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For some time it has not been clear to what extent neutral injected beam
ions have a stabilizing influence on sawteeth. To investigate this, the well
known toroidal internal kink instability is generalized to account for weakly
anisotropic and flowing equilibria. An analytical approach is proposed, which
upon employing an appropriate model distribution function, accurately ac-
counts for the hot ion response of neutral beam injection (NBI) to the inter-
nal kink mode. Large fluid contributions, which are expected to arise as a
consequence of the anisotropic velocity deposition of NBI, are identified and
shown to be stabilizing to the internal kink mode for populations with large
passing fractions. In particular for tangential injection, such as that employed
in the Joint European Torus [J. Wesson, Tokamaks, 2nd ed. (Oxford Science
Publications, Oxford, 1997), p. 581], it is found that fast ion stabilization
can be dominated by anisotropic fluid effects rather than kinetic effects. In
contrast, for predominantly trapped populations, the anisotropic fluid effects
are destabilizing and thus reduce the stabilizing role of fast ions. This is espe-
cially evident for cases where the sub-sonic sheared toroidal plasma rotation
induced by unbalanced NBI reduces kinetic stabilization. Sheared plasma ro-
tation orientated either co or counter to the plasma current can reduce fast
ion stabilization, but counter-rotation has the greatest effect by impeding the

conservation of the third adiabatic invariant.



I. INTRODUCTION

The control of sawteeth is expected to be of paramount importance for a next step mag-
netically confined fusion device. The presence of highly energetic ions in large tokamaks has
given rise to sawteeth with long quiescent times and large amplitudes [1] - [4]. Although
this might seem to be an advance, large sawteeth also have detrimental ramifications. In
particular, the radial location of the collapse event propagates with respect to the sawtooth
quiescent time. The collapse radius has been predicted to be so large in the International
Thermonuclear Experimental Reactor (ITER) [5] that coupling is likely to occur with in-
stabilities located at other rational surfaces. Evidence of interaction between large sawteeth
and 3/2 neoclassical tearing modes (NTM) has been observed [6] in the Joint European
Torus (JET) [7], while discharges with smaller regular sawteeth are found to have increased
core confinement, and are less likely to be coupled to confinement degrading NTM’s. Hence
it is seen that greater understanding and eventual control over the mechanisms that deter-
mine sawtooth stability is required. Key to this will be control over the interaction between
fast minority ion dynamics and magnetohydrodynamic (MHD) stability.

This paper investigates the response of neutral beam injection (NBI) minority ions to
the m = n = 1 internal kink mode. It is well known that NBI does not stabilize sawteeth as
effectively as ion cyclotron resonance heating (ICRH). One important explanation for this
[4] is that the minority ions of ICRH are more energetic than those of NBI and therefore
conserve more readily the third adiabatic invariant ® [8]. The latter requires that trapped
ions complete many toroidal revolutions during the timescale of the mode so that the mag-
netic fluxes through the toroidal trajectories of the centers of these orbits are adiabatically
conserved. However, other important differences between the heating schemes exist such as
the variable degree of plasma rotation and anisotropy possible with NBI. Inclusion of the
effect of anisotropy permits an investigation into the dependence of stability on the neutral
beam injection angle, and enables comparisons with an existing treatment of anisotropic ef-
fects [9,10]. In addition, the effect of plasma rotation is important not least because strongly
sheared profiles of up to 30 kHz have been measured in neutral beam plasmas in JET [11].
While the effect of such sub-sonic plasma flow on the MHD internal kink stability [12] is
typically modest, the kinetic response [13] can be strongly modified. In particular, in the
present paper it is seen that a large reduction in kinetic stabilization results from NBI ion

orbits which do not adhere to the condition [4] for the conservation of ®. This could help



to explain JET discharges [14] (e.g. discharge 8419) which show that the switching on of
counter injected NBI coincides with much smaller and more irregular sawteeth than in the
Ohmic phase. In contrast, similar discharges with co-injected beam ions typically give rise to
sawteeth with periods up to 10 times that for Ohmic. More recent co injected NBI dischares
in JET have been examined in detail [15] using the complete sawtooth model originally
developed for the prediction of sawteeth in ITER [5]. The relatively large sawteeth, with
periods of up to half a second, were shown to be principally due to the internal kink mode
potential energy W being above the threshold value of the resistive internal kink mode [16]
for the duration of the sawtooth quiescent time. This further highlights the motivation of the
present paper which seeks to improve the experimental relevance of the fast ion contribution
to 0W by incorporating anisotropy and plasma rotation.

In the following section, the stability analysis of the internal kink mode is generalized
to account for an anisotropic and flowing equilibrium. Section III defines and normalizes
a suitable model distribution function for NBI ions. The latter is applied to the hot ion
kinetic and fluid terms, which, in the appendix, are greatly simplified and made numerically
tractable. In Sec. IV typical JET parameters are chosen, and the fast ion contribution to
the internal kink mode is evaluated numerically for differing NBI scenarios. Key to this will
be variation of injection angle, focusing of pitch angle distribution, and toroidal rotation.

The final section summarizes the results and discusses the implications.

II. HOT MINORITY ION CONTRIBUTION TO KINK MODE WITH
ANISOTROPIC FLOWING EQUILIBRIUM

The modifications that hot ions bring to the internal kink mode have been documented
many times. However, a consistent theoretical framework is presented here which includes
equilibrium parameters that, although frequently ignored, exist in many experiments and
are shown to significantly modify internal kink stability. In particular this section describes
the effects of sheared plasma rotation and anisotropy on the internal kink mode, both of

which arise as a consequence of NBI.



A. The internal Kink Mode in an anisotropic equilibrium

An equilibrium pressure exists which is described [17,18] by the double adiabatic model:
P = P I+ (P — P.)¢ ¢, where [ is the unit dyadic and € the unit vector parallel
to the magnetic field. This pressure tensor comprises all particles in the plasma. If the
equilibrium is perturbed by a MHD mode with displacement vector &, a fluid ‘f’ potential
energy term 0W; = % [ &>z &*- (V- 4P) arises as a consequence of a convective perturbation
of the distribution function 6f = —37;& - VF}, where j denotes a species distributed by
Fi(r,&, ), € = v?/2 is the kinetic energy, u = v3 /2B the magnetic moment and r the minor
radius which is the label for the assumed circular flux surfaces. The remaining MHD energy
terms are those due to perturbations in 3 x B, where 3 is the current density and B the

magnetic field. In a low beta plasma it can be shown that:
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oWy = —5 [ dn > FE (0P +0R), (1)
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Furthermore, by exploiting the invariance of £ and yu:
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where C' is defined for example in Ref. [18] and @ is the poloidal angle.

At this point the principal perturbation m = n = 1 can be asserted. The variational
analysis proceeds by writing the eigenfunction € and 6W as a series expansion in the local
inverse aspect ratio € = r/Ry, where r is the local minor radius and Ry the axial major
radius. Minimization of W can then be undertaken order by order in €2. Equation (1) can
be normalized so that it is formally O(e*) and hence does not interfere with the minimization
of O(€?) energy terms. The latter identifies the leading order eigenfunction as top hat [19].
Employing [ d*z = 27 § df [;* dr rR?/ Ry and identifying &, in Eqgs. (1) and (3) with the top

hat obtains:
SW; = 2m2€2 /0 dr e [7’ (Pu+ P +r((P+P) cos28) +

Ry <(PL + PH) cos 0>I + % <(PL + B+ C') (1 + cos 20)> + O(GP)] , (5)
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where '

= d/dr, angular brackets denote poloidal orbit averaging, and r; is the radial
position at which the safety factor ¢(r) is unity. Also B = By(1 — ecosf) has been assumed.
For isotropic distributed particles, the pressure components are not dependent on €, and
P = (P.+ Pj)/2 = —C/2, so that only the first term in Eq. (5) remains. However, this
strongly destabilizing term, first highlighted by Shafranov [19], is exactly canceled for the
n = m = 1 internal mode [20] when the effect of toroidicity in the 7 x B component of
the perturbed force is taken into account. For an isotropic equilibrium, toroidal effects and
where relevant flux surface shaping effects [21] are all that remain. The toroidal term [20]
can be written in the form: dW; = Wy + A'(r)dWy + (A'(r1))20W,, where 6Wy, dW,
and oW, are functions of the ¢ profile only, and can be obtained by solving driven Euler-
Lagrange equations. Toroidal effects enter here through the local Shafranov shift gradient
A'(ry) which depends linearly on the poloidal beta 8, = —(2uo/Bieir?) [3* drr*P'. Here
By is the axial magnetic field and ¢, = r1/Rp. On assuming anisotropy, the definition of
A’(r1) employed in 6Wr should be modified to into account the poloidal dependence of
P, and P [22,23]. However, it should be noted that it is not appropriate to use Bussac’s
formulation for 6W7 in plasmas with a highly anisotropic equilibrium [23]. In particular if
Py/P, ~ ¢, the flux surfaces are found to be highly non-circular. This results in coupling
of additional m,n harmonics and thus the standard equilibrium expansions employed for
evaluation of toroidal [20] and shaping [21] effects are then invalid [22]. Nevertheless, it
is usually only the hot minority ions that are anisotropically distributed, and for the NBI
minority populations of interest in this paper, the corresponding hot pressure P, is typically
no greater than one third of the core bulk plasma P,. Hence the approximate range of
validity e}/ ‘<P, /P < 61_1/ ? for Bussac’s toroidal term should be met regardless of the hot
ion distribution.

The third and fourth terms in Eq. (5) describe the effect of anisotropy on stability. The
second term is negligible in all but extreme anisotropic cases. Hence it can be seen that W,
can be separated into isotropic ‘0’ and anisotropic ‘A’ parts to give 0W; = 6Wyo + 6Wia

where approximately
Weo = —m /Orl dr re%d@ & <5PL + (5P||) , (6)
Wpa=—r [ Cdrr § dog; (5P +67)) cos. (7)

Equations (7) and (6) arise from the leading order and first order expansion of [d3z in €

respectively. In the following sections it is found that the anisotropic contribution to éW
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is most conveniently expressed by Eq. (7) in conjunction with the general definition for
6P, + 6P, given by Eq. (2).

It is of interest to compare the anisotropic contribution to the internal kink mode
with that obtained by Mikhailovskii [9,10]. If it is assumed that the poloidal depen-
dence of P, + P + C is weak such that ‘(PL + P+ C’) / <PL + P+ C’> — 1‘ < 1, then
Eq. (4) yields P, + P} = <PL —i—P||> — <PL + P +C>ecos€. Hence, for such an as-
sumption Eq. (3) clearly realizes the perturbed pressure obtained by Mikhailovskii [24]:
5P, + 6P = & [<PL+P|>I —e(PL+ P +C) cost]. Substituting this into Eq. (6)
merely yields Shafranov’s cylindrical term as expected, while Eq. (7) is identified with the

anisotropic contribution given in Ref. [10]:
1
SWH = —7r2§§/0 drre <P|| +PL+C>I. (8)

This definition for the anisotropic modification to stability has been included more recently in
an analysis of sawteeth in RF heated plasmas [25]. It is of interest to compare Eq. (8) with the
generalized anisotropic contribution given by Egs. (7) and (2). This is particularly important
for minority heated plasmas since the hot ‘h’ ion pressure tensor typically depends strongly
on 6, thus leading to inaccuracies in Eq. (8). In particular, since the core plasma is assumed
to be isotropic, Eq. (8) is only valid if |(Pa1 + Puy+Ch) / (Par + P+ Ch) — 1| < 1. In
fact, in general it is found that the latter identity is not met even for a distribution function

which is only weakly anisotropic.

B. Hybrid Plasmas with a flowing equilibrium

For a hybrid plasma it is necessary to distinguish between quantities corresponding to
hot minority ions, denoted by ‘h’, and the core plasma ‘c’ which comprises thermal ions
and electrons. The leading order contributions to the toroidal plasma rotation arise from
a finite thermal ion pressure gradient and from an equilibrium radial electric field E. It
is appropriate to assume that poloidal flow is strongly damped [26], such that the toroidal

rotation of the core plasma is given by:
Q= QE‘ + Wipis (9)

with
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Here eZ, n; and P; are respectively the charge, density and pressure of thermal ions. The
common source of rotation for the different plasma species is that arising from the equilib-
rium electric field, i.e. 2g. For NBI scenarios, a mechanism can be envisaged whereby the
momentum of the injected ions initially rotates the plasma, which in order to satisfy the
force balance equation, establishes a large radial electric field. However, it is highlighted
here that the toroidal rotation for impurity species is not measured to be the same as that
of the core plasma [27,11]. The difference is expected to be of the order of the thermal ion
diamagnetic frequency w,,; minus the corresponding quantity for the impurity species.

Before introducing the various contributions to the internal kink stability, it is appropri-
ate to discuss the frequency regime of interest. For analyzing the hot ion response of ‘saw-
tooth modes’ with mode frequency w, it is usually assumed that w., > w and {(Wman) > w,
where w,;, and (wyq,) are respectively the hot ion diamagnetic and bounce averaged mag-
netic drift frequencies. This is appropriate because, in contrast to ‘fishbone modes’, which
generally satisfy [28] w ~ (wman), sawteeth are believed to have mode frequencies of the
order of w,,;. It has been pointed out [4] however that unlike ICRH scenarios, NBI heated
plasmas do not always obey the following approximate condition for kinetic stabilization:
Wapi/ (Wman) < 1. This has been used to explain [4] why long sawteeth, of e.g. period 7 ~ 1
second in JET, are not frequently observed in NBI plasmas. In addition it may explain obser-
vation [29] of JET NBI discharges which display sawteeth in conjunction with fishbone-like
activity. For this reason the effect of finite mode frequency on the kinetic contribution to
the marginally stable potential energy is considered in the present paper, and conclusions
are made about its affect in relation to low frequency sawtooth type modes.

For non-zero toroidal plasma rotation the mode frequency is Doppler shifted locally as
follows [13]: w — w — Qg(r). Providing the toroidal plasma velocity is much smaller than
sonic speed, the internal kink dispersion relation can be written in terms of @ = w — Qg(r1)
such that the toroidal rotation only appears in the kinetic contribution [13]. The present
paper will be concerned with differential rotation AQg(r) = Qg(r) — Qg(r1) of variable
magnitude up to AQg ~ (Wpan). This of course requires that the injection of neutral beams
is unbalanced. Upon retaining the mode frequency (in the plasma frame) @, the hot ion
kinetic contribution to the internal kink is then:

2 "
5th = —25/27T3thoR0 <@) / d’f"f‘/
Ry 0 1

1/Bmin

b

dal—g/md5£5/28Fh w*h+AQE —w
Kb 0 <

o€ wmdh> + AQE —w
(11)

/Bmax



where F}, is the distribution function of hot ions which are assumed to have zero orbit width,
a = u/€ is a pitch angle variable, and K}, and I, are defined in the Appendix.

Conservation of the third adiabatic invariant, which has been shown to guarantee kinetic
stabilization [4], is obtained for w < n({wWman)+2x) in a plasma with an equilibrium electric
field. The equivalent condition W—AQp < (W) (With n = 1) is seen to be harder to satisfy
for sheared rotation in the counter current direction (AQgz < 0) than for the static case. In
contrast co-rotation assists in conserving the third adiabatic invariant. Close to marginal
stability, evaluation of the dissipative contribution I{0W}} can be employed to resolve the
real part of the frequency @w of co-existing modes, and it is seen in Sec. IV B that a solution
always exists with @ ~ w,y; for which R{6W),} is positive (stabilizing) over the range of
plasma rotation considered. This therefore justifies the approach taken in the present paper
whereby attention is primarily given to the reactive part of kinetic contribution R{JW}
close to the stability threshold and with @ = 0. The effect of plasma rotation induced by
unbalanced injection, for which AQg ~ 3w,y is typical in JET, is more important than the
effect of finite & for the cases considered.

If the plasma is hot enough such that the effective ion-ion collision frequency satisfies
vii < AQpg, the Kruskal-Oberman [30] limit applies for the kinetic response from thermal
ions Wi [13]. This term is then independent of the diamagnetic, mode, precessional drift
or toroidal rotation frequencies and is stabilizing for normal pressure profiles (P’ < 0). The
remaining potential energy terms of interest are the toroidal stability term 6Wr [20], with
the generalized expression for A’ which takes into account the poloidal dependence of the
pressure components [23], and the fluid term 6W; which represents the anisotropic effects
of hot ions. From Egs. (7) and (2) it is seen that §W},; is most conveniently defined in terms

of the fast ion distribution function:

! oF,
OWhy = —ng/ drr%d@ cosﬁ/dv3 (U—L + UII) my—. (12)

0 2 or
Assuming that the mode does not lie inside the gap of the Alfvén continuum, the ideal
stability criterion is given by 6Wr + 6Wko + 6Why + R{6Whi} > 0. The remaining part
of this paper is dedicated to analyzing the variation of the fast ion contribution to stability

OWh = Wy s+ R {0Wh } with respect to changing plasma rotation and distribution function.



III. THE FAST ION DISTRIBUTION FUNCTION

The fast ion distribution function that is appropriate for this study will be invariant to
rapid gyro-motion and finite orbit widths. Thus it must be expressible in the form Fj (&, p, r),
with kinetic energy £ = v?/2, magnetic moment y = v? /2B and the minor radius 7 which
defines the assumed circular flux surfaces.

The absolute velocity dependence of the NBI population is approximately described with
a simple slowing down distribution ~ 1/[v|?, such that F}, ~ 1/£3/2. However, the velocities
of the minority ions are focused in the direction of injection. An analytical solution to the
Fokker-Planck equation exists [31] which describes both the slowing down and the pitch
angle scattering of the beam ions. A steady state approximation of the latter which has
been employed in Ref. [32] to model the NBI distribution function is as follows:

Fo (&, p,r) = % exp[—(A — Ag)? /AN (13)

for 0 < & <&, and F, = 0 for £ > &,,. The pitch angle A\ = Bou/E is valid for 0 < )\ <
1/(1—¢). The parameter \g, which describes the mode (or central) pitch angle, is to leading

order, defined in terms of the angle of injection y from perpendicular as follows:
Ao & cos? x. (14)

Hence for perpendicular injection (x = 0) it is clear that Ao &~ 1, which indicates that the
distribution function is peaked in trapped space, and vice-versa for azimuthal injection (x =
+7/2). The spread of the distribution in the pitch angle is governed by the parameter A\ >
0. For example, on letting A\ — 0, Eq. (13) becomes a delta function with discontinuity
located at A\ such as that used by Chen et al [28] to model the effects of NBI on fishbones.
The other extreme is AX > 1 which yields an isotropic distribution, independent of Ay, such
as that used [e.g. Refs. [33,34]] to analyze the effects of slowing-down alpha particles on
the internal kink mode. It also is noted that the distribution function employed in Ref. [35]
to model the effects of ICRH particles on sawteeth has a similar pitch angle dependence to
that of Eq. (13).

It is possible to parameterize the distribution function of Eq. (13) by employing the
results of TRANSP code [36]. In this code the Monte-Carlo routine computes the slowing
down distribution function of the beam ions, so that such effects as pitch angle scattering and

energy slowing down due to the background plasma are included. Equation (13) can then



be fitted to the computed distribution function to obtain the parameters Ay and A\. Figure
1 demonstrates this procedure for JET discharge 53595. In particular, while the central
pitch angle is Ay & 0.5 for this discharge, the pitch angle width A\ exhibits a functional
dependence in £ and r. This is to be expected because preference in pitch angle will become
less as the minority ions slow down due to collisions. However, for this paper, it is sufficient
to employ an effective pitch angle width which is an average value over energy and radius.
Hence, for discharge 53595 the effective pitch angle width is around A\ = 0.5, and is in fact
close to the actual width within the range 0 < r < r; ~ 0.4m and 40keV < & < 80keV.
Thus the distribution function is simplified to enable evaluation of internal kink stability,
but nevertheless the underlying physics remain. Namely that the distribution function is
slowing down in energy, and Gaussian in pitch angle. The latter distribution identifies \g

and A)? with the mode and spread of the distribution in \.

A. Distribution Function Normalization and Anisotropy

The coefficient ¢(r) in Eq. (13) assumes the role of normalizing the distribution function.
It is not possible to define ¢(r) in terms of the hot ion density nj without removing the
singular behavior of Eq. (13) at small £. An alternative is to retain this singular behavior
but define ¢(r) in terms of the hot ion pressure. A second parameter is the injection energy
Em- The pressure related quantity chosen for normalizing the distribution function is (P,) =
((Ph )+ <Ph||>) /2 where angular brackets denote averaging over poloidal orbits of both
passing and trapped particles.

For the distribution function of Eq. (13) it can be shown that (P, ) = m,2%/%7&,,c(r)1,
and <Ph||> = mh23/27r5mc(T)I||, where I, and I describe the pitch angle and orbit integrals.
The latter can be split into contributions from passing and trapped ions. Progress is made
through a new pitch angle k% which for trapped ions is defined £? = (1 — aBy(1 —¢))/2aBge
and for passing ions k? = 2aBy/(1 — aBy(1 — ¢€)). Integrating in poloidal angle and pitch
angle obtains c(r) = (P) /[21/27rmh5m (IJ_(T’) + I||(T))] with

_ 2 1/2 ! 2 K(kZ)fl(kzae) kQK(k2)f2(k276)
1(r) = 26" [k <[1 @ — 12 TR e k2)]5/2> ’ (15)

4 [P ([E(R?) + (K2 - DK(E)]f1(k%e)  E(K)fo(k?,€)
1) = 29 [ < L+ e(2k? — D2 * [k2+e(2—k2)]5/2>’ (16)
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where

2

JAN?

2

2
i JAN?

2+ e(2 — k?)

fi=exp — Ao — Ao

1
_‘1+e(2k2—1)

and fo = exp [—

(17)

I, and I are formally of order € and converge as ¢ — 0. In the isotropic limit, such
that f; and f, of Eqs. (17) are unity, it can be shown that I, 4+ Iy = 8/3 and I, /I =
(Pin)/ <P||h> = 1 for vanishing e. However, in general Egs. (15) - (16) must be evaluated
numerically for varying r since I, and I are defined in terms of K (k?) and E(k?), complete
elliptic integrals of the first and second kind [37] respectively.

In addition to normalizing the distribution function, I, and I} also permit straightfor-

ward calculation of the following macroscopic measure of the anisotropy:

Ah = <PhJ_>/<Ph||> = IL/IH-

Figure 2 plots Aj, versus the pitch angle width A\ for different central pitch angles Ag. It
can be seen that the isotropic limit is rapidly reached for A\ > 2 regardless of )y, while
Ap ~ 10 or ~ 1/10 can be obtained for sufficiently small pitch angle width (AX ~ 0.15)
and Ay > 0.9 or \y < 0.2 respectively. For JET discharge 53595, for which A\ = 0.5 and
Ao = 0.5, the anisotropy is A, =~ 0.7.

B. Regions of poor/good curvature and the poloidal dependence of P, and Py

Another measure of anisotropy which is sensitive to changes in AX and ), is the trapped
- passing fraction. This definition, which is related to but not the same as Ay, is important
because only trapped ions contribute to the kinetic modification of the internal kink mode.
In addition, trapped particles exist in the region of poor curvature and as a result are seen to
be destabilizing to the fluid contribution to the kink mode, while passing ions are stabilizing.

The role of passing and trapped ions on fluid stability can be observed by examining the
poloidal dependence of the hot ion pressure components. The appropriate moments of the
distribution function of Eq. (13) can be easily evaluated to obtain Py(¢, 8), Py (€, 6) and
Ch(e, 0) for differing A\g and AX. Figure 3 shows a polar plot of P, = (P4 P;1)/2, where the
angular variable is the poloidal angle. Also shown is Mikhailovskii’s [10,24] approximated

form of the hot pressure PM = (P,) — <(PhL + Py + Ch)/2> e cos f which is used in Eq. (8)
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for the hot ion anisotropic term 5W,f‘jz’ . The chosen local inverse aspect ratio e = 0.45/3 is
typical of that near the ¢ = 1 surface in JET and the pitch angle width AX = 0.5 reflects
the TRANSP simulations of JET. Figure 3(a) is for an injection angle of x = 14°, for which
X = 0.94 and A, = 2.14. It can be seen that P, and P,fVI are shifted almost identically
toward the outboard side. This has occurred because of the increased number of trapped
particles which exist in the outer region of poor curvature. Figure 3(b) is for an injection
angle of x = 30°, for which Ay = 0.75. Since the corresponding anisotropy A, = 1.44 it
might be expected that Fig. 3(b) would reflect a similar but smaller destabilizing shift to
that of Fig. 3(a). This is observed in the plot of P, but not the plot of P, which correctly
displays a small shift toward the stabilizing region of good curvature. Finally Fig. 3(c) is for
a typical JET injection angle of x = 45°, for which Ay = 0.5 and A, = 0.8. The plot of P,
shows a strongly stabilizing shift toward the inboard side, while P displays only a small
stabilizing shift.

The reason for the difference between P,(f) and PM(0) can be resolved by evaluating
‘(PM + Py + Ch) / <P1u + Py + C’h> — 1‘. The latter quantity must be much less than
unity for PM to be a valid approximation of P,. This means that the poloidal variation
of P,i + Py + C, must be weak compared to its mean value. However, it is seen that
Py, + Py + C}, is only non-zero if the distribution function is anisotropic, and hence its
poloidal variation is necessarily leading order. Upon choosing ¢ = 0.45/3 and Ay = 0.5 it
is found that (PhL + Py + Ch) / <PM + Py + Ch> — 1 varies approximately between +0.6
over 0 < # < 2m. This result is valid for arbitrarily large A\, and therefore Aj, arbitrarily

close to unity.

C. Analytical Forms of Hot ion contribution to éW

In this section analytical forms are developed for the various hot ion contributions to
the internal kink mode. The energy integrals can be evaluated analytically on assuming
the distribution function of Eq. (13), thus allowing hot W terms to be calculated through
nested numerical integration in radius and pitch angle. The potential energy terms comprise
the sum of kinetic ‘k’ and fluid ‘" components: 6W;, = Wy, + 0Wjs. Each of these are

defined in such a way as to facilitate numerical evaluation of stability.
The normalized potential energy terms §W = 6W/ (672 Ro€2¢* B2/ o) are now evaluated.

Inserting the distribution function of Eq. (13) into Eq. (A12) reveals the following hot kinetic
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where fi (e, k?) is defined in Eq. (17) and (wmdn(Em)) is the magnetic drift precession, defined
in Eq. (A14), evaluated at injection energy £ = &,,. Note that Eq. (18) contains a Landau
resonance if 1 + (Wpan(Em)) /(AQE — @) < 0 within the range of nested integration. Thus a
frequency resonance, which is described by AQg + (Wman) — @ = 0, exists for some energy
0 < & < &, and within a certain range of pitch angle and radius. This resonance condition
describes [13] mode-particle matching of the kink mode frequency in the laboratory frame w
with the total toroidal drift precession of trapped ions which includes the contribution from
an equilibrium electric field (wgp) = (Wman) + QE(r).

As a consequence of the possible Landau resonance in dWj, Eq. (18) contains both
real and imaginary parts. R{6W} and S{6Wy,} are identified close to marginal stability
(i.e. 3{@}) by testing the sign of 1 + (Wman(Em)) /(AQg — @) throughout the range of
nested integration and using the property In(—|z|) = In(|z|) + im. Note however that fast
ion stability is principally governed by R{0W}} for the low frequency sawtooth modes of
interest here. Therefore for convenience (5Wh and (5th henceforth denote ?R{(Sf/Vh} and
R{5W 1.} respectively.

The fluid contribution §W),; is most conveniently defined in the form of Eq. (12). The
appendix derives an analytical simplification which involves treating separately the trapped
component 6W} s and passing component 0Wp, of §W),; = = oW} ;HOWy ;- Inserting Eq. (13)
into Eq. (A4) yields

it = 2" W \' [t 2GR + Ghe k)
MWas = 3t R ( >/ arr <I||+IL> / W epr—npr (6 F). (19)
where Egs. (A6) and (A7) GY and G%. The passing-fluid response of Eq. (A8) becomes
~ P 25/2 <Ph> I 22G]1](6, k2) +G121(€, k2) ,
Wis = i / a1 [ e i e k), 20

where the pitch angle y? has been relabeled as k? in the definition of G} and G} given in
Egs. (A10) and (A11). The functional form of 2G7 + G% used here is exact, and due to a
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great deal of cancellation, is not singular for vanishing k2. Instead 2G% + G5 = —7e? as
k* — 0.

Finally Mikhailovskii’s [10] anisotropic term is defined in terms of the model NBI distri-
bution function. Equations (8), (13) and (A1) yield

2

SW, = ST <g—%> l /0 Y (B Ag — 7'2—% (Py(r)) Ac(rl)] , (21)

withAczl—g( L )and

I +1

_ 122 [t o 2 fi(e, kQ) k4f2(€a kQ)
o=@ [ dR K () lu TR )R Rt k2)]7/2] ' (22)

A is zero for an isotropic distribution. For an anisotropic distribution A¢ is limited in
magnitude as follows. For A, = (P,,)/ <Ph||> — 0, which corresponds to Ay — 0 and
AN — 0, it is found that Ac = 1. This agrees with the result given by Mikhailovskii in Eq.
(4.18) of Ref. [9]. Furthermore, A¢c = —1 is obtained for 1/A4;, — 0, which corresponds to
Ao — 1 and AX — 0. This identity limits the destabilizing effect of 5IA/V,]:[ for predominantly
trapped distributions and therefore differs greatly from the corresponding limit given by Eq.
(4.18) of Ref. [9].

IV. STABILITY OF THE INTERNAL KINK FOR NBI SCENARIOS

In this section the stability of the internal kink mode is determined for various NBI
scenarios. Key to this will be quantifying the possible destabilizing effects of toroidal rotation
and anisotropy. The following profiles and parameters typical for JET equilibria are used:
a = 1.25m, Ry = 3m, By = 3T. The safety factor profile is ¢ = go(1 + \,(r/a)?¢)}/*s with
¢ = ¢q(0) = 0.75, A\, = 22.6 and v, = 1.74 which gives r;/a = 0.36 and ¢, = 4.6. The
poloidal averaged pressure profile for the hot ions is given by (P,) = Pyo[l — (r/a)?]? with
Py the central pressure. This profile represents well the TRANSP simulations. It is possible
to write Py = enpoTho, where e is the absolute charge of the electron, nyg is the density of
hot ions and T} the corresponding temperature (units of electron volts) for a Maxwellian
distribution. Quantities chosen here are nyy = 0.135 x 10" /m3 and T, = 80 keV. Such a
temperature corresponds to that produced by the Octant 4 NBI system in JET. Note that
although the anisotropy is varied in the following sections, Py(r) = <Ph L+ Ph||> /2 remains

constant throughout. The injection energy &, arrives from the property m&p,/eTho(eV) ~
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1. Hence mp&y,/e = 80 keV is used in this paper. The charge coefficient Zj, is chosen to be
unity, i.e. either hydrogen or deuterium is assumed.

The pressure profile of the core plasma modifies W) through 7, a parameter of the
magnetic precession frequency given in Eq. (A14). The core plasma pressure profile assumed
is P, = Py[l — (r/a)?]?, where Py = e(njTi + neoTe), with nyy = ng = 4 x 10*° and

T;o = T.o = 4.5keV. Hence the ratio of the core pressure and hot ion pressure
Q = Pc/Ph

is 10/3 in the center, which is a typical value for NBI experiments. In addition, it will be
seen later that for this choice of total pressure profile and the above ¢ profile, Bussac’s [20]
toroidal term is very small such that ideal stability is largely determined by 6W),.

The toroidal rotation profile which accurately fits the data of Ref. [11] is

Qu(r) = Qo l1 - (2)2]

Hence for the parameters chosen, the differential rotation AQg(r) = Qg(r) — Qgr(r1) at

3/2

the center is AQg(0) ~ 0.2Qg. The magnitude of the central toroidal rotation Qg is a
parameter which, in the forthcoming analysis, will be varied as —40kHz < Q¢ < 40kHz.
Such a range is relevant for JET where toroidal rotation frequencies of up to 30 kHz have
been measured in recent NBI experiments [11]. The other parameters that will be varied
concern those that govern the pitch angle dependence of the distribution function. Although
Ao and A\ are both measured and simulated to be around 0.5 in JET, it is of interest to see
how the stability of the internal kink mode can change with respect to different injection
scenarios. The central pitch angle Ay will be varied by changing the injection angle x
according to Eq. (14). In addition, since the transfer of momentum from the minority ions
to the plasma gives rise to the ' x B component of the toroidal rotation, the injection angle
and Q0 gq cannot be totally independent. In particular, counter-injection gives rise to rotation
in the opposite direction to co-rotation and balanced injection (co and counter) yields no
measurable rotation [27]. However, the functional dependence of Qgy with x is not at all
clear because of such important issues as the change in the deposition of injected ions with
X- Hence, in Sec. IV B the toroidal rotation and injection angle are treated as independent

parameters.
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A. The Effect of Anisotropy on Stability

In this section the stability of the internal kink mode is evaluated for differing NBI
scenarios. In particular, the dependence of stability on injection angle and pitch angle
width is examined. The effects of finite plasma rotation and mode frequency are treated in
Sec. IV B, while in the present section @ = 0 and AQ2x = 0 is employed.

Figure 4 plots 5th, Wy and 0W, = 5th + Wy and (5IA/V,]$ with respect to A\
for two different x. In Fig. 4(a), for which xy = 45° (A\g = 0.5), it can be seen that W i
increases monotonically from zero with respect to AX. This can be explained by the fact
that for Ay = 0.5 the number of trapped ions increases monotonically again from zero with
respect to AX. The majority of ions are passing for A\ < 0.5 and hence 5th is large
and positive. As expected, the latter quantity decreases toward zero as A\ increases, i.e.
as the distribution function approaches isotropy. The figure shows that the fluid effects are
strongly stabilizing to the kink mode for x = 45°. For the example typical of JET (A = 0.5
and AX = 0.5) it can be seen that 5th ~ 0W n), which suggests the importance of passing
ions, heated by NBI, for sawtooth stabilization in JET. Earlier attempts [15,32] to quantify
the effect of NBI ions on the internal kink mode did not include anisotropic fluid effects.
Hence from Refs. [15,32] it would be concluded that for the NBI angle of injection in JET
the fast ion stabilization diminishes as AX — 0. The similarity between Fig. 2 of Ref. [32],
Fig. 2 of Ref. [15] and the kinetic component of Fig. 4(a) is clear. However, it is now seen
that the net result of including kinetic and anisotropic fluid effects is that §W ), varies only
marginally with respect to A\. It is interesting to note that 5I7V,]:§ is a factor of three smaller
than 6Wh 7. This remains true as AX — oo, which as observed in Fig. 3(c), occurs because
the approximated form of the hot pressure P (f,r) is not deformed sufficiently toward the
stabilizing region of good curvature.

The curves in Fig. 4(b) are for the near perpendicular injection angle of x = 14°. This
is comparable to the injection angle employed in the Poloidal Divertor Experiments (PDX)
[38] where co and counter beam injection gave rise to contrasting sawtooth and fishbone
characteristics. The corresponding central pitch angle A\ = 0.94. For A\ < 0.5, the
anisotropy A, > 2 which indicates that the majority of the hot ions are trapped. As expected
SWh, 7 is increasingly destabilizing for reducing A\. It is seen that the destabilizing fluid
effects that result from strongly trapped populations almost balances the corresponding

increased kinetic stability. Hence, as also observed for y = 45°, hot ion stability does not
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vary greatly with respect to A\. In addition, it is interesting to note that for this choice of
injection angle it is found that 5I7Vth R (5th. This can be understood by observing Fig.
3(a) which shows that Py,(0) and PM(6) are shifted almost identically toward the region of
poor curvature.

Figure 5(a) shows Wy W i, (5th and (5IA/V,]Z¢ as a function of y for A\ = 0.5. The plot
shows that the stability threshold for SWh s is approximately x = 25°, while the stability
threshold of 6W,]:§ is approximately 40°. This can be understood upon observation of Fig.
3(b) which illustrates a stabilizing shift of P, () and destabilizing shift of PM () for x = 30°.
Figure 5(a) shows that the anisotropic fluid contribution SWh, 7 1s increasingly stable and
the kinetic contribution vanishes as injection approaches the azimuthal direction. Hence it
is seen that hot ion stability varies only moderately with respect to injection angle or indeed
with respect to the corresponding degree of anisotropy A which is depicted in Fig. 5(b).
It is also possible to evaluate the anisotropy A corresponding to the entire plasma (thermal
ions, electrons and hot ions):

gz et (Pri) _ QL+ Ap) + 24,
Pt (Py)  QU+An)+2

Given that @ = 10/3 for the chosen equilibrium, the approximate range of plasma anisotropy
corresponding to Figure 5 is 0.75 < A < 1.25. As discussed in Sec II, for such a small
range of anisotropy the effect on the toroidal contribution W7z of the resulting slightly
shaped surfaces is ignorable [22]. Hence, also ignoring the collisionless kinetic contribution
from thermal ions, the stability of ideal internal kink mode is accurately given by W =
SW + Wy, where 6Wr is the well known toroidal term of for example Bussac et al [20].
Numerically evaluating the driven Euler-Lagrange equations to obtain b and ¢ of Ref. [20] for
the chosen ¢ profile and including the entire pressure for evaluation of 5, (= 0.141) obtains
Wz = —0.00066. The safety factor, 8, and thus SWr are fixed throughout the numerical
analysis in this section and the next. Hence, for the chosen parameters, ideal stability is

almost entirely governed by W

B. Combined Effects of Toroidal Rotation and Anisotropy on Stability

In this section the effect of plasma rotation is included in the stability calculations of
the internal kink mode. Initially the real and imaginary kinetic contributions ?R{Jf/th} and

%{5th} are plotted over an unrealistically large range of {2gq for an isotropic distribution
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function. Figure 6 yields the characteristic kinetic response of the fast ions for (a) @ = 0
and (b) @ = 1 kHz. For all cases the mode is taken to be close to marginal stability, i.e.
3{@} = 0 is assumed. The imaginary contribution S{6Wy} quantifies the collisionless
Landau energy transfer due to resonance between the toroidal orbits of the trapped ions
and the kink mode. Recall that the mode frequency w is Doppler shifted to w — Qg(r) such
that the resonance condition is given by {(wman) + AQr —@ = 0, where @ = w — Qg(r1). The
peak in %{5th} occurs where the deeply trapped ions with maximum energy &, resonate
with the mode. The corresponding magnetic precession frequency (wpap) for the parameters
chosen at the beginning of Sec. IV is approximately 6 kHz close to r;. In addition, the real
contribution §R{(5th}, which contains the principal part of the simple pole singularity, is
approximately a minimum where S{6W;} is largest.

Let us first consider the & = 0 case shown in Fig. 6 (a). The peak in S{6W;} and
minimum in %{(Sf/th} occurs for counter-rotation of Qgy = 5 AQg(0) ~ 30 kHz. For co-
rotation, resonance can only occur for reverse magnetically precessing ions ({wWman) < 0).
Since there are not many of these %{5th} reduces to zero very quickly for increased co-
rotation. Meanwhile 3?{(5th}, which determines the kinetic contribution to stability in the
marginal case, is peaked close to 2gg = 0 and reduces for increased co-rotation. This can
be understood by noting that (w.n, + AQg)/({Wman) + AQE) decreases from ~ ¢! to ~ 1 as
AQp is increased from zero to a frequency much greater than {(wpap)-

Now let us consider the @ = 1 kHz case shown in Fig. 6 (b). Close to marginal sta-
bility the imaginary part of the ideal dispersion relation [e.g. [39]] resolves the real mode
frequency || = 3272w S{0W i }/s1, where wy = v4/Ry is toroidal Alfvén frequency.
Given the magnitude of S{6W .} in Fig. 6(a) or (b) and the parameter values defined at
the beginning of Sec IV, it is found that |©| < 0.8 kHz. If finite Larmor radius effects
(FLR) are now included, the imaginary part of the ideal dispersion relation is modified
t0 [0 — wepi)]'/? = 3212w sS{6W hi} /51, where w,,; = 0.77 kHz for the typical JET
plasma parameters chosen. A solution therefore exists in the Alfvén continuum with order-
ing @ ~ wypi ~ 1 kHz for which R{o0W},} is stabilizing over the range of plasma rotation.
It is seen that inclusion of finite @ does not significantly modify the kinetic contribution to
the stability threshold, which is governed by R{6W,;}. This is demonstrated in Fig. 6(b)
where a finite mode frequency of @ = 1 kHz is seen to merely shift the curve of R{6W ,} in
Fig. 6(a) to the right by approximately & [Q2go/Agr(0)] = 5 kHz. In contrast, the curves of
${6W ) in Fig. 6(a) and (b) differ significantly for co-rotation. This follows because close
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to r1, where AQdr ~ 0, Landau resonance arises from forward magnetically precessing ions
with frequency =~ w = 1 kHz. Such ions are much more numerous than the static or reverse
precessing ions which provide the Landau resonance exhibited in Fig. 6(a) for Qg > 0.

Figure 7 shows §W, with respect to a realistic range of central toroidal plasma rotation.
The mode frequency @ has been set to zero. Figure 7(a) is for an injection angle of 45°.
The broad pitch angle width of AX = 2 approximately reproduces the plot of R{6W} in
Fig. 6(a). It is seen that counter-rotation of —30 kHz reduces W, by more than a factor
of two. Co-rotation of 30 kHz also reduces 6, but not by as much as counter rotation.
The sensitive dependence of kink mode stability on plasma rotation weakens for decreasing
A since §W ), is then increasingly dominated by SWh 73 a quantity independent of toroidal
rotation. In contrast Fig. 7(b), which is for x = 14°, shows that the variation of R{6W}
with respect to changing plasma rotation is increasingly sensitive for decreasing A\. This
follows because the fluid contribution is destabilizing, such that the variation of R{6W .}
with respect to co and counter plasma rotation gives rise to an even greater variation in
R{0W,}. This trend is amplified as A\ is reduced.

Finally, it is interesting to compare Figures 4 - 7 with §W;, = 0.0056 which for the
chosen parameters, is obtained with the simplified analytical model employed in Ref. [5]
for slowing down alphas and Ref. [15] for NBI ions. Note that the kinetic term defined in
Ref. [5] has been multiplied by 2'/2? so that it matches the correct expression given in Ref.
[15]. It can be seen that SW ), of [5], which assumes an isotropic slowing down distribution
function and static plasma, is approximately a further 2!/ too small when compared with
W, in Fig. 4 for A\ — oo. Such a differential has also been observed in recent NOVA-K
calculations [40]. The exact semi-analytical approach employed in the present paper enables
an explanation for the error in the simplified analytical formula employed in Refs. [5] and
[15]. Assuming a static plasma and isotropic hot distribution function (AQQg = 0 and
AN — 00) it is clear that 67y, in Ref. [15] is identical to the expression given in Eq. (18)
with the parameter values ¢ =1, s = 0 and n = 0. The most serious loss of accuracy occurs
as a result of s = 0, which in effect increases the magnitude of (wqn) from the correct
expression given by Eq. (A14). For most large tokamak discharges, it is typically found that
0.15 < s7 < 0.5, such that setting s = 0 reduces 6Wyy ~ 1/ (wpman) by up to twenty five
percent. Ignoring finite pressure amplifies this trend through the dependence of (wy,qn) on
n = —2Roq*uo(d (P) /dr)/B2. Hence, for meaningful comparisons with tokamak data it is

argued that an accurate definition for (wyqg,) should be employed, and the Cauchy principal
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value of the pitch angle integrals evaluated carefully.

V. DISCUSSION

Research into the effects of fast ions on tokamak instabilities continues to be of impor-
tance for interpretation of experimental data, and prediction of the effects of alpha particles
in ITER. Theoretical studies into the effects of ICRH or NBI ions on the internal kink mode
have tended to concentrate on the stabilizing role of trapped ions, which can be identified
as a kinetic addition to the energy principle potential energy. In this respect the present
paper advances recent investigations into NBI stabilization of JET sawtoothing plasmas
[15,32]. In addition to identifying an accurate expression for the kinetic response of fast
ions, the present paper accounts for the effect that unbalanced NBI has on the equilibrium.
In particular, the work generalizes the equilibrium to be weakly anisotropic and flowing.

The combined effects of plasma rotation and anisotropy are important for analyzing NBI
sawtoothing discharges. In particular, strongly sheared toroidal plasma rotation of up to 30
kHz has been measured in JET [11], and the differing injection angles of many tokamaks gives
rise to different degrees of plasma anisotropy. Numerical results are obtained in this paper
upon employing a typical JET equilibrium and a distribution function which models the 80
keV Octant 4 NBI system. The distribution function adheres to ‘slowing down’ in absolute
velocity and permits a central pitch angle, governed by the injection angle, and a variable
pitch angle width controls focusing. The TRANSP code [36] assists in parameterizing the
distribution function. For the model distribution which best describes JET NBI scenarios,
where the beam injection is approximately 45°, it is shown that in the absence of plasma
rotation the anisotropic fluid term is as stabilizing to the ideal internal kink mode as the
kinetic term. The stabilizing role of passing ions, highlighted in Ref. [4] although often
ignored in similar studies, is seen to be fundamental. This would be even more evident for
scenarios where the injection angle approaches azimuthal, which is seen to be a possible
effective means of stabilizing sawteeth.

The possible role of anisotropy for the destabilization of the ideal internal kink mode was
first highlighted by Mikhailovskii [10]. However, the present paper demonstrates that any re-
alistic distribution of hot ions is strongly stabilizing to the zero frequency @ = 0 internal kink
mode upon inclusion of kinetic effects and the poloidal dependence of the hot ion pressure

components. In addition it is seen that the total hot ion response SWy, = 0W,, f+(5th varies
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only moderately with respect to anisotropy. However this observation does not follow in gen-
eral when toroidal plasma rotation is taken into account. It is seen that counter rotation of re-
alistic amplitude and shear can significantly reduce kinetic stabilization. This is found to be
partly because conservation of the third adiabatic invariant ® requires w,p; < (Wman)+AQg,
which is harder to satisfy for sheared counter rotation (AQg < 0) than for static plasmas.
This could help to explain JET discharges [14] (e.g. discharge 8419) which show that the
switching on of counter injected NBI coincides with much smaller and more irregular saw-
teeth than in the Ohmic phase. In contrast it is clear that sheared co-rotation assists in the
conservation of ®. Nevertheless co-rotation can also reduce kinetic stability. This can be un-
derstood by noting that 8% 4, contains the ratio (wy, +AQg —&)/((Wman) + AQg — &) which
decreases from ~ ¢! to ~ 1 as AQyg is increased from zero to a frequency much greater
than (Wman). Furthermore, the internal kink mode is increasingly sensitive to changes in
the plasma rotation for increasing A, = (Pp.) / <Ph||>. The stability analysis of scenarios
corresponding to those employed in JET and PDX highlight this. The NBI sawtoothing
discharges in JET are expected to be only moderately sensitive to differing plasma rotation,
since for the Octant 4 NBI system it is found that A, ~ 0.7. This can be explained by not-
ing that for such a regime the dominant passing fraction of ions strongly stabilize hot fluid
potential energy terms, and these terms are independent of plasma rotation. In contrast,
an injection angle equivalent to that used in the PDX experiment yields A, ~ 2, and the
resulting dominant trapped fraction significantly reduces hot ion stabilization of the kink
mode when plasma rotation is taken into account.

The kinetic contribution employed in this paper is also compared with the widely used
analytical expression for slowing down alphas defined in the complete sawtooth model [5].
Recently, the latter expression has been employed to model the kinetic response of NBI in
JET [15]. For the cases detailed it is found that the kinetic expression employed in the
present paper is larger than that of Ref. [15] by a factor of 1.4 in the limit of isotropy, and
(Wman) > (@, AQg). The difference in values is found to be principally due to employing an
accurate expression for (wy,qs) in the present paper which includes the effect of finite shear.
However, it is important to note that the shear also enters the internal kink dispersion
relation through the ideal growth rate v; = —e23Y/277'6WsT'. In contrast to the present
paper, this s; ' dependence is included in the normalization of the §WW expressions of Ref.
[5]. The s;* variation of 7; has been shown [15] to be fundamental to triggering the onset

of sawteeth in NBI discharges in JET. For high power discharges the relevant corresponding
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internal kink instability threshold is found to be that of the resistive mode [33,5]: ~; >
—p/Ta, where 74 is the toroidal Alfvén time and p the ion Larmor radius normalized with
r1. For typical values of the shear, the s7' variation in 7; is more important than the
variation of (Wyq4n(s)) during the ramping of the shear prior to the sawtooth crash.

It is of particular interest to consider why sawteeth are generally smaller when heated
with NBI than with ICRH. One important reason that emerges from the present paper is
linked to that of Ref. [4] which highlighted the importance of the relative size of the magnetic
precessional drift (wy,q). Taking JET for example where the plasma rotation is usually in
the co-current direction and typically 15kHz in NBI heated plasmas, it is found that the
differential rotation AQg is similar in size to (Wman), and collectively much greater than
@. Consequently this ordering reduces the ratio (w., + AQr — @)/((Wman) + AQr — @),
relative to that for ICRH minority plasmas which is of the order w,/ (Wman) ~ €. The
latter follows because ICRH ions are much more energetic than those of NBI such that if
any differential plasma rotation exists it will be ignorable compared to the toroidal magnetic
drift precession frequency. Perhaps more importantly, the trapped fraction of ICRH minority
ions is much greater than the trapped fraction of NBI ions. While predominantly passing
ion populations have been shown to be stabilizing to the internal kink mode, populations
with large trapped fractions stabilize more effectively in static plasmas. The net effects of
anisotropy and plasma rotation can result in 6W}, being a factor of two smaller for the case
of NBI than for ICRH. This is indicated by comparing 61, in Fig. 7 (a) with AX = 0.5
and Qo = 15 kHz for the case of NBI with that of Fig. 7 (b) with AXA = 0.5 and AQg =0
for ICRH. This assumes that Eq. (13) with A = 0.94 and A\ = 0.5 can be considered
an approximate representation of the ICRH fast ion distribution function, and that (P, (r))
for NBI and ICRH are identical. In reality the large fast ion pressure gradients usually
obtained in the localised heating scheme of ICRH can further inflate the effectiveness of
sawtooth stabilisation. The following parameter, defined similarly to /,(r1), can be used as
a measure of the fast particle contributions of contrasting heating schemes:

2 1 r\3/2 0 (P,
B, = ,UOZ/O dr (_) { h>’

B2é2 1 or

where 0W,, = 8,/ (37(261)"/2) for =1, s =0, n = 0, (Wman) > @ — AQg and an arbitrary
isotropic distribution function.
The analysis presented in this paper has been made tractable by deploying inevitable

approximations such as an expansion in the inverse aspect ratio. It is important to point
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out that the empirically relevant quantity is the local inverse aspect ratio at the inversion
radius, which is in general much smaller than unity. Moreover, unlike the toroidal and
shaping contributions to the internal kink mode potential energy, the kinetic and anisotropic
fluid contributions do not depend sensitively on the detailed structure of the eigenfunction,
which itself is resolved only by taking into account toroidal and shaping effects [20,21].
Another reasonable approximation is the assumption of zero orbit widths for the NBI ions.
It is noted however that an investigation into the stabilizing role of more energetic particles
such as alpha or ICRH populations requires finite orbit widths to be taken into account.
Finally, further study would self-consistently solve the dispersion relation for modes away
from marginal stability and look at the effect of plasma rotation on fishbones.

In summary, the anisotropic fluid contribution to the internal kink mode is stabilizing
for predominantly passing populations (P > P,1) and destabilizing for predominantly
trapped populations (P, > Py). As a consequence the total fast ion response including
the zero frequency kinetic contribution [4] is found to vary only moderately with respect
to anisotropy. For the NBI distribution of JET where Py, /P, ~ 0.7 the anisotropic fluid
contribution is as large as the kinetic contribution, and the total fast ion response is around
seventy five percent of that which would be obtained for P, / Py > 1. Both co and counter
toroidal plasma rotation with differential frequency |AQg| ~ (Wpan) can significantly reduce
the kinetic contribution to stability. It is seen that counter-rotation has the greatest effect by
impeding the conservation of the third adiabatic invariant [4]. However, the anisotropic fluid
contribution is unaffected, and as a result the effect of plasma rotation is most important for
near-perpendicular injection whereby P, > Pj|. For the case of JET where the injection
angle is around 45°, typical co-rotation frequencies of around 15 - 20 kHz reduce only
moderately the fast ion contribution to stability. While toroidal plasma rotation will not
significantly modify the fast ion response of particles more energetic than those of NBI,
anisotropy is clearly a relevant feature of both NBI and ICRH. However, that the fast
particle contribution to the internal kink mode is only moderately sensitive to anisotropy
encourages employing auxiliary heated ions to predict the effects of isotropic alpha particles

in ITER.
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APPENDIX A: KINETIC AND ANISOTROPIC FLUID POTENTIAL ENERGY
TERMS

The following expressions for the contributions to W are valid for any distribution func-
tion Fj(&, a, 7). It is usual that only the minority fast ion species are distributed anisotropi-
cally, and for this reason the fluid terms described below are written in terms of F},. However,
if the core plasma is also anisotropic, the total anisotropic fluid expression of Eq. (7) is given
by W4 = 3°; 0W;;, where in this case j could denote electrons, thermal ions and fast ions.

As discussed in Sec. II the hot fluid contribution 6W,,; and Mikhailovskii’s [10] cor-
responding approximate definition §W}){ are defined respectively in Eqs. (12) and (8).
The radial integral contained in (5W,§‘j{ can be integrated by parts so that it depends on
<PhL + Py + C> and not its derivative. If (P,) = <PM + Ph||> /2 is a parameter of the
distribution function, Eq. (8) requires only (C}) to be evaluated. On defining the pitch
angles k? = (1 — aBy(1 — €))/2aBge for trapped ions and y* = 1/k? for passing ions, the
distribution function can be written as F, (&, k%, 1) or F,,(€,%?%, 7). To leading order in € the

poloidal orbit average of C}, can be written:

1/2K(k2)Fh(57 k2a T) /1 d 261/2y4K(y2)Fh(87 y2a T)
0

o0 1
_ 3/2 2¢
(Ch) = ~20m ||~ d € l/o S T T 7+ 2 — )2

(A1)

Note that for an isotropic distribution (for which P, = (27/2/3)mmy, [ d€ £3/?F}) the contents
of the square bracket of Eq. (A1) is 25/27/15 for diminishing e. It is then clear that C), =
—2P;, and hence 0W;)f = 0 as required. If (P,) is not a parameter of the distribution function
then it is possible to evaluate (P, ) and <Ph|‘> in a similar way to that of Eq. (A1l).
The anisotropic fluid term of Eq. (12) can be written as:
SWis = 22202y, By R2 (%)2 /0 Cdrr /0 T g g /0 B w N 21, + 1],
(A2)
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where the partial radial derivative in F}, must be for constant £ and p (and hence «), not for
constant £ and k2. In addition I; corresponds to the contribution from the parallel pressure,

and I, from the perpendicular pressure. I; and I, are defined as follows:

I = ?{de( )cosH\/l—ozB and I, = fdﬁ (B )cos&\/lil% (A3)
o —

The pitch angle integral for trapped ions is defined in terms of k? with the result

t 95/2,.2 €o 3/2 221t (e, k%) + I3(e, k?) OFW(E, K%, 1)
Wi, = mR( )/drr/ de € /d TR "

(A4)

The poloidal integrals of It and I{ are evaluated upon expanding in €. The resulting terms

involve integrals of the type [i/? désin™ ¢y/1 — y2sin®¢ and [/* desin™ #/1/1 — y%sin? @,

where n is an even integer, which in turn can be written explicitly in terms of complete

elliptic integrals of the first and second kind [37]. The result is:

t 2y 2 2 2 tp2
e k) = [1+e(2k2 —1)]'/? (e) Gk ), (45)
where ‘2" denotes 1 or 2 and
t 2 2e 2 2 2 2 2
Gl (e, k?) = ( - ) (1= KK (R) + (287 = )E(R)] + 0(e2), (A6)

2
Gl(e, k?) = 2B(k?) — K (k) + (g) (1 — 4k K (K?) + (8k* — ) E(k*)] +0(e?). (A7)
The pitch angle integral for passing ions can be written in terms of y? with the result

Wiy =2 By ( ) [Fare [ d553/2/ ay 21 EV) + B ") OF(E, v 1)

y+€2_y)]2 or E,u
(A8)
Expanding I? and I? in € gives:
2 2\1/2
IP(e - GP(y?, 1), A
)= g (o) ) (49
where ‘2" denotes 1 or 2 and
2 2¢ 2 2 2 2
Gter) = () [ - 1B - 20— K7
—~ (f;;) [(4y* —120% + 8)K(y*) + (7y* + 8y — 8) E(y?)], (A10)
Gh(e,y") =2E(y") + (v* — 2K (y*) - (;2) (3" — 8y +8) K(y°) + (4¢* — 8) E(y”)]
-~ (1256;) [16(y* — 3y + 2) K (v?) — 2(y* — 16y* + 16)E(y?)] . (A11)
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Equations (A10) and (A1l) are exact given that B = By(1 — ecosf). Due to the range of
pitch angles allowed (y* can be small), it is found that in order to obtain W}, to reasonable
accuracy, all the terms in Eqgs. (A10) and (A11) are required for equilibria with realistic
€1. This is especially evident when comparing 5W}ff and (5W,$f which should be equal in
magnitude but opposite in sign if an isotropic distribution function is chosen.

Finally, the kinetic contribution to the internal kink mode is considered. Only trapped
particles appear. In terms of the pitch angle k%, Eq. (11) can be written

2 ~
Wik = —27/2mm (%) [ [ ;{—i | ae 55/2‘961; " l <::::J fig;ﬁ”w ,
(A12)

where K, = (2/¢)/2r~*K (k?) and I, = (2/¢)'/?r 1 F, with

/2 cos|2q arcsin(k sin ¢)]
T | Al3
e A T o

The hot ion diamagnetic and magnetic drift frequencies are defined:

mpq th/aT

Y = eBor OF, JOE and - (Wman)

_ mhqg
N Z@B()R()'f'

1
[Fl + 28.'/_‘-2 -1 (4—(]2 + fg)] s (A14)

where again the partial derivative in € is for constant u (not k?). The effect of fi-
nite shear arises through s = dIng/dlnr and finite beta effects [41] through n =
—2Roq*uo(d (P) /dr)/B2, with (P) the total plasma pressure. The functions Fj o3 are
defined accurately in terms of elliptic integrals in Ref. [13]. Also contained in the latter
reference is a fit of F, also in terms of elliptic integrals, which is very accurate within the
range 0 < k? < 1land 05 <g<1. Forg=1 s=0,7=0,@ =0 and AQp = 0,
it can be seen that §Wj, cancels with Wy, of Eq. (A4) if only the leading order term of
GY + G in Eq. (A7) is retained. The remaining hot ion contribution to the kink mode then
comes from 6W} + which is stabilizing to the kink mode, especially for predominately passing

populations.
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FIG. 1. Showing the square of the pitch angle width versus energy for different minor radius.
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FIG. 2. Log-Log plot showing a measure of anisotropy Ay = (Pn1)/ <Ph||> versus pitch angle
width AM for different central pitch angles Ag. A small inverse aspect ratio is chosen for these
curves, although A, does not change sensitively with respect to €. It is seen that the isotropic limit

Ap =1 is approximately reached for AX > 2 regardless of .
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FIG. 3. Polar plots of P, and PM with arbitrary units of magnitude. The angular variable in
the plot is 0, and the pitch angle width is chosen to be A\ = 0.5. (a) is for an injection angle of

14° (Ag = 0.94), (b) is for x = 30° (Ao = 0.75) and (c) is for x = 45° (Ag = 0.5).
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FIG. 4. Log-linear plots of the distinct components of the hot ion potential energy
. A . " M
oWy = 0Whps + 0Wpy together with 6W )¢ as a function of the pitch angle width AA: (a) is
for injection angle x = 45° (Ag = 0.5) and (b) is for x = 14° (Ag = 0.94). The degree of anisotropy

Ay, corresponding to Ag and AX can be observed in Fig. 2.
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FIG. 5. (a) Showing W p,, 0W u, (5th and 5Wth as a function of x for AX = 0.5. (b) Depicts

a linear-log plot of the corresponding degree of anisotropy Ay,.
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FIG. 6. Showing the real and imaginary components of SW py, for a very large range of central

toroidal plasma rotation Qg and for an isotropic distribution function (AX — oo). (a) is for mode

frequency @ = 0 and (b) is for @ = 1 kHz.
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FIG. 7. Plots of §W, with respect to the central toroidal plasma rotation Qg for three different

pitch angle widths. (a) is for x = 45° (A9 = 0.5) and (b) is for x = 14° (A = 0.94).
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