after impurity injection. The evolution of chronos #2 shows how the im-
portance of the hollow component is reduced by two consecutive sawtooth crashes at
t = 0.611sandt = 0.616 sduring which theimpurity concentration profiletendsto beflat-

tened and consequently the hollow topos tends to lose its relative weight.
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Chapter 4. EXPERIMENTAL RESULTSON IMPURITY CONFINEMENT IN TCV

During the depletion phase aimost al line integrated signals show a common decay time

which is obtained by an exponential fit of the form:

t—t
S = (at+b) +cCexp Tma% (4.2)

where the linear part (at + b) accounts for the residual asymptotic signal and alinear back-
ground, while the exponential part contains the impurity contribution. The time constant T is
defined asthe global impurity confinement time, or impurity lifetime, and it isameasurement

of how long impurities stay inside a plasma before leaving through the edge. This definition
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Fig.4.7 - SVD decomposition of the reconstructed soft x-ray profile for shot #20165 in the
time interval t=0.58s to t=0.7s during a silicon injection. In (a,b) the first topos/chronos
pair is shown. In (c,d) the second pair, which contains essentially information on the impu-
rity influx phase is displayed. It can be observed that this mode is has a significant weight in
the first 10ms following injection.

appliesfor those particles which are amost non-recycling and for which the depletion phase
does not overlap with the influx phase. It becomes usel essin those cases when recycling pre-
vents impurities from disappearing after an inflow phase, and for which alonger apparent

confinement time T, is observed. The decay time for the impurity content is given by the
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4.1 Impurity signalsin TCV

relation Tapp = T(R= O)ﬁ where Ristherecycling factor at the plasma edge and T(R=0)

is the lifetime which would be observed if the recycling were negligible. In the example of
Fig.4.4 the fit was obtained with atime constant equal to T = 21.8ms.

The common exponential decay time which is observed on many line integrated signals can
be explained by means of an analytical model which is common to al transport phenomena
of diffusive and convective origin[89]. In the case of sawtooth activity thisformulationisre-
stricted to the timeinterval between consecutive crashes. If for simplicity unidimensional dy-

namics in cylindrical geometry are considered, equations of the form:

%‘ = %%[r Ej(r)%]—v(r)rg} (4.2

with n(a,t) = 0 as boundary condition, have discrete solutions and any evolution can be

described through a sum of the form:

n(r,t) = ZAknk(r)expE—leE 4.3

inwhich all theeigenvalues 1, are positive and the fundamental eigenfunction ny(r) isnon-
negative along the whole radius r[89]. The slowest eigenvalue 1, can beidentified with the
impurity confinement time, while the second value 1, isatimescale for the relaxation of an

arbitrary initia distribution toward the fundamental profile given by Agn,(r). Once this
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Fig.4.8 - Fundamental eigenfunctions ny(r) solutions of Eq.(4.2) for a cylindrical plasma,
with radius a=0.3m, diffusivity D=0.05+0.25(r/a)?m?/s, convective velocity v=a(r/a) for
different values of a in nVs. The corresponding time constants decrease with increasing
outward velocity. In the Table, a comparison between the time constants of the fundamental
and the second eigenfunction is reported.
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Chapter 4. EXPERIMENTAL RESULTSON IMPURITY CONFINEMENT IN TCV

stateis reached, the profile keeps its geometrical proportions and consequently the local and
the line integrated emissivities decay with the same time constant 1, regardless of the posi-
tion of the measurement. As an example, some fundamental eigenstates of Eq.(4.2), obtained
in cylindrical geometry with the same diffusivity profile and different convective velocities
are shown in Fig.4.8, together with the corresponding time constants.

The second eigenvalue 1, isreported for comparison with the fundamental time constant 1,
in order to estimate how faster the higher modes decay with respect to the main impurity dis-
tribution. While the difference between 1, and 1, becomes smaller for higher outward edge
velocities, there is always at |east a factor-of-two between them.

The transient phase after injection, when the line integrated signals reach their maxima, can
be characterised by the full width half maximum (fwhm, Fig.4.4(b)) which isatimescalere-
lated to the formation of the fundamental distribution. Observations from different chords
show that the fwhm is almost the same for central and peripheric raw signals, while after
GSVD filtering the signals from central chords appear to be broader. This effect is probably
produced by the mathematical procedure of GSV D, which producesregularly an anticipation
of therising part, as shown in Fig.4.5.

Many injection signals end with aresidual plateau whose height is typically around 4-6% of
the peak intensity above the background measured before injection. Even if such impurities
are considered to be non recycling, thisasymptotic value could prove that aminimum outflux
of impurities comes from the vessel walls together with intrinsic impurities like carbon.
STRAHL simulations show that the level of recycling usually found in these experiments
does not affect the measured impurity confinement times. For example, in shot #21022 it is
possible to produce aresidual signal in the simulated central lines from 0.5% up to 30% (the
measured level is 4.5%) without affecting the confinement time, Timp = 22.1ms by more

than 0.1ms.

4.1.2 VUV signalsand method consistency

Theradiation from the plasmaedge of injected impurities has been observed in sel ected shots
by means of the SPRED spectrometer, which was used to monitor Si I X to X1 spectral lines.
Among these ion species, the most internal is the Sit* jon which, as shown in Fig.4.1, is
found close to the plasma edge around p=0.9. Consequently, this measurement is comple-

mentary to the SXR detection. In Fig.4.9(a) some spectra are reported from discharge
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4.1 Impurity signalsin TCV

#21272, two of them recorded at t = 0.601s just before the impurity injection and at
t = 0.726 sand used as backgrounds for the other, whichwasobtainedat t = 0.621 swhen
the signals from silicon reach their peak value. The spectrometer does not allow the resolu-
tionof the Si Xl lineat A = 303.3A and Hell lineat A = 303.8 A, however the contribu-
tion of the latter is constant or varies very slowly with time and thus does not disturb the
transient signal from Si'%*. In Fig.4.9(b) the time evolution of the integrated signal of Sitt*
intheinterval 497.5-502.9A showsthetypical pulse-shaped signal from impurities. Thetime
resolution of the measurement does not allow the detailed reconstruction of the influx phase,
as one spectrum has been recorded every 5ms, and SXR measurements show that the signals
reach their maximum in a time of the same order. However, the decay of the Si X1 linein-
tensity can be accurately resolved, and shows avery good agreement with the soft x-ray sig-

nals. The bestfitting value of the time constant of the exponential decaying part of the signal
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Fig.4.9 - (a) Spectra obtained with the SPRED spectrometer during discharge #21272. The
measurements in red have been recorded at t=0.601s, just before the silicon injection and at
t=0.726s when the signal of impurities has disappeared. In blue, the spectrum recorded at
t=0.621s when the silicon lines are at their maximum. In the inset, the contribution of sili-
con at t=0.621s is shown. The line at A = 499.4 A comes from the S XII ions which are
found around p=0.9, as shown in Fig.4.1. (b) The time evolution of the intensity of this S
Xl line, which shows very similar features and timescales as the soft x-ray signals.

isfoundtobe t,;, = 25.4mswhichiswithintheincertitude range of theimpurity confine-
ment time, estimated to be, for the shot #21272, 1;,,, = 25+ 1ms. Thetime evolution and
the exponential decaysof all other lines of the spectrum reported in Fig.4.9(a) isvery similar,
the decay time being close to 25ms.

The line integrated signals from soft x-ray measurements, both from central and mid-radius

chords, have shown that the time constant of the exponential decay of the impurity radiation
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Chapter 4. EXPERIMENTAL RESULTSON IMPURITY CONFINEMENT IN TCV

was fairly independent on the position of the chords. Following these spectroscopic meas-
urements, this result now can be extended to the plasma edge, giving reasonable support to
the idea that a fundamental distribution of impurities is reached after a transient phase fol-
lowing injection, and this distribution decays all over the plasma volume with a single time
constant. As a consequence, this time constant can be considered a global confinement time
for impurities and can be measured vialocal or lineintegrated signals, vialine spectroscopic

systems or broadband detectors.

4.1.3 Impurity effectson TCV plasmas

In the previous Section the radiation from impurities in TCV plasmas has been described,
with particular attention to the SXR and VUV contributions of partialy stripped ions, com-
ing from al the plasmavolume. The introduction of moderate-Z atoms and consequently the
additional emission of radiated power can however play a non negligible role in the power
balance of the plasma and affect the electron density. Consequently, it is necessary to inves-
tigate whether the injected impurities produce perturbations in the target plasmas or simply
are tracing particles which do not affect the plasma parameters.

Experimental observations of effects of non-recycling impurity injections on tokamak plas-
mas have been reported for many experiments. In some cases even small quantities of laser
ablated particles have given origin to cold pulses in the electron temperature profiles and to
edge localised increases of the electron density[90, 91]. The cold pul se has been observed to
propagate towards the centre of plasmas with the same dynamics as the impurities[87] but
the reduction in temperature cannot always be accounted for by the increased el ectromagnet-
ic emission alone. In JET, measurements48] concerning sudden drops in the electron tem-
perature over alarge fraction of the plasmas have been explained with non local changes of
the heat transport parameters. In some cases even an increase of the central electron temper-
ature was observed[92, 93] in coincidence with a cooling of the plasma edge.

In TCV the Thomson system (see Section 3.3.2) has spatial and temporal resolutions which
do not allow to follow in detail possible cold pulses during the influx of the injected impuri-
ties, as no more than one measurement is possible during this phase. However, by means of
the datafrom the soft x-ray system, it is possible to give aquite precise estimation of the con-
centration of impurity ionsin the plasma centre[49] and of the additional emitted power.

The basic hypotheses for such estimation are the constancy of the concentration of any in-
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4.1 Impurity signalsin TCV

trinsic impurity, of the electron temperature and density in the central region of the plasma.
Thisimpliesasapriori assumption that the injected amount of impurities does not affect the
electron density, which can be verified once the absolute amount has been cal cul ated.

In order to evaluate the excess of SXR emissivity in any instant following injection due to
theimpurities, atomographicinversion is performed and its distribution beforeinjection sub-
tracted. The impurity concentration can be calculated by means of a simulation with
STRAHL, in which the simulated concentration is renormalised in order to match the meas-
ured excess of SXR emissivity.

Asan example, theinjection in shot #21164 has been tomographically inverted and theradial
profile of the SXR coming from silicon is compared with the ssmulation. In Fig.4.10 the two
profiles are shown, after renormalisation of the simulated one in correspondence to the max-
imum value of the line integrated signal on the central chord #30 of the photodiode array, at
t = 0.625s. The absolute silicon density and the concentration fg = ng/n, are reported
in Fig.4.11. From this example it is evident that in the plasma centre the maximum silicon
density is around ng = 1.6 [110%° m3. The corresponding concentration lies around 0.02-
0.03% and hence the perturbation on the electron density is negligible, as the increase in ng
Is of the order of 0.3-0.4% which iswell below the experimental errors.

The analysis of many injections leads to the observation that the global impurity density is
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Fig.4.10 - Comparison between the simulated (dashed line) and experimental (full line) pro-
files of the SXR emissivity in shot #21164 at t = 0.63's, marked by the upper green circlein
the trace of chord 30. For the simulation the transport parameters were
D = 005+ 0.35p§0I andv = 4.5p ) - The lower green circle refers to the depleted pro-
file shownin Fig.4.11.
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lower in larger plasmas, typically in highly elongated ones. In discharge #19739, for which
K = 2.19, the central impurity density isfound to be 5 times less than the above values.
As far as the total spectrum integrated power is concerned, Fig.4.12 shows that when the
SXR signals are at their maxima, the total radiated power from impuritiesis about the 1% of
the total ohmic power, but this fraction is much higher during the impurity source phase, as
alarge fraction of the injected impuritiesis concentrated at the plasma edge in alow ionised
state. In thisexample the total emitted power by impurities reaches the 25% of the total ohm-
ic power, and such emission comes almost completely from the region p > 0.9 and from the
ionic species Si 11 to S 1V. In those casesin which the emissivity from impurities constitutes
anon negligible fraction of the total ohmic power, the plasma properties at the edge may be
changed by a sudden cooling. However, the edge perturbation is present only during the im-
purity source phase and may last at most for atime equivalent to the electron energy confine-
ment time, which is of the order of 13-15ms in the analysed discharges. Hence, the
exponential decay of the SXR signals and the measured confinement times are unlikely to be
affected by an initial perturbation of the plasma edge.

Possible alterations in the plasma properties and in the edge transport dynamics can be in-

x 10™°

Fig.4.11 - (Top) In blue, the impurity
density profile which corresponds to
the SXR emissivity profile shown in
Fig.4.10, provided by the STRAHL
simulation. In magenta, the impurity
density during the last phase of the
depletion. The central part appears

oL
6l flattened by the sawtooth activity.
.._ml | Recycling effect (Bottom) The corresponding silicon
' concentrations f g, when the signal
08 on chord 30 of the tomography sys-
041 tem is around its maximum, at
0, 3 02 s 08 , t=063sandatt = 0.70s.

84



4.1 Impurity signalsin TCV

spected considering differences in the signal risetimes of peripheric and central chords in
cases with different peak ratios of edge radiated to ohmic power. In Table 4.1 some selected
shots are reported, in which the above ratio is either around its maximum or minimum value
in all performed injections. While there can be differences of afew ms among the different
risetimes (the time necessary for thelineintegrated signal to go from 20% to 80% of the peak
value), there appears to be no correlation with the power ratios. Only in one case (shot
#19782), which is part of the triangularity scan with 8 -5 = 0.05, shownin Section 4.2.1,
the risetime of the central chord is abnormally high. Evidence of a cold pulse preceding the
impurity influx has never been observed. Such a pulse would manifest itself by adrop of the
SXR emissivity before the rise due to the injected silicon.

In conclusion, no perturbation of the plasma by the impurity electromagnetic emission from

impurities has been found.

Radiated at t=0.63s

Fig.4.12 - The ohmic power (red), the
power emitted by impurities at the
SXR signal maxima at t=0.63s (blue)
and during the source phase (black)
integrated on the plasma volume (shot
#21164) inside a given p. Data have
0 0.2 0.4 06 0.8 1 been obtained by STRAHL simulation.

power [W]
)

Radiated
at t=0.625

Shot # | Peak P,,4/Ponm | Periphericchord risetime | Central chord risetime
19785 5% 6.8ms 6.9ms
19739 5% 4.5ms 4.8ms
17788 5% 4.5ms 3.7ms
19631 5% 3.3ms 3.3ms
17799 22% 3.1ms 3.1ms
21022 25% 4.5ms 4.5ms
19782 35% 5.3ms 11.6ms

Table 4.1: SXR signal risetime behaviour versus the peak value in the impurity emission.
The particularly long central chord risetime in shot #19782 (& scan at 6=0.05, Fig.4.14) is
correlated to the long impurity confinement time and the low edge convective velocity.
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4.2 Experimental observations on the effects of plasma shape

A dataset of about 150 successful impurity injections has been created for the realisation of
this work. The number of dedicated discharges in which the impurity signals and the back-
ground were clear enough to evaluate the temporal evolution of the SXR emissivity however
does not exceed 100. Nearly all the discharges which are taken into account in the following
are ohmically heated, limiter plasmas in L-mode confinement. Exceptions are two seriesin
diverted configurations: a density scan which was compared to an equivalent sequence in
limiter plasmas, and a scan in which the plasma was a varying mixture of deuterium and he-
lium. For each discharge, the confinement time of the injected impurities was evaluated by
means of the expression given in Eq.(4.1). The fit was performed in all cases on thelinein-
tegrated signals both from central chords and on peripheric chords of the SXR tomography
system, and no correlation was found between the time constants of the exponential decays

of the signals and the position of the viewchords relative to the plasma centre. The bestfitting

| (a) »(b).“‘ © "(d)

Fig.4.13 - Examples of plasma cross sections in which impurity injections were performed.
(&) Minimum elongation, k = 1.59 (b) Maximum elongation, kK = 2.28. (¢) Minimum tri-
angularity, & = —0.16 (d) Maximum triangularity, & = 0.64

parameters, including the decay time, are determined by means of a fit on a time interval
which is not defined a priori, and an uncertainty on the decay time of the order of 1ms can
originate from different extensions of the fit interval. Another source of uncertainty isthere-

sidual noise of the signals which cannot be removed by means of the GSVD, as this tech-
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nique only takesinto account regular events like sawteeth. The error bars on the confinement
times, shown in the following, have been determined from the set of different bestfitting val-
ues coming from the fit of the signals -both raw and filtered from sawtoothing background-
from various chords and with different fitting intervals.

The materials chosen for these experiments were non recycling impurities. Most of the in-
jections were made with silicon, while a scan of elongation was performed with aluminum.

The dataset, while being quite small and susceptible of completion, is representative of the
variety of plasmas which can be produced in TCV and explores ranges of geometrical pa-
rameters which can only be obtained in this machine. In Fig.4.13 some examples of plasma
cross sections which have been produced in dedicated shots are presented. The elongation
scan covers the range Kk = 1.59 to Kk = 2.28, the triangularity goes from 6 = —0.16 to
0 = 0.64.Besidestheforementioned series, in Section 4.2.1 the results of a scan of toroidal

magnetic field are presented, while scans of plasma current and line integrated el ectron den-
sity are shown in Section 4.2.2. Other injections were performed parasitically in many dis-
charges, including ECRH and ECCD plasmas, and the results of spare shots are presented in
Section 4.2.4.

4.2.1 Triangularity, elongation, magnetic field

It has been presented in Chapter 1 that the triangularity has a strong effect on the electron
energy confinement time T, the reduction of d to negative valuesleading to improved con-
finement of the energy[12, 13]. The distortion of the peripheric magnetic surfaces, deriving
from the particular plasma geometry has been invoked as a possible explanation for the im-
proved confinement, and the shape enhancement factor has been introduced as a correction
factor (see Section 1.4.2). As aconsequence of this geometry, the injected impurities are ex-
pected to behave the same way, and increase their confinement time accordingly, when the
triangularity of the plasmaislowered and eventually becomes negative.

The triangularity scan has been performed on 13 non consecutive discharges, and some con-
figuration were repeated twice in order to control the repeatability of the results. In these cas-
es, the observed impurity confinement time was reproducible within 1-2ms. The scan spans
the triangularity in theinterval & = —0.16 to & = 0.64, while the other plasma parameters
are kept as constant as possible. The elongation was K = 1.52 + 1.63, the line averaged

electron density along the Thomson chord A, = 5.6 + 6.9 [1L01° m3, the plasma current
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Chapter 4. EXPERIMENTAL RESULTSON IMPURITY CONFINEMENT IN TCV

| = 320 + 380KA and the toroidal magnetic field By = 1.47T.
The effect of triangularity on theimpurity confinement timeisshown in Fig.4.14(a). For val-
ueslarger than athreshold around & = 0.2, thereisno effect of the plasmatriangularity and

theimpurity confinement timeisaround 1;,,,, = 25ms. From thisscan, aswell asfrom scans

p

of other parameters, shown in the following, the plateau at T; mp = 22+ 25msappearsto be

akind of typical value for many different discharge configurations. For 6 < 0.2, the impurity

confinement time increases to much higher values with a similar scaling to that of the elec-
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Fig.4.14 - (a) Confinement time of injected impurities for different plasma triangularities. A
threshold appears in the triangularity around 6=0.2, below which the confinement time
startsincreasing. (b) For some of the discharges the electron energy confinement times were
calculated according to Eq.(1.21). Their behaviour is in agreement with the results of
Ref.[12, 13]. For the evaluation of the point at d=-0.16 no direct measurement was availa-
ble. The Neo-Alcator-TCV scaling law[ 14], Eq.(1.22) was used, with the Hg values which
are presented in Ref.[13].
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4.2 Experimental observations on the effects of plasma shape

tron energy confinement time for the same discharges. Except for the lowest triangularity,
the geometry of the magnetic surfaces alone, described by means of the shape enhancement
factor, may account for this behaviour. A slightly higher recycling has been found in the tri-
angularity scan for low values of &, which could contribute to an increase of the apparent
confinement time. The residual line integrated signals are 8% of the peak valueat o = 0.28
and 14% at & = 0.06; the different recycling level will have to be taken into account in
STRAHL simulationsin order to rule out possible effects.

At the lower end of the scan, it isfound thet T;,,,, = 127 = 3mswhich correspondsto anin-

crease of afactor of 5with respect to thea mostpconstant valuefound for & > 0.2. However,
this observation at negative triangularity needs confirmation from further measurements in
similar plasma conditions as it is based on a single point. The values of the electron energy
confinement time, which have been calculated according to Eq.(1.21), are shown in
Fig.4.14(b). In agreement with the observation reported in Ref.[12, 13], T, is increased

while reducing the triangularity, and its values range from 1., = 13ms for d = 0.6 to
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Fig.4.15 - Confinement times of the injected S impurities for different plasma elongations.
In this scan the current was varied accordingly in order to keep the sawtooth inversion
radius constant at p;,, = 0.55. T;,,, isuniformly decreasing with elongation. In the inset,
the electron energy confinement time for the same discharges is shown, and no correlation
with elongation is observed, since T, is constant around 14ms.
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Chapter 4. EXPERIMENTAL RESULTSON IMPURITY CONFINEMENT IN TCV

Tge = 26msfor & = 0.01. Although the behaviour is slightly different along the scan of
triangularity, both theimpurity and the electron energy confinement times are doubled at low
triangularity and their ratio T;,,/ Tg, isamost constant around a factor of 2.

The investigation of the effects of the plasma shape on the transport of impurities was com-
pleted by means of a scan of elongation in the range K = 1.59 + 2.28 . Parasitic injections
have been performed at even higher elongations around k = 2.35 and, while they have not
been included in the scan due to adifference in the electron density, their confinement times
are in agreement with the following results.

Previous observationsin TCV on the confinement of the electron energy[12, 13, 15] show
that the confinement isimproved with elongation, and the increased values of 1, can bere-
lated to the increased distance of the peripheric magnetic surfaces. These geometrical effects,
which are taken into account in the shape enhancement factor, fully explained the effects of
elongation on the confinement of the electron energy.

The elongation scan has been performed in 2

4 Impurity/energy confinement times ratio vs elongation

series of consecutive discharges, consisting
asf : ] of atotal of 14 impurity injections. Among
o o ] the other plasma parameters, some have been

kept constant: the triangularity was

/TEe

2.5F

= o 0 = 0.3+04, the line averaged electron
| | densty R, = 5.6+ 6.9 (10°m3, the toroi-
dal magnetic field was kept at the value of
s 16 17 18 };9 2 21 2z 23 By = 0.92T. Thelow values of By and I

Fig.4.16 - The ratio T;,,/Tg, for the  reduce the risk of damage in case of disrup-
elongation scan.

imp

tion at high elongations. The plasma current
has been varied proportionally to the elongation, such as to keep approximately constant the
“engineering safety factor” qgr}g O 15/(ByK) . This parameter being roughly inversely pro-
portional to the normalised sawtooth inversion radius, the possible dependence of the impu-
rity confinement on the extension of sawteeth were removed. The inversion radius was
calculated to be, for all shots of the elongation scan, at p;,,, = 0.55, following the scaling
laws reported in Ref.[22].
The confinement times of impurities with different plasma elongations are shown in Fig.

4.15. The dependence of Timp ON elongation is surprisingly different from the case of the
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4.2 Experimental observations on the effects of plasma shape

electron energy, decreasing with elongation from relatively high values around
Timp = 48msfor k = 1.59 to T;,,, = 18msfor k = 2.28.If 1;,, followed the shape en-
hancement factor, it would be expected to moderately increase by about 20% along the scan.
The plasmaelongation appears to be the geometric parameter which provides the largest dif-
ference in the behaviour of impurities and electron energy. The electron energy confinement
time was cal culated for the shots of thisscan, and theratio T;,,,/ Tg, representedin Fig.4.16.
Thevalueof 1, isfairly constant along the scan, around 1, = 13+ 15ms, and thelack of

dependence on elongation is explained by the simultaneous variation of plasma current. As
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Fig.4.17 - Dependence of the impurity confinement time on the toroidal magnetic field. In
the inset, the electron energy confinement time for selected shots in the same scan.

aconsequence, theratio of the confinement timesfollows the same behaviour asthe impurity
confinement time alone.

This effect of elongation can be important in the frame of aworking reactor in which theim-
purity level hasto be kept as low as possible. Higher plasma el ongations could improve the
confinement of heat against impurities and lead to a cleaner plasmaand lower loss of power
coming from impurity radiation.

It hasto be remarked that the plasma geometry, density and current at lower elongations are

very similar to those of some discharges included in the triangularity scan, but the confine-
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Chapter 4. EXPERIMENTAL RESULTSON IMPURITY CONFINEMENT IN TCV

ment times are different of afactor of 2. While the profiles of the electron density and tem-
perature in similar shots are comparable within the approximation of 10%, the toroidal
magnetic field isthe only really different parameter in similar plasmas coming from the tri-
angularity and the elongation scans. However, the influence of the magnetic field appearsto
favour the confinement of impurities at lower values of By, in apparent opposition to the
CcoOmMmMmon sense.

The confirmation of the surprising result for which t;.,, decreases with By has been ob-
tained from a dedicated scan, which includes at its extremities two discharges already be-
longing to thetriangularity scan (shot #19779, By = 1.47 T) and to the el ongation scan (shot
#19743, B, = 0.92T). The congtant parameters were N, = 5.4+ 6.4 [101°m,
0 =028+032,k = 1.62+1.70 and | = 353+ 356 kA and as aconseguence of the con-
stancy of the plasma current the sawtooth inversion radius changed according to the toroidal
magnetic field. The results of this scan, shown in Fig.4.17, lead to the observation that the
increasing magnetic field at constant current produces aregular decrease of theimpurity con-
finement time. In addition, the higher impurity confinement times at low field are associated
with a possible higher transport in the plasma core, the sawteeth being more frequent
(Vgr = 190Hz vs (vgr = 140Hz) and the inversion radius wider (p,, = 0.58 vs
Pyo = 0.42) at low field.

For the same series of discharges, the electron energy confinement time has been calculated
and appears to be fairly independent on the toroidal magnetic field at least for the values in-
vegtigated in this scan, asit ranges from 1., = 14msfor By = 0.92T to 1, = 17msfor
By = 1.47T. Similar results on the independence of the magnetic field on the energy con-
finement time were found in Alcator-A[94], where no clear connection was observed be-

tween T, and By intherange 6 < B <9.5T.

4.2.2 Electron density, plasma current

The effects of electron density and plasma current on the confinement of impuritiesand el ec-
tron energy have been investigated in different tokamaks in the past[16, 45, 46, 94, 95]. As
ageneral result, none of the two parameters shows a strong effect on the lifetime of impuri-
ties. Whilein the TEXT tokamak the dependence seemsto be amost negligible[45], adlight
increase of the impurity confinement time as a function of the plasma current was observed

in Alcator-A[94] and a more pronounced effect was found in Alcator-C[95]. A scaling law
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4.2 Experimental observations on the effects of plasma shape

for these tokamaks has been proposed, including the dependence on the safety factor as
Timp U 1/0,.

The scan of electron density has been performed both in limiter and in diverted configura-
tions. The elongation k = 1.57 + 1.65 isthe same for both series, while the triangularities
and the plasma currents were different: |, = 355+ 1kA and & = 0.24+ 0.28 in the case
of limiter plasmas, I, = 274+ 1KA and & = 0.50+ 0.52 for the diverted configuration.
These differences however can be neglected if the validity of the results of the scan of plasma

current, shown in the following, are assumed, and the impurity lifetime can be considered
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Fig.4.18 - Confinement time of the injected impurities as function of the line averaged elec-
tron density. In blue the results of a scan in limiter configuration are reported, while the
green points refer to a scan in diverted configuration. In the inset the corresponding elec-
tron energy confinement times are shown.

unaffected by the triangularity and the plasma current above the observed thresholds.

In Fig4.18 the results of the scans in both configurations are presented. Injectionsin limiter
plasmas in particular show that the impurity confinement time is little affected by the elec-
tron density, since its values are constant around T;,,,, = 23ms and start increasing towards
Tjmp = 27Ms only when the line averaged density is higher than n, = 5.5 (10%° m3. In the
scan in diverted configuration the impurity confinement time shows a possible higher de-

pendence on f,, even if this observation has to be completed with additional points at low
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Chapter 4. EXPERIMENTAL RESULTSON IMPURITY CONFINEMENT IN TCV

density. Inthis case, the values of T, mp e approximately the same asfor the scan on limiter

plasmas, but they are likely to fall below T;,,, = 20msfor f, < 3 (10 m3and show alin-

p
ear dependence on the electron density. For the same discharges, the electron energy con-
finement times 1, are fairly constant, around 1, = 15+ 2ms, without evidence of a
correlation with the electron density.

The results of the scan of plasma current in TCV are shown in Fig.4.19. The scan was per-
formed with elongation k = 1.54 + 1.64, triangularity & = 0.26 + 0.30 and line averaged
electron density n, = 3.7 + 4.3 (10%° m3. Since this parameter is lower than that of the

scans of elongation, triangularity and magnetic field, the possible dependence of theimpurity
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Fig.4.19 - Confinement time of injected impurities for different plasma currents. A sharp
threshold appearsfor |, = 250 kA, above which the impurity lifetime islittle sensitive to the
plasma current, and consequently to the values of g5 and pijny-

confinement time will have to be investigated with a dedicated scan.

The change of the plasmacurrentintherange | = 163 + 525KkA is associated to avariation
of the safety factor from g = 6.4 t0 gg; = 2.2 and of the sawtooth inversion radius from
Piny = 0.20 to p,,, = 0.55, since the geometry and the toroidal magnetic field of all dis-
charges are constant. Agreement with the observations on other tokamaks is seen between

250kA and 430kA where the impurity lifetime shows a dight increase with the current. The
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4.2 Experimental observations on the effects of plasma shape

experimental values of T;,, are around the value of 25ms which is commonly found for a
wide range of parameters. Below 250kA the impurity lifetimeincreasesto rather high values
above 50ms.

Unfortunately for the scan of plasma current it was not possible to evaluate the confinement
time for the electron energy, because of the lack of Thomson measurements of the profiles
of the electron temperature and density. However, it can be assumed again that the Neo-Al-
cator-TCV law[18] is applicable to this scan, although it refers to the total energy rather that
to the electron energy only. Asall other parameters which enter Eq.(1.22) arefairly constant
al along the current scan, consequently the electron energy confinement time should de-
crease with increasing current.

Although there is a factor-of-two reduction in T, ., with Ip over the range of the scan, the

imp

detailed behaviour, especially the threshold, cannot be related to the behaviour of 1.

4.2.3 Evidence of impurity accumulation

Injections performed in two plasmas whose currents, | , 1235kA, are closeto the threshold,
reveal impurity accumulation in the plasma centre. The line integrated SXR signals from
central chords show no or little decrease of the intensity, while the signal from more pe-
ripheric chords decays almost linearly to the background. The long persistence of a peaked

profile of impurities agrees with afundamental eigenmode with avery high inward convec-
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Fig.4.20 - (a) The time evolution of selected line integrated SXR signals in shot #20164.
Impurity accumulation in the plasma core is revealed by central chords. (b) The asymp-
totic profile of the impurity SXR emissivity in shot #20164, measured 200ms after injec-
tion. It istaken during the sawtooth buildup phase.
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Chapter 4. EXPERIMENTAL RESULTSON IMPURITY CONFINEMENT IN TCV

tive velocity and a very high time constant. As shown in Fig.4.8, apossible v of around

edge
-5+ -10m/swould lead to alifetime larger than the duration of the plasma. :
The behaviour of this accumulation phenomenon is reported in Fig.4.20(a) for the discharge
#20164. The correlation between the position of the chord and the residual asymptotic signal
Is evident, and no calculation of the confinement time can be done. The plasma centre ap-
pears to indefinitely retain the impurities, while the shape of the signal from peripheric
chords prevents the possibility of an exponential fit, however the signal fwhm, of the order
of 80ms, suggests a possible peripheric lifetime in agreement with the low current part of the
scan. The configuration was repeated in the discharge #20288 with similar results.
Theresidual asymptotic profile of the SXR emissivity from the injected impuritiesis report-
ed in Fig.4.20(b). The profile peaking, together with the very long retention of impurities
suggest that the convective velocity isinwardly directed and strong enough to overcome the
diffusive flux due to the density gradient. Sawtooth activity is present in these discharges,
although the inversion radius and the crash frequency arefairly low compared to other shots
in the current scan. The measured values for shot #20164 are p;,, = 0.28, fgt = 7.3ms
and areduction of the central SXR intensity of about 12%, which imply a limited transport
effect even in the plasma core. It hasto be remarked that these values are in no way particu-
lar, asthey are close to those of the neighbouring discharges which show no impurity accu-
mulation. The comparison of the values of diffusivity and convective velocity in these and
the other shots will be made in Chapter 5.

4.2.4 Other observations

No systematic data could be collected in other confinement and heating regimes than the
ohmic L-mode. A small number of injections were however performed in ohmic H-modes,
in helium discharges, ECRH and ECCD plasmas, and a small scan of elongation was per-
formed with injection of aluminum; these experiments deserve to be reported here for com-
parison with the above results.

In Table 4.2 the results from someinjections in ohmic H-mode discharges with ELMYy activ-
ity are shown. The values of both the impurity lifetime and the electron energy confinement
time are higher than in similar L-mode discharges. Nonetheless, the ratio T,/ Tge = 2.8 is
increased aswell with respect to the value of 2 or lesswhich isfound in the case of equivalent

L-mode discharges. No changes in the behaviour of the ELMy activity were observed as a
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4.2 Experimental observations on the effects of plasma shape

consequence of the impurity injection.

Shot # Timp [MS] Tge [MS] Common parameters

19592 66 24 k=1.75, =0.58, | p=405kA , Ng=6.5* 101°m™
19593 71 26

19594 67 27

Table 4.2: Summary of injections performed in ELMy ohmic H-mode discharges.

In Table 4.3 the results of someinjectionsin discharges with additional heating are present-
ed. In shots #19556 and #19557 an additional heating is provided by 2 or 3 gyrotrons at the
nominal power of 450kW each, plus one more gyrotron in current drive (ECCD) configura
tion, while in shot #19485 thereisno current drive. In all casestheimpurity lifetime decreas-
esto values around 8+16ms, although not as dramatically asthe electron energy confinement
time. It has to be remarked that in these discharges the electron density isfar lower than that
of ohmic shots, so adirect comparison isnot possible. These discharges have been performed
in L-mode. Auxiliary heated plasmas in both L-mode and H-mode, as well as improved re-

gimes with ITBs need further investigation as they are more relevant to reactor regimes.

Shot # PecrH [MW] | Timp[ms] | Tge[ms] Common parameters
19485 1.35 16 35 k=1.60, 6=0.28+0.50,
19556 1.35 8 2.5 _

_ -0 o* 10193
19557 18 10 18 Ip=120kA, ne=0.9"10m

Table 4.3: Summary of injection in discharges with additional heating

The dependence of the confinement of impurities on the composition of the background plas-
ma has been investigated in a series of injections in ohmic L-mode diverted plasma made of
mixtures of helium and deuterium. The He-D composition was checked by meansof avisible
spectrometer which measured the line intensities of the He | at A = 728nm and the Dg at
A = 486.8nm.

Asshown in Table 4.4, the impurity confinement time correlates with the percentage of he-

liumin the plasma. Thevalue of 1, ,,, increasesfrom 29msin a pure deuterium plasmaup to

p
40ms in a plasmain which the helium percentage is 80%. The impurity confinement timeis
in agreement with the scan of density, presented in Section 4.2.2, when no helium is present
in the mixture. The triangularity in this scan is higher but it is supposed not to significantly

affect the observations.
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Apart from silicon injectionsin TCV plasmas, aluminum has been used as trace impurity in

ascan of elongation.The other plasma parameters have been kept constant with the exception

Shot # He% Timp [MS] Tge [MS] Common parameters
22634 0 29 15

22643 ~60 36 18 K=1.60, 5=0.50, |p=335KA,
22645 ~70 37 19

22646 ~75 38 19 Ne=7.0*10%m’3
22647 ~80 40 -

Table 4.4: Summary of injectionsin mixed He-D ohmic L-mode discharges

of the plasma current which varied proportionaly to the elongation in the range
| = 330+ 520kA. Thetriangularity was & = 0.4 + 0.5, the line averaged €electron density
A, = 4.5+ 5.6 (10°m3, the toroidal magnetic field was kept at the value of By = 1.2T.
The observed confinement times, shown in Fig.4.21, follow the same behaviour as of thein-
jection of silicon, as T;,,, decreases with elongation. It has to be remarked however that the

absolutevaluesof t;,,, arelower inthe case of luminum asthey lieintherange 12 + 17 ms.

Itis cause of concern I[t)hatt the measured confinement times of aluminum and silicon are dif-
ferent by about a factor of two. Part of the difference can be explained by the values of the
toroidal magnetic field. As shown in Fig.4.17, the reduction of the toroidal magnetic field
from By = 1.2T (scan with aluminum) to By = 0.9 T (scan with silicon) can account for
anincrease of T;

€l ectron densitiesin these scans, which was higher of a25% in the silicon injections. Accord-

of about 20%. A further effect can be due to the different line averaged

ing to the density scan reported in Fig.4.18, the further correction to the aluminum confine-
ment time might amount to another 25%, bringing the total to at least 50%. Clearly, even
after these corrections, the silicon confinement time would still be significantly higher com-
pared to aluminum by a 40% at least.

This discrepancy has been observed in agroup of non correlated aluminum injections, all of
which show a confinement time whose values are seldom larger than 20ms. About 30 injec-
tion were made over a period of three months with k = 1.28+2, 6 = 0.13+0.6,
Ip = 190 + 550kA, N, = 1.4+ 6.210%m-3, and in all cases 12 <T;,,, <22ms. As pre-
sented in the previous results, silicon confinement times are typically of the order of 25ms

or more, thus clearly higher than those of aluminum.
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4.2 Experimental observations on the effects of plasma shape

Some effect, however limited by the fact that aluminum and silicon are close to each other
in the Periodic Table, is probably due to theion charge and mass. This discrepancy needsto
be further investigated with simultaneous injections of both aluminum and silicon in order
to remove any possible effect deriving from different target plasmas.

All the results which have been presented in this Chapter most probably cannot be extended

to elements which are far from silicon in the Periodic Table.
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Fig.4.21 - Scan of elongation in which aluminumwas injected. In the inset, the correspond-
ing electron energy confinement time is shown.

4.2.5 Sawtooth activity and impurity lifetimes

In all the previous results the dependence of theimpurity lifetimes on various plasma param-
eters has been determined in scans where just one parameter was changed, except in the scan
of elongation where the current was varied in order to keep a constant inversion radius. Nev-
ertheless, in each case the sawtooth activity varied accordingly, and the fast transport which
Isassociated can have effects on the global impurity confinement time. Published resultg[13]
show that sawtooth amplitudes decrease when the triangularity is decreased at fixed current
and sawtooth inversion radii and amplitudes decrease at lower plasma current. In plasmas
with increasing elongation, at fixed inversion radius, the sawtooth frequency increases and
the amplitude is reduced and eventually for k > 2.3 sawteeth can disappear[15, 22].
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Chapter 4. EXPERIMENTAL RESULTSON IMPURITY CONFINEMENT IN TCV

During the impurity depletion phase, it is possible that a higher core transport may be asso-
ciated with areduced impurity confinement time, and thus high sawtooth inversion radii, fre-
guencies and amplitudes may imply lower values of Timp- The experimental observations

made in the main parameter scans are reported in Table 4.5, in which the behaviour of the

sawteeth is compared to that of the experimental T;

imp-*
Parameter Value Pinv Tt [MS] Amplitude Timp [mg]
Omin -0.16 0.39 No ST 0 >100

Omax 0.64 0.50 5.6 20% 23
Kmin 1.59 0.58 5.1 26% 48
Kmax 2.28 0.58 2.8 11% 18
Bmin[T] 093 0.58 5.1 26% 12
Bmax [T] 1.47 0.42 7.2 18% 26
[min [KA] 197 0.25 74 12% 62
I max [KA] 526 0.55 3.8 18% 24

Table 4.5: Sawtooth properties and impurity confinement times in selected shots

Inthis Tableit is evident that at the low end of the scan of magnetic field large sawteeth, in
radial extension and amplitude, are present. Compared to the opposite extreme, also the fre-
guency is higher but nonethel ess the impurity confinement timeis higher. In the scans of tri-
angularity and plasma current there seems to be a correl ation between the sawtooth induced
transport and the impurity confinement time. In the scan of elongation at constant inversion
radius sawteeth are either small and fast or large and slow, and aremarkable differencein

Timp 1S found between the extremes. In this case a correlation cannot be established apriori.
It is possible that sawteeth do not play arelevant role in the determination of the impurity
confinement time, or at |east the other transport phenomena, based on the diffusivity and the
convective velocity are dominating. The effects of sawteeth alone on the behaviour of impu-
rities can be modelled and reproduced by means of simulation, and the results are presented

in Chapter 5.

4.3 Summary and discussion

In this Chapter, the phenomenology of moderate-Z impurity transport in TCV plasmas for

various configurations has been presented. The transport of impurities in plasmas has been
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characterised by means of their global confinement time, asit is measured from the exponen-
tial decay time of the line integrated SXR signals. This procedure is supported by the fact
that both the SXR system, which records broadband signals coming from central or more pe-
ripheric chords, and the SPRED spectrometer sensitiveto VUV radiation from lower ionised
states at the plasma edge, show very similar decay times.

Resultsfrom TCV plasmas have been obtained in the past on the effects of shape on the con-
finement of the electron energy. It has been found that both the triangularity and the elonga-
tion of plasmas influenced the energy confinement[12, 13], and that such changes could be
almost completely explained in terms of the variation of the distance between magnetic sur-
faces at the plasma edge and its effects on the gradients of the electron temperature and den-
sity. The investigation of impurity behaviour in similar discharges has shown that the effect
of triangularity, although not identical, is very close to that of energy. For both, the confine-
ment time is increased of afactor of 2 while approaching zero or negative triangularity, the
only difference being the presence of athreshold at & = 0.2 in the case of impurities.

The most surprising results come from the effect of elongation on the impurity confinement
time, as a higher elongation leads to lower lifetimes. The behaviour is different from that of
the electron energy, which in the scan of elongation was approximately constant. Asreported
from previous TCV results, the increase of elongation alone produced an increase in the en-
ergy confinement time which was very well correlated to the higher plasma size and lower
gradients of electron density and temperature at the plasma edge. These measurements seem
to indicate that the local transport isincreased with elongation for impurities without effect
on the energy. Asfar astheratio T;.,,/ Tge is concerned, areduction of afactor of 3to 4 is
determined by simply increasing the plasma elongation from k = 1.6 to Kk = 2.3 at con-
stant sawtooth inversion radius.

These results are particularly interesting in view of a future thermonuclear reactor, whose
performances are strongly determined by the impurity levelsin the plasma. The marked de-
crease of the impurity confinement time with increasing elongation may help the reduction
of impurity concentration and at the same time improve the confinement of the energy. Im-
purity transport in highly elongated plasmas needs to be further investigated in reactor rele-
vant configurations.

Another unexpected observation comes from the scan of magnetic field, whose increase re-

duces the confinement time of impurities. The radial motion of impurities appears not to be
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directly correlated to the fact that a higher magnetic field leads to smaller orbit sizes and
hence to smaller steps in the collisional diffusion process, which is at the basis of the neo-
classical theory of transport. On the contrary, the “inverted” effect of the magnetic fieldisa
further suggestion that the contribution of anomalous radial transport or turbulence is domi-
nating.

The scans of lineintegrated electron density and plasma current show that the impurity con-
finement time is little affected by this parameter, at least for limiter plasmas and above a
sharp current threshold. In plasmas of same sizes and with similar profiles, the constancy of
the impurity lifetime is typically a consequence of non varying transport parameters. These
observations are in agreement with the results reported from transport investigations in
TEXT plasmag[45], following scandium injections, where the diffusivity and the convective
velocity show no strong correlation to the plasma current nor to the density. Similar results
were obtained in Alcator C-Mod[95] where no scaling with density was found.

A radical change in the impurity confinement time is however observed when the plasma
current is sufficiently low. The value of T;,,, isincreased from the usual 25ms up to 50ms
and beyond. Moreover, for plasma currents close to the threshold value, a couple of injec-
tions shows central accumulation, in which a peaked radial profile of impurities is formed
and lives up to the end of the discharge without an edge source to fuel it. The central SXR
intensity is almost constant and does not decrease from its maximum value.

The sawtooth activity has been shown to provide a large contribution to the transport of en-
ergy inthe plasmacore[19], as each crash is associated with fast flattening of the central den-
sity and temperature profiles in atime scale of the order of 100us. The analysis of al the
impurity injectionsin TCV shows however that these sawtooth effects are not dominant on
the global lifetime of impurities. In the scans magnetic field, for instance, the longest impu-
rity confinement times are found when the core transport associated to the sawtooth activity
ishigher if compared to the other dischargesin the scan. A possible explanation can refer to
the fact that the flat profiles of the impurity density consequent to crashes are little affected
by central transport before the following sawtooth takes place, reducing the effectiveness of
the sawtooth activity. As a consequence, the evolution of the outflux phase may be dominat-
ed by the transport outside the mixing radius. However, the quantitative evaluation has to be
made with STRAHL, in which the sawtooth extension and frequency can be artificialy

changed.
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4.3 Summary and discussion

In the frame of a description of the radial transport based on the profiles of diffusivity D(r)
and convective velocity v(r), it is probably possible to provide a simple correlation of these
values to the features of the experimental signals. By means of simulation codes, like
STRAHL, the bestfitting transport parameters can be searched in order to match the observed
impurity confinement times. In the lack of a clear physical explanation of the impurity be-
haviour when these plasma parameters are changed, the profiles of D and v may contribute
to the understanding of the transport of impurities at the edge of plasmas. In particular, the

bestfitting values of D and v may be compared to the expected neoclassical values.

103






5. TRANSPORT SIMULATIONS

In Chapter 4 the collection of many impurity injections have been presented for various plas-
ma configurations. As a consequence of the variation of the geometry of the plasma, as well
as of physical parameters like plasma current, electron density, different shapes of the soft
x-rays line integrated signals were obtained and the impurity confinement time was put in
relation with these parameters. However, in order to evaluate locally in the plasmathe trans-
port of impurities and give a quantitative estimate of the profiles of the diffusivity and of the
convective velocity, it is necessary to extract such values from the experimenta data.

A widely used technique consists in calculating the evolution of the concentration of the in-
jected impurities in plasma and derive the el ectromagnetic emissions which would be meas-
ured on the basis of assumed transport parameters. The simulated signals are compared with
the experimental ones in order to find the bestfitting set. As a common feature, the plasma
background during simulation is assumed not to be perturbed by small amounts of injected
impurities.

Examples of this procedure come from many machines and various codes are currently used.
2D and 3D Monte Carlo methods have been implemented for the impurity transport ssimula-
tionson MT-1M tokamak[96], for ITER predictiong97] and for the edge transport on Alca-
tor C-Mod[98]. The transport of aluminum impurities in TEXTOR[30] has been modelled
by means of a code based on the kinetic theory and the results compared to low ionised states
of the injected material.

Other codes, like MIST (from Tokamak de Varenne[99]), IONEQ[100] or STRAHL[51],
treat the transport of impurities at alow level, in which the profiles of the diffusion coeffi-
cient and of the convective velocity are set as free parameters, without assuming their de-
pendencies on plasma features. The STRAHL code has been widely used in ssmulating
experiments on ASDEX Upgrade[37] and on JET, and also offers the possibility to use the
neoclassical transport coefficients. The STRAHL code has been used on TCV for the reali-

sation of thisthesis, and its features are described in the following.
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5.1The STRAHL code

5.1.1 General features

STRAHL isa1-D codeto calculate in a shaped toroidal geometry the 1D radia transport of
impurities and their electromagnetic emissions from the plasma core. Many input parameters
are generally taken from real experiments, like the profiles of the electron density, the elec-
tron temperature, the geometry of plasma, the sawteeth characteristics like frequency, radial
extension and instant of the first sawtooth after the beginning of the impurity influx. The
plasma geometry is considered to be fixed during ssmulation, while the other profiles, like
Te, N, Can vary and are normally set at given times, which in TCV are taken as the times of
the Thomson scattering measurements. Theion temperatureisnormally set equal to the elec-
tron temperature, and it is needed only when neoclassical transport is simulated. The follow-
ing description of the STRAHL code is extracted from the User Manual by R.Dux[59].
Atomic dataareread from filesin which al the necessary parameters are stored according to
ADAS conventions. Many input files include the electromagnetic emission parameters sep-
arately for bremsstrahlung, charge exchange, spectral line emission in total for each ionised
species and for selected lines. The spectral sensitivity of the real soft x-ray photodiodes on
TCV (shown in Fig.3.6) has been taken into account to allow the calculation of the fraction
of emitted power, which can be measured by the system, thus alowing the direct comparison
with thereal signals. Moreover, in order to take into account the evolution in space and time
of each ionised species, the rate coefficients of ionisation, recombination and charge ex-
change are stored as function of the electron temperature.

The output data files contain all the time and space evolution of the concentration of impu-
rities, in total and for each ionised species, aswell astheir local total emissivity and the part
which can be measured by the soft x-ray system on TCV. The profiles are normally shown
as afunction of P pol which is calculated by STRAHL on the basis of the real geometry of
the magnetic field, and it is defined as:

P _LlJaxis
= /— 51
ppol lJ"LCFS_'“IJaxis ( )

If it isspecified inthe configuration file, the time evolution of selected spectral linesat given
wavelength is calculated. Details about the calculations of al the different electromagnetic

emissions can be found in Ref.[51] and references therein.
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5.1 The STRAHL code

During the execution, STRAHL solves the transport equation (2.36) for each ionised statein
a series of discrete time values. The numerical algorithm is based on modified formulas
which take into account the geometry of the plasma, as follows.

The law of conservation of the number of particles for each ionised state can be written as:

on, B >
5 " -drz+Qy, (5.2

where Iéz istheflux density of theimpuritiesin theionised state Z and Q, isthe source/sink
term due to ionisation, recombination and charge exchange which connects neighbouring
states. Inside the last closed flux surface (LCFS) the impurity density n, can be integrated

over the volumeincluded in aflux surface of arbitrary label p:

andv = T 2d8+ [Q av (5.3)

and the surface integral can be transformed with a change of variable to:

DpdS

fl‘zdS sz (5.4)
Using the flux surface average[101] defined as:
[@Vm‘l
CAD = .
3 fATe 59)
and
- oY
[AdV = ﬂ oy A (5.6)

and differentiating with respect to p after substituting into the differential equation, we ob-

tain the continuity equation for the flux surface averages:

othl _ vgta vz
ot ~  [ChpO apEBpr DpH+EQZD

(5.7)

It isalso assumed that the impurity density and the sink/source terms are constant on the flux

surfaces. For the flux term the ansatz of a diffusive and a convective part is used:
9
In this case we have:

on
Fz0p = — DIDplza—pZ +v|Opln, (5.9)
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inwhich for simplicity D and v refer only to the radial components of the diffusivity and the
convective velocity. Thefinal expression of the transport equation can be simplified with the

introduction of the specific surface flux label:

V

Pvol = (5.10)
vo 2T°R,
which leads to the equation:
on, 1 90 on, 0
— = —_—p U—=—vlh=+Q (5.11)
ot pvolapvol VOI%:) apvol 4] z

where DU = [D|0p,|2Jand v = [V|0p,|0 . Itisassumed in the code that these pa-
rameters are the same for al the ionised species of the considered element.

The numerical algorithm solvesthe spatial part of the equation by means of the time-centred
Crank-Nicholson scheme. In each spatial point of the mesh the density at the following time
point is calculated from the densities at the old time point in the surrounding space points,

viathe implicit equation:

t+1 t t t t t+1 t+1 t+1
Ns _nS:9[(n5+1_2ns+ns—1)+(ns+1_2ns +ns—1:| (5.12)

At 2 (AX)?2
in which the index t refers to the time steps, and s refers to the spatial mesh point.
The code solves alternatively in ascending and descending order the contributions of the
source/sink termsincluded in Q, which are evaluated in mid points of the time steps.
On the most external radial point the code takes into account the external source of neutral
impurities, which has to be provided as an input parameter. The code cal culates the number
of neutrals per time step once the total number of particles and the time evolution of the
source are known.
The code takesinto account the effect of sawteeth, which are modelled as a sudden flattening
of the concentrations al the ionised species inside the mixing radius, in which the total
number of particlesis kept constant. The times of the sawtooth crashes, defined in the input
files, areincluded in the series of time points.
The edge of the plasmais modelled with a scrape off layer reservoir, which is externa to the
L CFS and which exchanges particles with the external source, the walls and a divertor res-
ervoir. Fluxes are modelled with the wall with arecycling coefficient and with the divertor
with typical time constants.

For atypical STRAHL run the following data are each time provided to the configuration
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file of the code, in addition to the electron density, temperature and to the geometry of the

magnetic surfaces which are read from the TCV database:
* theimpurity element, typicaly C, Al or Si;

 the source time evolution. The total intensity is useful only in the case a comparison of
the simulated and real signal intensities are to be considered. In the following, the source
Is assumed constant in time, while its duration, 4ms, is set in agreement with the experi-
mental observations obtained with the OMA spectrometer and presented in Section
3.3.6. The code assumes that the neutrals are uniformly deposited in the scrape-off layer
of the plasma;

* therecycling properties from the wall, which are correlated with the level of the residual
asymptotic signal after impurity exhaustion from plasma. The code assumes that the
impurity fluxes between the scrape-off layer and the wall are proportional to the impurity

densities ngy, and ny,, respectively. The two time constants t15_,, and 1,,,_g relate

o , _ NsoL _ w
these densities to the fluxes according to ®g ,,, = - and @, _g = —r The
S-Ww W-$
intensity of the residual signal dependsontheratio T5_\,/ Ty _s:

 thevalues of the diffusion coefficient D and convective velocity v, at an arbitrary number
of normalised radii Ppol - These values are usually parametrised as functions of Ppol »

then sampled on given radii and included in the STRAHL configuration files;

* the number of sawteeth and the mixing radius r;, = 1.4 [T;,,,, aswell asal thetimesin

nv?

which sawtooth crashes take place. The inversion radiusr;,,,, when dealing with experi-
mental non circular plasmas, is evaluated as the average geometrical value along the

magnetic surface labelled with p, .

Once the code output is provided, it is possible to calculate the simulated line integrated sig-
nal s along the chords of the soft x-ray signals, or along the VUV SPRED spectrometer chord.

5.1.2 Effect of thetransport parameterson signals
One of the most useful properties in the utilisation of a simulation code is the possibility to
freely make assumptions on the radial profiles of the diffusivity and convective velocity and

calculate signals which are different from the ones measured in experimental plasmas. Asa
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consequence, it is possible to establish a correlation between the transport coefficients and
the time evolution of the calculated signals and to easily converge to the bestfitting coeffi-
cients which simulate the experimental results.

In this Section, some examples are given of the effects of the central and edge diffusivity and
radial velocity on the shape of the simulated line integrated SXR signals. In the frame of the
proposed modelling[51], the role of the sawtooth frequency and radius will be presented and
discussed, together with the possibility to use sawteeth to modify the impurity fluxesin the
plasma core.

Thefeatures of atypical peaked, lineintegrated real or smulated SXR signal, have been pre-
sented in Section 4.1.1. The set of characteristic values which will be considered in the fol-
lowing, and define quantitatively the temporal evolution of the signals, can be varying
according to the different viewlines. For simulations on TCV, the geometry of real plasmas
and real chords of the SXR tomography system have always been used, with particular at-

tention for the central chords. The following parameters are considered:

* the exponential decay time T, ., Or lifetime, of the tail of the signdl;

imp’

* thefull width half maximum fwhm, in which the maximum of the signal is evaluated rel-

atively to the pre-injection level, thus not taking in account the residual asymptotic value;

» thesignal risetime rt, given here as the time necessary for the signal to rise from 20% to
80% of the peak value;

» the “central flow” cf of impurities during the influx phase, which is defined as the nor-
malised increase of the signal between two consecutive sawtooth crashes, according to
the expression:

_ SK(tp) =Sty 2

S oty Sty +S(ty)

where S, istheline integrated SXR signal along a given chord, t; isthe time of the end

cf (5.13)

of asawtooth crash and t,, the beginning of the following crash.
» thelevel of the asymptotic signal, given as the fraction of the peak value.

In Fig.5.1 the dependencies of the lifetime and the fwhm on the edge diffusivity and convec-

tive velocity are shown, taking as reference the shot #19785 and a central viewline of the
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SXR tomography. The values of D and Vgy,e (Which is considered positive when out-

edge
ward) are separately scanned around the bestfitting values, which provide the measured val-

edg

ues of T;,,, and fwhm. Both parameters show a similar effect on the global shape of the
signal, as an increase of the edge diffusivity or of the edge velocity is reflected in a shorter
duration of the signal and afaster exponential decay. On the contrary, the scan of the central
diffusivity D, shows that its effects are very limited in the duration of the signal and during
the depletion phase. This fact can be easily explained as in these simulations the real saw-
tooth activity has been included, and accounts for the predominant impurity fluxes in the
plasma core. The flattening of the impurity distribution due to a sawtooth crash islittle mod-
ified by particle diffusion, except in the region around the mixing radius. Once the sourceis
switched off, the central impurity profile becomesflat at the first subsequent sawtooth crash
and the particle depletion is dominated by the fluxes in the plasma periphery. According to

the chosen radial profile of the transport parameters, the values of D and v at the last closed

D,D . ,v scans, shot #19785 03 (b) Pesge — ./
0 ‘edge edge ‘

fwhm “residence time" [s]

v [m/s]

. 26 I I I I
0.021 0.024 0.027 0.03 0.033

lifetime [s] 0 0z 04 05 08 1
pol

0

Fig.5.1 - (a) Smulations of the SXR line integrated signal #30, on the plasma discharge
#19785. Scans of Do, Vedge @Nd Dy have been performed and the resulting temporal
evolution of the signal, determl ned by T; Mo and fwhm, has been obtained. The black rectan-
gle represents the measured values, fwhm:35ms and Tjmp=26ms, with an incertitude of
+2%. The scans of f Dgqge and Veqqe have been performed for Dy = 0.05m?/s. (b) The
bestfitting values in the assumptl on of a paraboalic profile of D(p) and a linear one for v(p).
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flux surface (p = 1) may be determined with an uncertainty of up to 10%. However the av-
erage values in the region for which p > 0.9 isfairly well determined. Constant, parabolic
and exponential radial profiles have been used for the diffusivity, while linear and parabolic
profiles have been considered for the convective velocity, with different central positive and
negative slopes.

Thevalues of thetransport parameters D, and V' = dv relativeto the plasmacore have
an important effect on the rising part of the signal, wh%npp:roofi les are hollow. Dueto the high
inward gradient of the impurity profiles, the central fluxes of impurities can be relevant. The
particle transport in this phase is affected by the exact times of sawtooth crashes, which pro-
duce sharp steps in the signals from central chords whose height depends on the concentra-
tion of impurities entering the mixing radius. According to the radial profile of the impurity
density just after injection, early sawteeth are less effective than late ones, as they move a

smaller quantity of particlesto the plasmacentre. In Fig.5.2 the dependencies of the risetime

50 Effect of D ,1° sawtooth and v proflle

velocity profiles

1st ST: 4ms >
D =0.4m°/s
7oL '_| edge
R
>

e
L. 60
=
2 % 0.5 1
S p
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rise time 20%-80% [s] x107°

Fig.5.2 - Smulation of the rising part of the central chord #32 in discharge #19743 as a
function of the central diffusivity, radial convective velocity and timing of the first sawtooth.
For each set of these parameters, the rise time and the central flow after a given sawtooth,
defined in Eq.(5.13), have been calculated. The irregular shape of the 20%-80% rise time
can be explained by the possibility that such fractions of the peak intensity often lieinside a
sawtooth step. The first sawtooth marked at t=6ms is the first relevant one, after a sawtooth
crash at t=1ms during which almost no impurity particles were involved. For each line the
central diffusivity was scanned in the range Do=0.05+0.6n7/s.
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and central flow of simulated signals are shown as functions of the values of the central dif-
fusivity D, and velocity profilesfor different instants of the first sawtooth. The edge values
for the transport parameters have been kept constant for all points, which caused only aslight
changein the values of T; Mo and fwhm. The risetime appears to be affected by few tenths of
amillisecond only by the variation of theradial profile of the velocity, while the central flow
is more sensitive to both D, and the delay of the first relevant sawtooth. In the case of shot
#19743, reported in Fig.5.2, the sawtooth period is equal to 5.0 ms and no significant influx
is found from the ssimulation if the first relevant sawtooth takes place before 4ms from the
impurity injection. However different sawtooth times lead to the selection of different time
intervals for the evaluation of the central flow.

The effect of the sawtooth activity alone on the central line integrated signals is shown in
Fig.5.3 for the discharge #19785. In the ssmulation, the mixing radius and the sawtooth fre-
quency have been changed with respect to the experimental values, 7;, = 17.3cm and
1/ f4 = 6ms, whiletheradial profiles of the transport parameters have been kept constant,

and the shapes of the signals have been compared. Although the timing of the sawteeth may

P Effgct of sawtqeth in shot‘#19785, ch.30

— ST 6ms, 17.3cm 1=25.6ms (measured)
ST 3ms, 17.3cm 1=25.3ms
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- = ST 6ms, 15cm 1=26.1ms
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Fig.5.3 - Smulation of the effect of the sawtooth activity, characterised by the period and
the mixing radius, on the global shape of lineintegrated SXR signals, in shot #19785, chord
#30. The profiles of the transport parameters are parametrised as
D(p) = 0.05+ 0.24p? m?/s and v(p) = 4.35pnVs (outward) which allow the correct
reproduction of the experimental signal, as shown in Fig.5.1.
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dightly vary the influx phase, all signals are characterised by very similar lifetimes for dif-
ferent frequencies or mixing radii. In the depletion phase, the impurity outflux depends al-
most completely on the transport coefficients in the plasma periphery and sawteeth
contribute only to little transport from the plasma core to the mixing radius, as previous
crashes aready flattened the impurity profile.

Sawteeth affect the accumulation of impurities to the centre until profiles are hollow, with a
larger contribution in the case of higher frequencies and larger mixing radii. The main dif-
ferences between simulated signals are observed around their maxima, as sawtooth activity
Increases the total amount of impurities reaching the plasma core. It can be remarked that
very small mixing radii are ineffective for the global transport of particles, asthe signal ob-
tained with 7 ., = 8cm (Fig.5.3) isalmost identical to the case in which sawtooth activity

was turned off.

5.1.3 Search for the bestfitting parameters
All the considerations reported above, while being useful for the understanding of the roles

of different phenomenain the transients of impurity transport in plasmas, can be applied in

0.1

Shot #21022 - ch.30

0.09-
0.08
0.07
0.06
0.05r

0.04

intensity [A.U.]

0.03r

0.02-

0.01r

J

O 1 1 1 1 1 1 1 1
0.6 062 064 066 0.68 0.7 072 074 076 0.78
t[s]

Fig.5.4 - Experimental (blue) and reconstructed (red) line integrated signal from shot
#21022, channel 30. The real shape values are T;,, = 22.0ms, fwhm = 30.6ms,
Ter = 43ms, 1, = 14.2cm. The bestfitiing parameters are D = 0.05 + 0.61p2n?/s,
v = 3.8pnvys.
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the research of the bestfitting parameters which allow the matching between experimental
and simulated signals. Theroutineswhich are used for the reproduction of the measured SXR
signals from TCV plasmas are based on the ailmost independent effects of the transport pa-
rameters at the edge and in the centre of the plasma, and all known features like the profiles
of the electron density and temperature, the sawtooth frequency and radius are set as non-var-
ying input parameters.

Inagiven run, therecycling factor is kept constant to avalue for which the asymptotic signal
isfairly correct, asthisis amost independent of other transport parameters. The mathemat-

ical form of the profilesisnot varied for each run either.
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Fig.5.5 - SXR profiles corresponding to the solution of Eq.(4.2) for different assumption on
the edge velocity, compared to the tomographically inverted profile of the impurity SXR
emission of shot #21022 at t=0.664s. In the inset, the fundamental impurity distributions
are shown. The excessively high experimental profile at the edge may result from the regu-
larisation procedure in the tomographic inversion.

The core routine of each run is the variation of the edge diffusivity for the correction of the
impurity lifetime and of the edge convective velocity in order to set the experimental fwhm.

All other parameters, like the central diffusion coefficient D, and the velocity profile

V= d_VL are subsequently modified in order to reproduce the signals during the influx

=0
Nis operation induces small changes in the values of T, . and fwhm which require

phase. imp

an easy correction of D and v

edge’ edge*

It is possible to change other parameters which have important effects on the signal shape
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but are normally not precisely known, like the source duration or the delay of the first saw-
tooth after the start of the injection. Additional experimental data which allow to determine
the whole set of transport related parameters are the relative intensity of different line inte-
grated signals or their different risetimes. Asit isfound from the experimental observations
and from simulations with any kind of transport parameters, the exponential decay times of
the signalsfrom different chordsis almost the same. While thisfact allowsthe determination
of the edge parameters from the shape of any chord, it cannot be used to find the bestfitting
values of other parameters.

A consistency check on the bestfitting values D and v can be made with a direct comparison
of the experimental impurity profiles and the theoretical eigenfunctions which were present-
ed in Section 4.1.1 as solutions of Eq.(4.2). The peaking of the impurity density and hence
of the SXR emission are sensitively dependent on the convective velocity for a given diffu-
sivity profile. Asan example, Eq.(4.2) has been solved with the bestfitting diffusivity of shot
#21022 (Fig.5.4) and three different edge velocities. The corresponding fundamental eigen-
functions, described in Section 4.1.1 and shown in theinset of Fig.5.5, have been used to cal-
culate the profile of emissivity in the SXR spectral range. The experimental profiles of the
electron density and temperature have been used while the radiation parameter has been ob-
tained with STRAHL in the corona approximation. The comparison has been made with a
tomographically inverted profile of the impurity density at t = 0.664 s when the higher
modes have disappeared and only the fundamental distribution is left. As shown in Fig.5.5,
the profile obtained with v = 5m/sisvery close to the experimental one, whichis con-
= 3.8m/s.

It has to be remarked that the tomographic inversion with regularisation methods such as

edge

sistent with the bestfitting value veqqe

MFI providesexcessively high values closeto the plasmaedge, hence the profile comparison
Is meaningful only for the central part of the plasma. Moreover, it is possible that the calcu-
lated profiles are underestimated at the edge by the use of the coronal radiation parameter,

asthe transport of highly ionised impurities from the centre is neglected.

5.2 Comparison with measured TCV data

In this Section the results of STRAHL simulations on impurity injectionsin real TCV dis-

charges are presented, together with the comparison with the neoclassical predictionsfor the

116



5.2 Comparison with measured TCV data

same plasmas. Selected shots from the elongation, triangularity and toroidal magnetic fields
are included, for which the impurity confinement time showed a dependence on the plasma
geometry. Asit was described in Section 5.1.2, the determination of the edge diffusivity and
convective velocity is easily obtained from the time evolution of thelineintegrated SXR sig-
nals, while the evaluation of the central valuesis strongly affected by the sawtooth activity
(see Fig.5.2). The neoclassical parameters have been evaluated by means of the NEOART
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Fig.5.6 - Profiles of the neoclassical D and v transport coefficients. The classical,
banana-plateau, Pfirsch-Schllter contributions as well as the total are compared with the
bestfitting value for shot #21022. The values of the convective velocity at the plasma edge
cannot be determined with sufficient accuracy, so their profiles are shown up to p=0.9.

package included in STRAHL, which calcul ates separately the classical, banana-plateau and

Pfirsch-Schitter contributions of D and v. Asthese contributions are present for any value of

the collisionality, the total coefficients are actually the sum of al three contributions. In
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Chapter 5. TRANSPORT SIMULATIONS

Fig.5.6 the bestfitting profiles together with the neoclassical predictions are shown for shot
#21022. Asfor al other analysed discharges, the edge transport is evidently driven by anom-
alous phenomena as the bestfitting diffusivity isan order of magnitude higher and the direc-
tion of the convective velocity is reversed. On the contrary, the central diffusivity appearsto
be close to the neoclassical prediction, evenif there exist alarge incertitude on the bestfitting
value. Such acomparison will be presented for those casesin which D, has been determined
with precision.

and v

In the following, the bestfitting parameters D are presented, from simulations

edge edge

in which the radial profile of diffusivity was parametrised with a parabola and fixed central
vaue Dy = 0.05m?/s, D(p) = D,y + (D

velocity was linear, V(p) = VgqyqeP - Different profiles have been attempted, like an expo-

edge— Do)P? While the profile of the convective

nential dependence of the diffusivity on the normalised radius (following resultsin Ref.[35]),

leading to the ansatz D(p) = DOEPSdg%p , or aparabolic profile for the convective veloci-
ty, like in the example of Fig.5.2. In tﬁe simulation of a single injection, the edge values of
the transport coefficient however were little affected by the different profiles. The small var-
iations which were found for p = 1 have been observed to be correlated to steeper profiles
of the bestfitting transport coefficients around the edge, while the mean values of D(p) and
v(p) in the peripheric area outside the sawtooth radius were fairly independent of the at-
tempted parametrisation.

Theimpurity source at the edge was set constant for a duration of 4ms, in agreement with the
duration of the spectroscopic signals of the neutral Si. Shorter durations have been attempted
and did not affect the time evolution of the line integrated signals. Moreover, this value pro-
vides the best agreement of the relative peak intensity of the SXR signals from different

chords.

5.2.1 Bestfitting and neoclassical valuesfor D and v

The experimental results presented in Chapter 4 show that in the scans of elongation, toroidal
magnetic field and triangularity the confinement time of the injected impurities varied ac-
cording to the different configurations. In order to obtain the bestfitting parameters Degge and
Vedge foOr selected shots from the scans, the fwhm of the lineintegrated SXR signals has been
taken into account as well as the sawtooth frequency, the mixing radius and the intensity of

the residual signal after the depletion phase.

118



5.2 Comparison with measured TCV data

With increasing elongation the sawtooth frequency changed from fo;=200Hz at
K = 168 to fo;=360Hz at K = 2.28, the average mixing radius from 20cm to 26cm,
sincethe normalised inversion radiuswasfixed at thevalue p;,,, = 0.55. No correlation was
found between the el ongation and the residual signal, which wastypically 7+12% of the peak
value on chord #30 of the soft x-ray system.

The results of the simulations are shown in Fig.5.7. The whole dependence of the impurity
confinement time on the elongation isdue to achangein the diffusivity, while the convective

velocity isfairly constant around thevalue v, . = 2 m/sand aways outwardly directed. The

edge
increase of diffusivity with increasing eIonthion accounts for the reduction of lifetime,
shown in Fig.4.15, and for the increase in the size of the plasma. Simulations of the sawtooth
effects on the impurity confinement time, described in Section 5.1.2, can lead to the conclu-
sion that the increase in the sawtooth frequency at high elongation has a marginal effect on
the observed lifetimes.

The calculated value of diffusivity at low elongation, Degge = 0.36 m?/sfor k=1.68, isatyp-
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Chapter 5. TRANSPORT SIMULATIONS

ical constant value which isfound in the scans of toroidal magnetic field and triangularity.

The neoclassical edge values of the diffusivity and convective velocity, reported in Fig.5.7
(bottom) are lower than the bestfitting ones of afactor of 2.5 at low elongation up to afactor
of 10 at the top end of the scan. The neoclassical diffusivity appears not correlated to elon-
gation, while the inward edge velocity is reduced with increasing k. Inacaseat Kk = 2.26
the neoclassical velocity isfound to be outwardly directed. Inthisscan, likein all other cases,
the convective velocity -indicated as vog neo- hasbeen evaluated at p = 0.9, asthe edgeval-
ue appears to be strongly affected by the incertitude in the experimental determination of the

edge values of a number of plasma parameters.

0.45

0.4

° | Fig.5.8 - (Top) Bestfitting parame-
0.151 ) ‘ ' 1 ters as function of the toroidal
magnetic field. The point at
Br=0.93T belongs also to the
O oosf 1 €elongation scan, at k=1.68, while
the point at Br=1.47T is part of

7 o o the triangularity scan at 5=0.28.
E _‘2’: (Bottom) The neoclassical values
B o of the edge diffusivity and convec-
= -6f o 1 tive velocity as calculated by
s 09 1 11 12 13 14 15 NEOART for the same discharges.

The reduction of 1;,,,, with increasing toroidal magnetic field is fully due to an increase in

p

the radial convective velocity whose value goes from v ,.=2m/sto v ,.=4.5m/sand is

edge edge

directed outward. In Fig.5.8 the results of the simulation on selected injections are shown.
Likein the elongation scan, the neoclassical edge diffusivity lies below the value of 0.2m%/s

and it is lower than the bestfitting values of at least a factor of 2. The neoclassical velocity
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5.2 Comparison with measured TCV data

changes with the magnetic field and againin one case at By = 1.47T itis positive.

The dependence of the convective velocity on the triangularity is evident in Fig.5.9. In this
scan, performedintherange & = —0.16 + 0.6 theimpurity confinement timewasfairly con-
stant around 25msfor & > 0.2 and increasing for lower valuesto negativetriangularities. The
bestfitting transport parameters show that the edge diffusivity is constant or just slightly de-
creasing, while the lifetime behaviour represented in Fig.4.14 is correlated to achange in the
edge convective velocity. Itsvaluesliearound vgyye = 4.5 m/suntil thethresholdat = 0.2
then a decrease is observed in correspondence of the increase of the impurity lifetime. At
d = 0.06 the edge velocity hasfallen to around O.

The neoclassical values in the scan of triangularity are similar to those found previously.
Both the diffusivity and the convective velocity are not clearly correlated to the triangul arity;
the values of Deqge liearound 0.1 + 0.15 m?/s, afactor of 2 at least below the bestfitting val-
ues, and the velocity at p = 0.9 isdlightly negative, except in one case.

The simulation of the signals obtained in the electron density scan (Fig.4.18) show that the
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Chapter 5. TRANSPORT SIMULATIONS

limiter and divertor configurations of plasmas with the same geometry and electron density
sensitively differ in the values of the edge convective velocity. This parameter lies around O
in the diverted plasmas and, in this configuration, the edge diffusivities are higher. In both
cases they correlate inversely with the impurity confinement time, and their dependence is
very strong, since Degge can vary of about 0.15m?/s per Imsof differencein Timp- Theresults
of these simulations are shown in Fig.5.10.

The differences between limited and diverted discharges appear also in the neoclassical cal-
culations. The edge diffusivity is higher in diverted configurations both for the bestfitting
and in theoretical values, although their ratio is no lower than afactor of 3. Moreover, while
the bestfitting edge velocity in diverted shots was around 0, the neoclassical results give
clearly positive values around +5m/s. The same tendency to positive velocity isfound in the
neoclassical values for limiter shots at higher electron density.

The lack of data on the magnetic reconstruction and on the profiles of electron temperature

and density for the shotsincluded in the current scan (Fig.4.19) prevented the analysis of im-
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5.2 Comparison with measured TCV data

purity transport in these discharges. However, the smulation of two injections for currents
below and above the threshold at |, = 250kA, where the jJump in the confinement times is
observed, has been attempted using the reconstruction and the profiles of shot #19785, whose
parameters are comparable. Thisway, it ispossible to give at least an estimate of the differ-
ence in the transport parameters D and v which are responsible of the sudden increase in the
confinement timefor |, < 250kA in the current scan. The results of the simulation, reported
in Table 5.1, indicate that while the edge diffusivity changes slightly across the current
threshold, the edge convective velocity has opposite direction, being inwardly directed at
lower current. The values of the edge diffusivity are in agreement with those obtained in the

scan of electron density, reported in Fig.5.10.

Shot # Ip [KA] Timp [MS] Dedge [M%/5] Vedge [M/9]
20161 233 55 0.64 - 0.68 —4+-35
20167 351 255 0.84 + 0.88 3+33

Table 5.1: Transport parameters of two selected shots in the plasma current scan.

The transition to a negative convective velocity for lower plasma currentsisin principle in
agreement with the observation of impurity accumulation which follows injection in a two
shots at low current, as described in Chapter 4. An estimate of the radial profile of the con-
vective velocity can be obtained by means of simulation, using again shot #19785 as arefer-
ence plasma for ng and T, profiles. The setting of a stationary state in the impurity
distribution requires the condition of zero radial flux which can be written according to the

transport equation, Eq.(4.2), as:
D(r)?—v(r)ﬁ =0 (5.14)

where n is the asymptotic time independent impurity distribution. Once an ansatz on the dif-
fusivity profile has been done and a distribution h has been obtained by the inversion of the

line integrated signals, the velocity profile is calculated from Eq.(5.14):

v(r) = D(r %g—? (5.15)

For simplicity, n has been chosen to be represented asagaussian, n = nyexp(—ap?) and the

diffusivity to have the usual parabolic profile D(p) = Dy+ (D Dy)p?. The resulting

edge

123



Chapter 5. TRANSPORT SIMULATIONS

velocity profileis:

V(p) = ~23p[Dg + (Degge— Do) 57 (5.16)

inwhich |[p | isgiven by the plasma magnetic reconstruction. In the simulation, a has been
used as a free parameter together with Degge, in order to reproduce the central and the pe-
ripheric line integrated signals. Although the time evolution is not well reproduced, the best
agreement with the signals shown in Fig.4.20 has been obtained with a = 22 and
D
observed that the edge value is not well determined by the fact that n and on can be known

or
only with high uncertainty. Consequently, different choices of n are likely to provide differ-

edge = 0-5 m?/s, and the corresponding velocity profile is shown in Fig.5.11. It hasto be

ent values of Vegge, While the central valueis quite well determined. For comparison, the pro-
file of the neoclassical convective velocity relative to shot #19785 is also reported. In the
inner region, the two profiles appear to befairly in agreement, even if the neoclassical veloc-
ity isdlightly positivefor p <0.3.

It was not possible to simulate with
STRAHL the observed temporal evo-
| lution of the signals from the ELMy

| ohmic H-mode presented in Table 4.2.
| For any couple of values (Dedge, Vedge)

1 which provided the measured con-

v [m/s]

1 finement time, the experimental sig-
1 nals showed a smaller fwhm than the

simulated ones of no less than 5ms.

-14; 03 04 e o8 . This significant discrepancy may be

p

explained by the role of the ELMs,

Fig.5.11 - Theradial profile of the convective veloc- \yhich is not taken into account in the
ity which is required to reproduce the central impu- _ _
rity accumulation of shot #20164. The diffusion code, asthefast expulsion of particles

coefficient is D(p) = 0.05+ 0.45p2m?/s. In red, at the plasma edge can account for the
the profile of the neoclassical convective velocity

calculated by NEOART. reduction of the impurity residence
timein ELM plasmas.

The simulation of selected shots from the scan of elongation with injection of aluminum is

presented in Fig.5.12. The shorter confinement time with respect to silicon injection in
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5.2 Comparison with measured TCV data

equivalent plasmasisreflected in higher edge diffusion coefficients. The convective veloci-
ty, which is still positive and slowly varying along the scan, has a small effect on the time
evolution of the line integrated signals and the uncertainty on its valuesis therefore higher.

The diffusion coefficient in the plasma core is largely undetermined for most of the cases
which have been analysed in thiswork. From Fig.5.2 it is evident how an uncertainty of 1ms
in the timing of the first sawtooth crash after injection can lead to an indetermination of the
central diffusivity intherange D, < 0.6 m?/s. In some cases, however, the SXR linei ntegrat-
ed signals were clear enough to determine the timing of the first sawtooth and an indication
of the central diffusivity could be obtained. The values of D reported in Table 5.2 have been
determined to a precision of +0.01 m?/s by means of the simulation of the correct central
flow following the definition given in EQ.(5.13). It can be remarked that there exists acorre-
lation between the edge diffusivity and the impurity confinement time, while the edge diffu-

sivity is fairly constant for the considered shots. The comparison with the neoclassical
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Chapter 5. TRANSPORT SIMULATIONS

predictions shows that the bestfitting central value of the diffusivity is in agreement, within

the incertitude of the measurement, with the neoclassica values.

Timp Do Do,neo
Shot # (mg | [m2s [mfls] Remarks

21164 27 0.03 0.04 | TopendinBt scanat Bt=1.4/T, 0 scan 6=0.28
19742 38 0.07 0.08 | Kk scan at k=1.86
19782 57 0.08 0.07 | dscan at =0.06

Table 5.2: Central impurity diffusivity for some selected discharges.

5.3Summary and discussion

In Section 5.2 the edge transport parameters, which allowed the best matching between ex-
perimental and simulated SXR signals, were presented for different plasma geometries and
toroidal magnetic field values. Most of the bestfitting data were obtained by means of the
reproduction of asmall number of central chords of the soft x-ray system, however theresults
were checked on the experimental and simulated relative peak intensities of different linein-
tegrated signals viewing the plasma at many radial positions.

Despite the complexity of the quantitative description of the transport of moderate-Z impu-
rities in plasma, fairly good simulations have been obtained with the variation of a small
number of parameters. Apart from the experimental errors in the determination of the time
evolution of the signals, some approximations of the STRAHL code could be correlated to
the deviations between the observed and simulated data. The unicity of the transport profiles
for all the ionised states and a simplified model for sawtooth crashes could be the most im-
portant, however the simulation of transport of impurities in which too many parameters
have to be fitted would become an intractabl e task.

In the simplified frame in which the impurity transport coefficients have been parametrised
with simple profiles along the plasma minor radius, a series of correlations has been found
which allowed an easier search for the bestfitting parameters. In particular, the global con-
finement properties of impuritiesin TCV plasmas are principally driven by the transport at
the plasma periphery, outside the mixing radius, more than in the core. This fact allows the
search of the core transport parameters separately as function of the influx phase of impuri-

ties, once the edge values have been determined by the confinement time and the fwhm of
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5.3 Summary and discussion

the line integrated signals. Finally, the recycling of impurities from the wall is almost com-
pletely determined by a single coefficient which is set according to the asymptotic intensity
of theresidual SXR signal after the depletion phase.

In this Chapter, the fact that the central values of the transport coefficients are largely unde-
termined has already been stressed. The effects of the convective and diffusive contributions
to the transport of impurities in the plasma core can be observed and simulated during the
buildup phase between two consecutive sawteeth, however therather flat profiles dueto pre-
vious sawtooth crashes limit the observation of the particle diffusion. Theinflux phase, since
it provides sufficiently high gradients of the impurity density in the plasma core, can be in-
vestigated in order to obtain an estimate of the central diffusivity. In those few casesin which
afairly good estimation of Dg has been obtained, its values are in agreement with the neo-
classical predictions.

The sawtooth activity playsan important rolein the transport of impuritiesin the plasmacore
only in the case in which the profiles are far from being flat. The model of sawtooth crash
included in STRAHL, which consists in the flattening of the profiles of all the ion species
inside the mixing radius, reproducestheinverted sawtooth in thelineintegrated SXR signals.
The delay in time of the first sawtooth after the impurity injection has a large effect on the
initial transport towards the plasma core and its indetermination affects the cal culation of the
central values of the transport parameters. During the depletion phase, however, the sawtooth
frequency and the value of the mixing radii do not play arole in determining the impurity
confinement time in the simulations.

The diffusion coefficient for impurities has been found to be dependent on the plasma con-
figuration only in the scan of elongation, while a variation of triangularity or magnetic field
did not change the edge diffusivity whose value lies around Doy = 0.35 m?/s. However,
the increase in the plasma el ongation and volume, together with the decrease of the impurity
confinement time at higher elongation, led to higher values of the diffusivity, reaching

D = 1.5m%sfor k = 2.28. On the other hand, the variations of the impurity confine-

edge
men? time and the signal fwhm in the triangularity and toroidal magnetic field scans appear
to be fully explained by the change in the radia convective velocity.

It may be a cause of concern that the value of the velocity has been found to be positive, i.e.
outwardly directed, in the large mgority of the injections. At the plasma edge, it has a con-

stant value around 2m/s along the elongation scan, it varies between ~0.5m/s and ~5m/sin
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the triangularity scan and between ~2m/s and ~4.5m/s in the scan of magnetic field, its be-
haviour being as expected correl ated to the experimental observation of smaller confinement
times for higher magnetic fields. The simulation of many other injections, not included in
scans of plasma parameters, show a positive convective velocity as well. In some cases the
variation of the fwhm as function of the convective velocity for constant T, is slow and
causes an incertitude on the value of both the edge transport parameters, but this incertitude,
typically of the order of 1-2m/sistoo small for a change of sign. The only exception to this
behaviour isfound in the scan of plasma current at the lower end, asin one case the velocity

was inward with v_,..=—-3m/sand in similar configurations a central accumulation of im-

edge

purities has been observed with v_,.. = —12 m/s. In the diverted plasmas of the electron den-
0.

Similar experiments on other machines have amost always found inwardly directed convec-

edge
sity scan the sign of bestfitting velocity was undetermined, as it was found that v

edge =
tive velocities, with absolute values of the order of the 10m/s, of the same order of magnitude
as predicted by the neoclassical theory. Theoretical calculations, referring to the intermediate
Pfirsch-Schllter regime, however allow the possibility of an impurity screening due to high
enough ion temperature gradients[4]. Analogous considerations from theoretical calcula-
tions on the impurity behaviour in an ignited plasma[63] lead to negative values of v/D in
case of flat ion temperature profiles and positive valuesif T, ispeaked; thiseffect isreported
to be more evident with increasing Z. It has to be said however that these possibilities of a
positive convective velocity are the result of calculations from the neoclassical theory and
still wait for an experimental check. In any case, they are not relevant to TCV and this work.
The transport coefficients which have been found in this Chapter are sensitively different
from the theoretical values provided by the neoclassical theory, which has been presented in
Section 2.3. This discrepancy is evident in the comparison between the bestfitting and the
neoclassical values of the diffusion coefficient, which differ of afactor of 2 to 10 in almost
all cases which have been analysed. The picture becomes more complex in the case of the
convective velocity at the plasma edge, as its neoclassical values, calculated by the NE-
OART routineincluded in STRAHL, are not unequivocally negative. On the contrary, there
are many cases in which the neoclassical convective velocity show a regular trend which
changes sign. Moreover, positive values are commonly found at the top end of the scans of
electron density. In all cases, however, the neoclassical and experimental values of convec-

tive velocity share the same order of magnitude, being 0 + 10 m/s in magnitude.
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5.3 Summary and discussion

The comparison between the bestfitting experimental values and the neoclassical values of
the transport coefficients reveal s the dominating role of the anomal ous transport which over-
comes the neoclassical contribution and leads to shorter impurity confinement times. The
discrepancy between convective velocities suggests that impurity convection too is a result

of anomal ous processes.
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6. SUMMARY

Analysis of impurity transport in TCV plasmas has revealed significant effects of the geom-
etry on the confinement of moderate-Z particles, which have potentially important implica-
tions in the design of fusion reactors. The exceptional shaping capability of TCV has been
used to explore awide range of plasma parameters, including high elongations, negative and
high positive triangul arities, different values of the toroidal magnetic field, with a range of

different plasma densities and currents.

The impuritiesinjected in TCV for thiswork have been produced by a dedicated laser abla-
tion system, which allows one injection per plasma. The radiative emission has been meas-
ured with a filtered 200-channel soft x-ray photodiode array and a SPRED spectrometer for
ultraviolet radiation. The SXR diagnostic, because of its spatial sensitivity, hasbeenthemain
diagnostic for the observation of impurities in the plasma core. Its spatial and temporal res-
olution have permitted the observation of the concentration of impurities with typical spatial
and temporal resolutions of 3-4cm and 13us. These measurements have been complemented
by the detection of ultraviolet line radiation from partially stripped impurity ions emitted at
the plasma periphery (p>0.9).

Thetime evolution of the line integrated SXR signals has been used to investigate the trans-
port properties of the non-recycling trace silicon and aluminum impurities. The duration of
impurity source at the plasma edge was short enough to separately observe the particle influx
and outflux phases. During theinflux phase, inverted sawtooth jumpsin the signal of central
chords demonstrate the role of sawtooth crashesin the transport of the impuritiestowardsthe
plasmacore. During the outflux phase, al lineintegrated SXR signals and the line ultraviol et
intensities appear to decay exponentialy with almost equal time constants. This parameter,
which iscommonly referred to asthe global impurity confinement time, constitutes the main
experimental observation for the analysis of thisthesis, as it has been measured in different
plasmaconditions, including a variety of plasma shapes. The similarity of the time evolution
of central and edge signals from both diagnostics has been interpreted as a consequence of
the formation of a fundamental impurity density profile during the outflux phase, which is

the solution of the transport equation, although the complete physical description is compli-
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cated by the presence of sawtooth activity and many ion species.

The impurity confinement time has been obtained for different plasma configurations, with
injections into dedicated series of plasma discharges. The impurity confinement timeis ob-
served to depend on the plasma elongation, triangularity and magnetic field, while the elec-
tron density has little effect at least in limiter configuration. A remarkable increase in the
confinement time isfound in the scan of plasma current below a marked threshold. In a cou-
ple of discharges whose current was close to the threshold an accumulation of impuritiesin
the plasma centre is observed. Asfar as the plasma geometry is concerned, the confinement
timein thetriangularity scan shows similar behaviour asthe el ectron energy confinement, as
an increase of T;,, is observed for lower (negative) triangularity. The most interesting re-
sults have been observed in a scan of elongation, which was performed at constant sawtooth
normalised radius. While the electron energy confinement time is constant over the elonga-
tion range, the impurity confinement time decreases at higher elongations, possibly provid-
ing a favourable option for future advanced reactor designs. A comparison between silicon
and aluminum injections shows a marked difference in their confinement times, which was

only partly explained by different plasma parameters.

Theradial impurity transport in TCV has been analysed by means of the 1D code STRAHL,
which reproduces the line integrated SXR signals from impurities. The plasma parameters,
including sawtooth activity, have been taken from experimental plasmas, while the radial
profiles of the diffusion coefficient and the convective velocity have been included as free
input parameters. By means of “bestfit” routines, these parameters have been modified in or-
der to reproduce the time evolution and the relative intensity of the experimental signals.
The parameters which most affect the confinement of impurities have been identified in the
edge diffusion coefficient and the edge convective velocity. All transport mechanismsin the
plasmacore have shown little sensitivity to the confinement time. Sawtooth activity has been
modelled in STRAHL as a sudden flattening of the density profiles of all ion speciesinside
the sawtooth mixing radius. It is the most important component of the core transport, while
the diffusivity and the convective velocity, in agreement to the experimental observations,
yield only small changes to the impurity density profiles during the buildup phase.

The effect of the edge transport parameters has been established as a function of the plasma

geometry, by means of the simulation of the experimental results. The long confinement
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timesin large highly elongated plasmas have been explained by an increase of the diffusion
coefficient, theradial convective velocity being constant and outwardly directed. The chang-
esin T;,, at different triangularities or toroidal magnetic fields have been correlated to a
changein the velocity, whose direction has been found to be outward. Thisfeature, whichis
predicted in the frame of the neoclassical theory only in the case of high-Z impurities and
high ion temperature gradients, was not observed in other experiments. In all cases, anoma
lous diffusivity dominates neo-classical predictions by afactor of 3 to 7 both in the plasma
centre and at the edge. The experimental convective velocity isfound to beinwardly directed
only in the discharges with central impurity accumulation and at low values of the current

(Ip<250kA), corresponding to values of the safety factor ggs > 4.2.

This thesis constitutes the first experimental work on the effects of plasma shaping on the
confinement of impuritiesin atokamak. Although silicon wasthe principal impurity injected
into TCV, other elements are more likely to enter the plasma in a reactor. As in this work
aluminum displays different confinement times, further analysis needs to be performed with
various elements and a possible dependence on the mass and charge of the impurities may
be found.

Further work should also explore more reactor relevant conditions with investigations of im-
purity transport behaviour in discharges with ECRH and neutral beam additional heating,
current drive, and in plasmas with improved confinement such as H-modes and internal

transport barriers.
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A.THE GSVD METHOD

A.1Mathematical features of the GSVD

One of the basic problemsin experimental physicsisthe superpositionin signals of an inter-
esting dynamics with an uncontrollable but known and regular perturbation. In plasma phys-
ics, sawteeth are a typical example of periodic oscillations which affect plasma density,
temperature and el ectromagnetic emissivity. In many cases the error of measure of the inter-
esting phenomenais drastically reduced when sawteeth are filtered out.

The technique of the Generalised Singular Value Decomposition[87] (GSVD) is based on a
linear technique which involves filtering in the phase or state space, and provides a net sep-
aration between sawteeth and the intrinsic emissions from plasma, or from impurities. Even
if the process on which GSVD hasbeen applied in thiscase, i.e. impurity radiation from plas-
ma core, isnon linear, the sawtooth period and radius are not affected by impurity injection,
and the utilisation of this method is still useful. The variation of the sawtooth amplitude in
the integrated signal is self-consistent and does not affect the propagation through the plas-
ma, and it is consequently taken into account in this method.

The main requirement for aGSVD analysisisthe possibility to make two different observa-
tions, onewith only the regular perturbation and the other including as well the phenomenon
of interest. Such observations come generally from different diagnostics of from a mul-
tichannel diagnostic, giving a set of trgjectories in a space whose dimension is equal to the
number of independent measurements.

Thefirst step for the analysisis the reconstruction of the phase space. Asit is supposed that
the measurementstake place at discreteidentical timesfor all channels, the matrix formalism
iswell suited for this kind of problems. The matrix Y is built such asits element (i,j) is the
measurement of the channel j at thetimet;, or Y, | = y(xj, t;), and the time averages are re-
moved as they don’t contain information about the transient phenomena.

Let y(x,t) be the set of measurements containing the observations and u(x, t) the set in
which only the regular noiseis present. The recording condition must be equal, in number of
channels and sampling frequency, but the two measurements can contain a different number

of time samples.
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Chapter A. THE GSVD METHOD

Following the SVD ided[88], the matrix y(x, t) isdecomposed in a unique set of orthonor-
mal spatial and temporal modes:

K
y(x t) = Z o ) vy (x) (A.1)
k=1

inwhich (a0 =29,,, OV,v\l1 =3, andK isthe smallest between the numbers of sam-
ples or probes. The modes are sorted so to have o, = 0, > ... 2 a, = 0. The further step in
GSVD consists in considering a common basis to both y(x,t) and u(x,t). This basis is

again complete and unique, but not necessarily orthogonal:

K
y(x,t) = Z o ) vy (x) (A.2)
k=1
K
u(x,t) = Z Bb )V ()
k=1

whereingeneral [V, v,l0#d,, , however the temporal modes are orthonormal. By conven-
tion the weights are chosen to give a2 + B2 = 1. Theratios o, = a,/B, arereferredtoas
the generalised singular values of y(x, t) and u(x,t).

The basis vectors v, are chosen in such away that the largest of these values, o, , ismaxim-
ised and the lowest, o, is minimised. Thus the GSVD method projects the trajectory of
y(x, t) onthefirst vectors of the set v, and the trgjectory of u(x, t) onthelast. Clearly if a
truncated summation of the kind of Eq.(A.2) isconsidered, most of theinteresting signal will

be retained:
L<K

y(x,t) = Z o, )V (X) (A.3)
k=1

It can be shown[102] that the generalised eigenval ues and the basis functions are the solution

of the symmetric eigenvalue problem, which can be written as:
OYLYDy, = o2 ULUDY, (A.9)

but anyway an algorithm for the derivation of the basis function existsand it isexplained in
Ref.[103].
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A.2An application on TCV plasma sawteeth

As an example of application of the GSVD to real signalsfrom the soft x-rays detection sys-
temon TCV, inthefollowing an aluminum injection will be considered. Theraw signal from
the soft x-ray tomography channel 30 is shown in Fig.A.1, where the time intervals delimit-
ing the pure sawtooth activity u(x, t) and the signal to be “cleaned” y(x, t) are highlighted.
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Fig.A.1 - The raw soft x-ray signal after injection of aluminum. In red, the pure sawtooth
activity is shown, whilein green the actual signal to be cleaned is highlighted.
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Fig.A.2 - The generalised singular values sorted in descending order for the signal shownin
Fig.A.1. Thefirst two are muck bigger than the following ones, so they contain almost all the
information about the effective impurity signal.
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Chapter A. THE GSVD METHOD

By means of standard routines, the average value of u(x, t) isremoved as background from
both signalsand the GSVD routineisapplied. Thefirst ten resulting generalised singular val -
ues o, = o,/ B, areshownin Fig.A.2, from which it is evident that the first 2 or 3 topos
contain almost all the information about the impurity signals. The cleaned signal, superposed
to theraw one, isshown in Fig.A.3 and in this case the minimisation of the sawtooth activity
has been obtained considering the first three topos, giving to the last one aweight of 0.5.

It can be remarked, in the plot of the difference between raw and clean data, that a deviation
exists between the first and second sawteeth following injection. However, the short duration

of this discrepancy does not affect the subsequent evolution of the cleaned signal.
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Fig.A.3 - (a) The raw and cleaned signals, superposed. (b) The difference between them,
showing a discrepancy between the first two sawteeth following injection.

138



[1]

[2]

[3]
[4]
[3]

[6]
[7]
[8]
[9]

Bibliography

D.R.O.Morrison, Proc. 24th International Seminar on Planetary Emergencies, Erice,
Italy (1999)

Energy Satistics Yearbook 1993, United Nations, Department of Economic and Social
Infomation and Policy Analysis, Statistical Division, New Y ork (1995)

M.Verral, Nature 371 (1994), 274
J.A.Wesson, Tokamaks. Clarendon Press, Oxford, 2nd Edition (1997)

L.A.Artsimovitch et al., Proc. 3rd Int. Conf on Plasma Physics and Controlled Nucl.
Fusion Reasearch, Novosibirsk (1968)

R.V.Jensen et d., Nucl. Sci. Eng. 65 (1978), 282
F.Troyon et al., Plasma Phys. Control. Fusion 26 (1984), 209
R.V.Jensen et a., Nucl. Fusion 17 (1977), 1187

ITER Physics Expert Groups on Confinement and Transport et al., Nucl. Fusion 39
(1999), 2175

[10] D.Reiter et a., Nucl. Fusion 30 (1990), 2141

[11] F.Hofmann et al., Plasma Phys. Contr. Fusion 36 (1994), B277

[12] JM.Moret et al., Phys. Rev. Lett. 79 (1997), 2057

[13] H.Weisen et ., Nucl. Fusion 37 (1997), 1741

[14] H.Weisen et a., Plasma Phys. Control. Fusion 39 (1997), B135

[15] F.Hofmann et a., Plasma Phys. Control. Fusion 43 (2001), A161

[16] R.R.Parker et al., Nucl. Fusion 25 (1985), 1127

[17] J.V.Connor, Plasma Phys. Control. Fusion 37 (1995), A119

[18] N.A.Uckan et a., ITER Physics design Guidelines: 1989 (1990)

139



Bibliography

[19] I.Furno, Fast transient transport phenomena measured by soft x-ray emission in TCV
tokamak plasmas, PhD thesis No. 2434, Ecole Polytechnique Fédérale de Lausanne,
Switzerland (2001)

[20] H.Reimerdes et al., Plasma Phys. Control. Fusion 42 (2000), 629
[21] A.Pochelon et a., Nucl. Fusion 41 (2001), 1663

[22] H.Weisen et al., Nucl. Fusion 42 (2002), 136

[23] B.B.Kadomtsev, Fisika Plazmy 1 (1975), 710

[24] H.Weisen et al., Plasma Phys. Control. Fusion 38 (1996), 1137
[25] H.Weisen et al., Plasma Phys. Control. Fusion 38 (1996), 1415
[26] JM.Moret et ., Plasma Phys. Control. Fusion 37 (1995), A215
[27] J.F.Friichtenicht, Rev. ci. Instr. 45 (1974), 51

[28] D.G.Whyte et al., Nucl. Fusion 34 (1994), 203

[29] E.S.Marmar et al., Rev. i. Instr. 46 (1975), 1149

[30] G.Kocsis et a., IEEE Transaction on Plasma Science, 24 (1996) 1120

[31] S.AA.Cohen et a., Proc. 7th European Conf. on Controlled Fusion and Plasma Physics,
Lausanne (1975), 137

[32] D.Pasini et al., Nucl. Fusion 30 (1990), 2049

[33] K.Behringer et al., Nucl. Fusion Supplement 1 (1987), 197
[34] D.G.Whyteet d., Phys. Rev. Lett. 81 (1998), 4392

[35] K.Behringer et a., Nucl. Fusion 29 (1989), 415

[36] P.B.Parks et al., Nucl. Fusion 28 (1988), 477

[37] R.Dux et a., Nucl. Fusion 39 (1999), 1509

[38] R.A.Pittset a., Jour. Nucl. Mat. 266 (1999), 648

[39] R.Giannellaet al., Nucl. Fusion 34 (1994), 1185

140



[40] M.Mattioli et a., Nucl. Fusion 38 (1998), 1629

[41] P.G.Carolan et a., Nucl. Fusion 30 (1990), 2616

[42] M.Mattioli et al., Nucl. Fusion 35 (1995), 1115

[43] K.H.Burrell et a., Nucl. Fusion 21 (1981), 1009

[44] S.A.Cohen et al., Phys. Rev. Lett. 35 (1975), 1507

[45] K.W.Gentle et al., Plasma Phys. Control. Fusion 26 (1984), 1407
[46] E.SMarmar et a., Nucl. Fusion 22 (1982), 1567

[47] V.V .Parail et a., Nucl. Fusion 37 (1997), 481

[48] P.Galli et a., Nucl. Fusion 38 (1998), 1355

[49] H.Weisen et al., Rev. Sci. Instr. 62 (1991), 1531

[50] R.P.Mc Whirter, Plasma diagnostic techniques, R.H.Huddlestone and S.L.Leonard
eds., New York (1965)

[51] K.Behringer, Jet report JET-R(87) 08 (1987)

[52] I.H.Hutchinson, Principles of plasma diagnostics, Cambridge University Press, Cam-
bridge (1992)

[53] H.Ryufuku et al., Phys. Rev. A 20 (1979), 1828

[54] M.Bornatici et al., Nucl. Fusion 23 (1983), 1153

[55] A.A.Galeev et al., Soviet Physics JETP 26 (1968), 233

[56] S.I.Braginskii, Reviews of plasma physics, M.A.Leontovich ed., New Y ork (1965)
[57] S.P.Hirshman et a., Nucl. Fusion 21 (1981), 1079

[58] R.D.Hazeltine et al., Plasma confinement, Addison-Wesley Publishing Company, Red-
wood City (1992)

[59] R.Dux, STRAHL User Manual (2000)

[60] A.G.Pesters, Phys. Plasmas 7 (2000), 268

141



Bibliography

[61] A.A.Ware, Phys. Rev. Lett. 25 (1970), 916

[62] R.C.Isler, Nucl. Fusion 24 (1984), 1599

[63] R.Dux et a., Nucl. Fusion 40 (2000), 1721

[64] J.Rapp et a., Plasma Phys. Control. Fusion 39 (1997), 1615
[65] F.Miskane et al., Phys. Plasmas 7 (2000), 4197

[66] J.Nycander et al., Phys. Plasmas 2 (1995), 2874

[67] D.R.Baker et a., Phys. Plasmas 5 (1998), 2936

[68] R.E.Waltz et al., Phys. Plasmas 4 (1997), 2482

[69] JWeiland, Collective modes in inhomogeneous plasmas, |OP Publishing Ltd., Bristol
& Philadel phia (2000)

[70] X.Garbet et al., Turbulent particle transport in magnetized plasmas, submitted to Phys.
Rev. Lett. (2003)

[71] A.JWootton et al., Phys. Fluids B 2 (1990), 2879

[72] A.Zabolotsky et al., Observation and empirical modelling of the anomalous particle
pinch in TCV, submitted to Plasma Phys. Control. Fusion (2003)

[73] Apollo Laser Inc., Operation and Service Manual, Model 35

[74] H.Reimerdes, MHD stability [imitsin the TCV tokamak, PhD thesis No. 2399, Ecole Po-
lytechnique Fédérale de Lausanne, Switzerland (2001)

[75] F.Hofmann et a., Nucl. Fusion 28 (1988), 1871

[76] S.Franke, Application of Thomson scattering at 1.06jum as a diagnostic for spatial pro-
file measurements of el ectron temperature and density on the TCV tokamak, PhD thesis
No. 1654, Ecole Polytechnique Fédérale de L ausanne, Switzerland (1997)

[77] R.Behn et a., Proc. 7th Int. Symp. Laser Aided Plasma Diagnostics, Fukuoka (1995),
392

[78] S.Barry, The extension of the FIR interferometer on TCV to a polarimeter and measure-

142



ments of the Faraday rotation caused by the poloidal magnetic field, PhD thesis, Na-
tional University of Ireland, Cork, Ireland (1997)

[79] D.Veron, Infrared and millimeter waves, Academic Press, New Y ork, 1979
[80] M.Anton et al., Plasma Phys. Control. Fusion 38 (1996), 1849

[81] M.Anton et al., Rev. Sci. Instrum. 66 (1995), 3762

[82] R.J.Fonck et al., Appl. Optics 21 (1982), 2115

[83] R.C.Wolf et al., JET report JET-P(95) 34 (1995)

[84] M.A.Lennon, J.Phys.Chem.Ref.Data 17 (1988), 1285

[85] S.Gunter et al., Nucl. Fusion 39 (1999), 1793

[86] M.Z.Tokar et a., Nucl. Fusion 37 (1997), 1691

[87] T.Dudok de Wit et d., Phys. Plasmas 5 (1998), 1360

[88] J.Stoer and R.Bulirsh, Introduction to numerical analysis, Springer, New Y ork (1980)
[89] F.H.Seguin et al., Phys. Rev. Lett. 51 (1983), 455

[90] M.Mattioli et a., Nucl. Fusion 38 (1998), 189

[91] Jet Team, Proc. 15th International Conf. on Plasma Physics and Controlled Nuclear
Fusion Research, IAEA, Vienna (1995), 307

[92] M.W.Kissick et al., Nucl. Fusion 36 (1996), 1691

[93] K.W.Gentle et al., Phys. Rev. Lett. 74 (1995), 3620
[94] S.Fairfax et al., Nucl. Fusion Supplement 1 (1981), 439
[95] M.Greenwald et al., Phys. Plasmas 2 (1995), 2308

[96] S.Kalvin, Phys. Lett. A 232 (1997), 119

[97] V.I.Pistunovitch et al., Jour. Nucl. Mat. 248 (1997), 85
[98] D.Jablonski et al., Jour. Nucl. Mat. 241 (1997), 782

[99] E.Haddad et al., Nucl. Fusion 36 (1996), 613

143



Bibliography

[100]A.Wéller et al., Jet report JET-IR(87) 10 (1987)
[101]F.L.Hinton et al., Rev. Mod. Physics 48 (1976), 239

[102] G.H.Golub et al., Matrix computations, The John Hopkins University Press, Baltimore
(1988)

[103]C.S. Van Loan, Numer. Math. 46 (1985), 479

144



Acknowledgements

At the end of this thesis the time has come to acknowl edge many people with whom | shared
my life and my working experience here in Lausanne for 5 years.

| am grateful to Prof. M.Q.Tran who, as Director of the CRPP, provided me the opportunity
to start a PhD in plasma physicsin Lausanne and gave me a precious support in all the phas-
es of the realisation of this work.

| thank sincerely my thesis director Dr. Henri Weisen, who supervised the evolution of my
work despite many other activities and always provided fruitful support. A big thank goesto
Dr. Basil Duval which gave me an essential help while Dr. Weisen was in mission away from
CRPP for one year. Both of them provided a precious help in obtaining the time-machine
which was necessary for the collection of experimental data.

A special acknowledgement goes to Dr. R.Dux from IPP Garching, for providing the simu-
lation code STRAHL at the state of the art, which | extensively used for the analysis of the
experimental data.

| had many fruitful discussionswith Drs. M.Ahmed, |.Condrea, R.Behn, J.M.Moret, Y.Martin
aswell as many PhD students of CRPP, which | kindly acknowledge.

It would not have been possible to accomplish this work without the competent and efficient
support fromthe technical staff of CRPP, who gave a decisive contribution to my work when
the ruby laser had to be repaired and integrated in the TCV system. My gratitude in partic-
ular goesto G.Bochy, who gave a decisive support in a huge work of refurbishing of the elec-
trical components of the laser, to A.Centra who provided a precious help in the renewal of
the cooling circuit of thelaser. | sincerely acknowl edge the peopl e fromthe el ectronics wor k-
shop and informatics, namely P.F.Isoz, P.Lavanchy and Ph.Marmillod for the integration of
the ablation hardware in the TCV control system. A special thank goes to C.Raggi who
helped me in many urgent situations, acting like a friend rather than a colleague.

| acknowledge all the TCV staff who operated the machine and especially all the people who
shared with me the task of DJ, “ diagnosticien du jour” .

| am indebted with the secretaries of CRPP, who provided a special help in administrative

assistance, and with Edith in particular with whom | share a sincere friendship.

145



Many people contributed to make my life in Lausanne most enjoyable. At EPFL i met old
friends and found new ones and | shared with them a fruitful professional activity and years
of precious friendship outside work. Among all | want to remember Ivo Furno and Paolo
Galletto who are my best friends and | had the luck to meet them in Lausanne.

Finally, | thank Ainol, who constantly supports my life with her sweetness and enthusiasm,

aswell as my parents who always encouraged me in the realisation of my projects.

146



Curriculum Vitae

| was born in Fossano, Italy, on Sept. 17th, 1970. | attended primary, junior and high school
in Savigliano, Italy where | obtained the “Maturita’ Scientifica’ in 1988. In the same year |
started my university studies at the Politecnico di Torino where | graduated in 1994 in Nu-
clear Engineering with athesis on the high temperature superconductors. Starting in 1995 |
spent two years at CERN in Geneva as Scientific Associate, and | collaborated in the Mate-
rial Support group, with the aim of defining the inner surface properties for particle acceler-
ators. In Sept. 1997 | joined the TCV team in the Ecole Polytechnique of Lausanne for aPhD

thesisin Plasma Physics, in the domain of non recycling impurity transport.

147






