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Abstract.

Measurement of key plasma jet properties in a low pressure environment, such as

the Mach number, electron density and temperature, were performed using double

Langmuir probes and Mach probes. In particular, under-expanded jets are studied in

detail by performing complete mappings of plasma jet properties at 10 and 2 mbar

chamber pressure. These results show that the measured physical properties are

consistent with the jet flow phenomenology such as the presence of periodic expansion

and compression zones, the effect of the pressure and the location of the shocks. It

is shown in particular that for a highly under-expanded jet at 2 mbar, the Mach

number reaches 2.8 in the first expansion zone followed by a strong drop to subsonic

flow revealing the presence of a Mach reflection. The flow is accelerated further and

a periodic structure of compression/expansion cells is observed until the local static

pressure is in equilibrium with the surrounding pressure. These results contribute to

the understanding of the supersonic plasma jet behaviour at low pressure and can

be used to quantify the deviation from LTE. The extensive mapping of the measured

physical properties of the jet will also serve as input for modelling.
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1. Introduction

Low Pressure Plasma Spraying (LPPS) processes use a DC plasma jet expanding at

low pressure for fast deposition of dense coatings in a controlled atmosphere. The

LPPS technology is widely used industrially in particular in the aeronautics and medical

industries among others [1]. Unlike atmospheric pressure plasma jets, which have

been extensively studied experimentally and theoretically, the growth of interest in low

pressure DC plasma jets only occurred recently. However, the process development has

been mainly based on empirical methods and the basics of the physical mechanisms

that govern them still remain to be investigated. Further improvement of the processes

requires, in particular, the knowledge of physical properties of the plasma jet such as

the temperature, flow velocity and plasma density [2]. Low pressure plasma jets present

unconventional properties such as low collisionality, large dimensions and supersonic

flow. Therefore specific diagnostics have to be adapted to these conditions.

A diagnostic extensively used in plasma spraying is optical emission spectroscopy

(OES) which is non-intrusive and gives information about the plasma species. However,

determination of the temperature, for example, which is obtained using the Boltzmann

plot method, relies on the assumption of local thermodynamic equilibrium (LTE), which

is no longer satisfied at lower working pressure. The result of the deviation from LTE is

that the heavy particle, electron and excitation temperatures are different. Therefore,

different interpretations of OES measurements in plasma jets at reduced pressure have

been developed and are mainly used to evaluate the deviation from the LTE as a function

of the working pressure [3, 4, 5].

Another diagnostic tool, the enthalpy probe system, has been used in compressible

supersonic plasma jets but was limited to a pressure range down to 200 mbar [6, 7].

Recently, new interpretations of enthalpy measurements have been developed in order

to deduce the free stream jet properties from the stagnation parameter behind the shock

in front of the probe [8, 9] but the departure from LTE and the low gas sampling rate

make the enthalpy measurements impossible at lower pressures.

In parallel to the experimental research, numerous simulations have been developed,

in particular, two-temperature models for low pressure plasma jets, but they lack

experimental validation [10, 11]. On the other hand, plasma jets expanding at

pressures below 1 mbar have been extensively investigated both numerically and

experimentally [12, 13].

At present, the investigated pressure range to characterize plasma jets is either close

to atmospheric pressure or at very low pressure. All the above-mentioned limitations

show the need to develop a specific diagnostic tool for DC plasma jets applicable in the

pressure range from 2 to 200 mbar and which is independent of LTE. Electrostatic

probes could be one diagnostic of choice. They are widely applied in low density

plasmas, such as glow discharges, to measure the electron temperature and density.

They are rarely used in thermal plasmas because of the high heat-load and highly

collisional regime. However, measurements of electron density and temperature have
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been performed in transferred arcs and in atmospheric pressure plasma jets [14, 15, 16].

Since the seventies, electrostatic probes have been used to study the ionosphere by

measuring the electron density, electron temperature and in particular, flow Mach

numbers in plasma-space vehicle interaction using double crossed Langmuir probes

called Mach probes. For this purpose several theories were developed taking into account

the effects of a supersonic flow on the current collection such as wake effects or sheath

deformation [17, 18]. A compilation of the different cases is presented by Tan [19].

Measurements with double probes and Mach probes were performed for nitrogen and

argon plasma jets but at very low pressures (<0.8 mbar) in parallel with spectroscopic

measurements [20, 21, 22]. These plasma jets exhibit a strong expansion with the

creation of a normal shock and subsequent subsonic flow. In this case, the Langmuir

probes allow a local characterization of the plasma jet structure.

In our case, to characterize the jets expanding at low pressure, two dedicated

measurement techniques based on electrical probes have been developed and applied:

the double Langmuir probe and the Mach probe. The classical interpretation of the

current-voltage characteristic of a double probe can be used provided that the sheath is

thin and collisionless, which is the case in most of the conditions between 2 and 80 mbar

as will be shown below.

In this paper, the validity of these techniques is presented with a discussion in

terms of mean free paths, Knudsen number and collisionality showing the domain of

applicability of the electrostatic probe measurements. We present radial and axial

profiles of Mach number, electron density and electron temperature for different chamber

pressures between 2 and 40 mbar, different torch currents and argon gas flows. The axial

measurement positions correspond to the middle of the expansion and compression zones

encountered in these supersonic plasma jets. Complete mappings of Mach number,

electron temperature and density of the jet were performed for under-expanded jets.

2. Experimental set-up

The plasma jet is generated by a Sulzer Metco F4-VB gun with a conical nozzle of

6/12 mm inner/exit diameter. It is mounted on a 2-axis (radial and axial) displacement

system inside a 2 m3 vacuum vessel (figure 1). A 3-stage pumping system equipped with

pressure feedback controlled throttle valves regulates the chamber pressure in the range

of 2 to 500 mbar. Because of the high heat load and high collisionality of the plasma

jet at high pressure, only the pressure range between 2 and 40 mbar is investigated in

this study. The two main operation conditions used in this work are 40 SLPM of argon

flow with a 400 A current and 60 SLPM argon flow with a 600 A current giving a net

power in the plasma jet of 7 kW and 12 kW respectively.

The double Langmuir probe is made of two parallel tungsten wires 0.15 mm

diameter protruding 1.5 mm from a thin ceramic tube. The two wires are 1 mm apart

and the probe is quickly swept radially through the plasma jet by a rotating arm with

calibrated position to obtain radial profiles. The current is calculated by measuring the
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Figure 1. Schematic view of the experimental arrangement

voltage difference through a resistor (4 Ω) placed in the electrical circuit between the two

probes. The current circulating between the electrically floating probes once immersed

in the plasma jet is measured as a function of the applied voltage difference. The time

of immersion has been optimized as a compromise between a fast sweep to avoid probe

overheating or melting and a slow sweep to allow filtering out of the torch fluctuations

(300 Hz produced by the power supply, high frequencies due to the arc fluctuations and

flow turbulence). The optimal radial sweep time is found to be between 20 to 30 ms.

The Mach probe construction is similar to the double probe, except that the two

probes are mounted with their axes perpendicular to each other. Therefore one probe

is parallel to the plasma jet flow, the other being perpendicular [23]. Each probe is

polarized at the same potential in the ion saturation current region of the Langmuir

characteristic. The ratio of the currents collected by the two probes allows determining

the Mach number of the plasma flow as explained below. Before the measurements, the

probes were positioned so that each one was perpendicular to the plasma flow, ensuring

that the two probes have an equal current collection area. The optimal length of the

probes with respect to their diameter has been found to be 1.5 mm (l/d > 10) so that

the probes only collect ions through the lateral sheath surface [24]. The rotating arm

is long enough to minimize the angle between the parallel probe and the jet axis when

the probe is at the plasma jet fringes (see figure 1 (b)). At lower pressure, where the

plasma jet diameter is the largest, the maximum angle is about 5◦.

The data acquisition system which is the same for the two types of probes is a

LeCroyr digital oscilloscope (500 MHz). For the double probe, its 4 channels record

simultaneously, for each radial sweep, the probe current, the applied voltage, the voltage

corresponding to the radial position of the probe and a trigger signal giving the absolute

position of the probe. Since the applied voltage is constant for the Mach probe, the first

2 channels record the currents flowing in each probe, the position measurements being
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the same as for the double probe.

A fast 12 bit CCD camera (SensiCam Fast Shutter from PCO [25]), equipped with

an 18-108 mm zoom lens and a neutral density filter, is used to acquire images of the

total plasma jet emission for different torch parameters and chamber pressures allowing

a phenomenological description of the plasma jet flow topology. The camera is also used

to monitor the alignment of the electrical probe on the jet axis while performing the

radial sweeps (for this purpose it is positioned perpendicular to the probe rotating shaft

and the jet axis).

3. Probe theory and data analysis

3.1. Double probe

The use of double probes is more appropriate than single probes in plasmas which have

no reference electrode such as flowing plasma jets. The double probe system forms a

floating closed circuit, so that no net current drain is taken from the plasma. Moreover

the total current drawn by the probes will never be higher than the ion saturation

current. The probe current as a function of the applied voltage difference, called the

double probe characteristic (DPC), is used to determine the electron temperature and

electron density. The DPC can be expressed analytically using the relation presented

by Chen [26],

I = Isat tanh(eU/2kTe) (1)

where I is the current flowing between the probes, Isat the ion saturation current,

Te the electron temperature in Kelvin, k the Boltzmann constant, e the electron charge

and U the voltage difference. By differentiating this relation with respect to the voltage,

the electron temperature can be determined from the slope of the DPC at the voltage

U=0:

kTe

e
=

Isat

2 dI
dU

|
U=0

. (2)

The electron density can be determined by measuring the ion saturation current

drawn by the probes (which is equal to the ion current across the sheath surface).

Assuming a collisionless sheath and using the Bohm criterion at the edge of the sheath,

the electron density can be calculated with the relation presented by Hutchinson [27]

Isat = exp(−
1

2
)Asne

( Te

mi

)
1

2

(3)

where As is the area of the sheath surface, mi the ion mass and ne the electron

density. If the sheath is thin, which is the case here, the sheath area can be approximated

by the surface area of the probe. The value of the current at the intersection between

the ion saturation branch and the slope of the DPC at U=0 is used as the value of the

ion saturation current (see figure 2(b)) [28].
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Applying a periodically ramping voltage signal is not appropriate when performing

fast radial sweeps of the probe. Therefore, to keep a good spatial resolution, a static

potential is applied for one sweep of the probe in the plasma jet to obtain a radial profile

of the current. The voltage is then incremented from -20 to 20 V, for each radial sweep,

to obtain the different current radial profiles like shown in figure 2 (a). The double probe

characteristic in figure 2 (b) is built point by point for a specific radial distance which

is marked by a vertical line in figure 2 (a). This means that about 20 measurements are

necessary to reconstruct a double probe characteristic. With this method, any position

in the plasma jet radius can be investigated with no loss of the spatial resolution. The

data analysis is made with the commercial software MatLabr, which allows to merge

the data collected by the digital scope. As the measured current profiles show from the

natural torch fluctuations a numerical Butterworth filter is applied to the raw signal

before analysis.
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Figure 2. Filtered current radial profiles at various voltages from -20 to 20 V (a).

The corresponding DPC built for the radial position r=10 mm (b). Plasma conditions:

400 A current, 40 SLPM Ar, 10 mbar chamber pressure.
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3.2. Mach probe

The ratio of the currents collected by the two probes (I⊥/I‖) is used to calculate the

Mach number at different locations in the plasma jet. In this case the theory presented

by Murphree et al. is used [23]. The two probes are polarized at the same potential

in the ion saturation current region of the Langmuir characteristic. If the sheath is

collisionless and smaller than the probe radius, which applies in our case, and if the

current collection areas are equal for the two probes, the following relation can be used:

I⊥
I‖

=
2

π1/2
e−(v/cm)2

∞
∑

n=0

[(v/cm)n

n!

]2

Γ
(

n +
3

2

)

(4)

Where Γ(z) is the gamma function.

The ion Mach number can be determined, which is given by v/cm, v being the ion

flow velocity and cm the ion sound velocity. In this case, it is assumed that the ion Mach

number is equal to the neutral Mach number, which gives the flow Mach number.

If v > cm (supersonic flow), a correction factor to the current collection area of

the perpendicular probe has to be introduced, which accounts for a wake effect [23, 29].

In our case, the current flowing in the perpendicular probe is always smaller than the

parallel one, at any location in the plasma jet. This shows that the collection area of

the perpendicular probe is reduced by the wake effect. For a supersonic flow, the ion

drift velocity is high enough to avoid collection of the thermal ions that enter the sheath

downstream of the probe mid-plane. Therefore we assume that only the half of the

probe cylinder surface facing the plasma jet collects the ion current and we correct the

measured perpendicular current accordingly.

3.3. Discussion on the validity of the theory

The domain of validity of the theories applied to electrostatic probes can be evaluated

depending on the value of the Debye length λD, the probe dimension R (typically the

probe radius), the mean free path λαβ of the particle α through a field of particles β

and the Knudsen number Kn of the probe. Kn is defined by the ratio of the mean

free path λαβ of the considered species and the probe dimension R, Kn = λαβ/R. The

classical Langmuir probe theory is valid if λαβ � R � λD, which corresponds to a thin

and collisionless sheath. In order to verify this, the different conditions are considered

separately.

The condition R � λD corresponds to a thin sheath. The Debye length has been

calculated assuming LTE for different electron temperatures between 0.5 and 1.5 eV,

where the densities between 6 × 1016 m−3 and 1 × 1023 m−3 correspond to the working

pressures between 2 and 100 mbar. λD is in the range of 60 to 9000 nm and since the

probe radius is 75 µm, the condition R � λD is verified for the cases considered here.

The condition λαβ � R (Kn � 1), with λαβ = λin, λen, λei, ensures that the

classical Langmuir probe theory can be applied, in particular, λαβ � λD corresponds

to a non-collisional sheath. Furthermore, the condition λαβ � R, with λαβ = λnn, λin
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has to be satisfied to ensure that there is no formation of a shock in front of the probe

tip. For this purpose, the different mean free paths for pressures between 2 and 80 mbar

have been estimated. It has been found that λnn is the smallest of the mean free paths.

Therefore, to specify the domain of validity of the theory λ = λnn is considered in

this case. The condition λ � R is verified if the temperature is higher than 0.7 eV

for pressures between 2 and 80 mbar. It should be noted that the mean free paths

for pressures lower than 10 mbar are long, showing that collisions are less frequent

throughout the entire length of the plasma jet. This is an indication that such plasma

jets are in the transition regime discussed below. The combination of the two above-

mentioned conditions shows that λ � λD is satisfied for all the temperatures from 0.5

to 1.5 eV and pressure from 2 to 100 mbar, which means that the sheath is collisionless.

The absence of a shock in front of the probe implies that the measured values

correspond to the free stream properties of the plasma jet. This is no longer the case at

pressures higher than 40 mbar and for temperatures lower than 0.7 eV where the mean

free paths start to be of same dimension as the probe.

4. Results

In the first part of this section a qualitative description of the plasma jet flow

phenomenology based on imaging is presented for different chamber pressures and torch

parameters. The second part focuses on a quantitative characterization of the plasma

jet, based on the double probe and Mach probe measurements.

4.1. Plasma jet flow phenomenology

Figure 3 shows images of the plasma jet total emission for different chamber pressures in

the range of 10 to 80 mbar. For pressures above 30 mbar with the torch parameters given

in figure 3, the jet is over-expanded and is characterized by the fact that the chamber

pressure is higher than the nozzle exit pressure [9]. This results in the formation of

oblique shocks at the edge of the nozzle exit, converging to the jet axis. These shocks

turn the flow towards the axis which leads to a local compression. The local static

pressure in the compression zone is higher than the surrounding pressure leading to

an expansion of the jet downstream. The succession of compression/expansion zones

repeats until the local static pressure is in equilibrium with the surrounding pressure,

due to viscosity and turbulence [8].

For pressures below 30 mbar the jet is under-expanded and is characterized by an

expansion with a larger diameter than the exit diameter of the nozzle. The edges of the

first expansion zone are brighter than on axis because of the reflection of the expanding

flow by the cold dense surrounding gas. This leads to the creation of so-called barrel

shocks, visible on the plasma jet images. Once this reflection is passed, the plasma is

compressed on the axis where part of the kinetic energy is converted into thermal energy.

In this area, the local density and temperature increase which leads to an increase of the
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50 mm
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Figure 3. Images of the plasma jet at different chamber pressures. Current: 400 A,

gas flow: 40 SLMP Ar. In this case the ”design pressure” is 30 mbar

light emission. After this compression, the jet expands again because the local static

pressure in the compression zone is higher than the surrounding pressure. This process

of compression and expansion continues until the static pressure in the jet reaches the

chamber pressure.

50 mm

2 mbarMach disc

Figure 4. Image of the plasma jet showing the Mach disc for pressures below 6 mbar.

Chamber pressure: 2 mbar, 400 A torch current, 40 SLPM Ar flow

In figure 4, for pressures below 6 mbar the jet is highly under-expanded which leads

to a Mach reflection (Mach disc) downstream of the first expansion cell. This can bring

the plasma jet to subsonic velocities downstream of this region with an increase of the

local temperature and pressure.

At these low pressures, the jet dimensions are increased and the global light emission

is strongly reduced. The plasma jet appears more diffuse due to flow rarefaction

effects [12]. Here the plasma jet cannot be described by classical gas dynamics because

the flow is no longer in a continuum regime. Muntz et al. [12] have defined a rarefaction

parameter for jet exhausts to characterize the type of flow as a function of the exit

pressure, chamber pressure, temperature and exit diameter. In our case, the transition

regime occurs for pressures between 2 and 15 mbar and is characterized by the fact that

the shocks become thicker and diffuse [9]. If the pressure were reduced further, the shock

structure would disappear and the plasma jet would enter the scattering regime [12].

But in our case, this would occur only for pressures lower than 2 mbar, which are not
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studied in this paper. Plasma jets, operated at very low chamber pressures (<0.2 mbar),

generated by cascaded-arc torches, have been extensively studied and modeled [13, and

references therein]. Such plasma jets are characterized by a strong expansion with an

increase of the velocity and the presence of a subsequent normal shock and the absence

of the periodic compression/expansion structure. The flow also enters a so-called frozen

state where the plasma composition remains unchanged along the flow.

4.2. Electrostatic probe measurements in an under-expanded jet at 10 mbar

In this paragraph, probe measurements made at a chamber pressure of 10 mbar are

presented which show the typical trends of under-expanded jets for the pressure range

of 6 to 40 mbar. The torch parameters used here are a current of 400 A and a gas flow of

30 SLPM Ar. Figures 5 and 6 show radial profiles of Mach number, electron density and

temperature at axial positions corresponding to the middle of successive expansion and

compression cells which are indicated by vertical markers in figure 3. These positions

correspond to the local extrema of the axial light emission profile.
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Figure 5. Radial profiles of the Mach number at different axial locations at 10 mbar,

400 A, 40 SLPM Ar

The Mach number radial profile (figure 5) in the first expansion zone at z=35 mm

is broad and slightly hollow on axis. The two bumps correspond to the inner part

(r=3.5 mm) of the visible barrel shocks at the edge of the plasma jet where the flow

reaches Mach 2.4. The flow velocity is then reduced radially to Mach 1.8 which is still

supersonic because the shocks at the plasma fringe are oblique. In the compression

zone (z=60 mm), the Mach number radial profile presents a minimum on the jet axis.

Its value strongly drops down to Mach 1.2 close to the subsonic transition but the

flow remains supersonic, which implies that there is no Mach reflection. In this area,

where the local static pressure is higher than the surrounding pressure, the jet starts to

expand again, but due to the viscosity and turbulence, the plasma jet does not reach

the speed of the first expansion zone and the profile is rather flat at Mach 1.7 in the

second expansion cell (z=85 mm).
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Figure 6. Radial profiles of the electron density (a) and electron temperature (b) at

10 mbar, 400 A current and 40 SLPM Ar flow

The radial profiles of the electron density shown in figure 6 (a) reproduce the

structure of the jet topology characterized by the plasma jet light emission. The

electron density is broad and hollow in the first expansion zone, so is the radial intensity

profile. At the maximum expansion region the electron density is at its lowest value of

7 × 1020 m−3 on axis. It has to be noted that the maximum of the electron density is

located beyond the barrel shocks at r=5 mm whereas the Mach number already drops

on the inner side of the barrel shocks at r=3 mm. Downstream, in the compression zone

(z=60 mm), the electron density radial profile presents a peak on axis (1.7× 1021 m−3)

and is less broad than in the expansion zone because the jet diameter decreases due to

the oblique shock waves that turns the flow towards the axis. In the second expansion

zone the electron density is broad and does not present the two maxima at the edge like

in the first expansion zone, because there are no barrel shocks there. The value on axis

is about the same for the two expansion zones at 7 − 8 × 1020 m−3. On the other hand

the electron temperature radial profiles (figure 6 (b)) show a rather flat profile in both

expansion zones at values between 0.8 and 1 eV. However, it peaks in the compression

zone where the axial value (1.6 eV) is two times higher than on the plasma edge. There

is a substantial heating of the electrons in the compression zone.

Figure 7 shows axial profiles of the Mach number, electron density and temperature

and a direct comparison with the axial light emission of the plasma jet for the same

conditions as for figure 5 and 6. The Mach number clearly reaches its maximum when
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Figure 7. Axial profiles of the light emission and Mach number (a), and of the electron

density and temperature (b) at 10 mbar, torch parameters: 400 A, 40 SLPM Ar

the jet is at its maximum expansion which corresponds to the region where the light

emission is the weakest. Because of this expansion the axial electron density and the

electron temperature also reach their minimum at z=30 mm.

The oblique shock waves which allow the flow to change direction after the

expansion reflect on the jet axis at an axial distance of about z=44 mm. This region

corresponds to a transition zone between the expansion and the compression zone

(figure 3, 10 mbar). The Mach number strongly drops at this location and stays at

a minimum as far as z=60 mm which corresponds to the maximum of light emission of

the compression zone. The electron density and the electron temperature rise to their

local maxima because the flow is strongly slowed down and compressed.

If we consider only the axial values, the electron density increases with a strong

heating of the electrons from 0.8 eV to 1.6 eV, which is evidenced by the axial profile in

figure 7. The plasma jet is strongly compressed and slowed down at the same time with

a decrease of the Mach number from 2.4 to 1.2. Therefore a substantial fraction of the

kinetic energy is converted into thermal energy. Beyond that point, the flow velocity

already starts to increase till it reaches its maximum in the second expansion zone but

remains still lower than in the first expansion zone. Axially, the electron density and

temperature follow the structure of the plasma jet emission. However the Mach number

strongly drops already upstream of the bright visible compression zone, even though

the maximum of the Mach number occurs where the light emission is the weakest. This

shows that emission is not an accurate monitor of the flow properties whereas it reflects

the electron density and temperature changes quite well.

On the other hand, if we consider only the radial expansion in the first cell, there
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is also an increase of the electron density at the fringe but only with a slight increase

of the electron temperature from 0.9 to 1.1 eV (figure 6) and a slight reduction of the

Mach number. In this case, there is only a reflection of the plasma jet at the edge by

the cold surrounding gas with little conversion of the kinetic energy into thermal energy,

unlike what happens in the compression zone.

4.3. Plasma jet at very low pressure

A mapping of the Mach number is presented to describe the flow of highly under-

expanded jets. Figure 8 shows a contour plot of the Mach number along with the

corresponding image of the jet emission at a chamber pressure of 2 mbar and for the

same torch parameters as above.
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Figure 8. Total light emission (a) and Mach number iso-contours (b). Chamber

pressure 2 mbar, 400 A current, 40 SLPM Ar flow

The Mach number reaches its maximum at about 2.8 in the first expansion cell

at z=70 mm. After this expansion, the iso-contour plots of the Mach number present

straight narrow lines close to the axis which are perpendicular to the flow and correspond

to a strong drop of the jet velocity. A corresponding increase of the light emission is

observed around z=100 mm. This area corresponds to the location where the oblique

compression shock waves meet the Mach disc. In this case, the difference between the

local static pressure and the surrounding pressure is so high that the oblique shocks

are not sufficient to create an equilibrium between these pressures. Therefore a Mach

reflection occurs between the oblique shocks [30]. The plasma jet becomes subsonic after

crossing this normal shock. The subsonic region, delimited by the bold contour from

z=120 mm to z=150 mm shown in figure 8, corresponds to the first half of the bright
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compression cell which is centered at about z=150 mm. The subsonic area does not

cover the full plasma jet diameter, so that the plasma jet still remains supersonic in the

surrounding of the compression cell. The delta shape of the Mach number iso-contours

downstream of the subsonic area reveals the presence of oblique expansion waves. The

Mach number reaches its second local maximum value in the second expansion zone,

which is lower than in the first expansion zone. This zone present delta shaped iso-

contours, similar to the subsonic area, which in this case reveals the presence of oblique

compression shock waves. The flow is slowed down at the plasma edge and is higher on

the axis. Then a transition to a subsonic regime occurs throughout the whole diameter

of the plasma jet which is marked by the bold line at z=225 m, the flow remaining

subsonic downstream.
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Figure 9. Axial profiles of the light emission and Mach number. Chamber pressure

2 mbar, 400 A current, 40 SLPM Ar flow

The Mach number and the light emission axial profiles for the same plasma

conditions plotted in figure 9 confirm these effects. The Mach disc is evidenced by

the first peak of the light emission at z=100 mm and the middle of the compression

zone by the second peak at z=150 mm. The drop of the Mach number is not as steep

as in the 10 mbar case and extends over a region of 15 mm (4 mm at 10 mbar). The

thickness of the shock would increase if the pressure was further reduced and the shock

would even disappear at lower pressure if the jet was in the scattering regime. The

subsonic region is clearly visible between z=115 and z=145 mm. At z=150 mm, in the

middle of the compression zone, the Mach number already starts to rise.



Characterization of supersonic low pressure plasma jets with electrostatic probes 15

5. Summary and Conclusions

Radial and axial profiles of parameters of a low pressure argon plasma jet, such as the

Mach number, electron temperature and electron density were measured using double

Langmuir probes and Mach probes. Unlike other diagnostics, the electrostatic probes

do not rely on the assumption of local thermodynamic equilibrium, therefore they are

an appropriate diagnostic to study low pressure plasma jets which are known to be non-

LTE. Low pressure plasma jets also exhibit unconventional properties, such as large

dimensions, supersonic flow and shock structures, which the double Langmuir probe

and the Mach probe allow to explore locally.

The validity range of the classical Langmuir probe theory was verified with respect

to the work pressure and the operation conditions by estimating the Debye length,

the mean free paths and Knudsen numbers. It was shown that electrostatic probes

are a reliable diagnostic for plasma jets covering a pressure range below 80 mbar. At

higher pressures, the validity of the classical Langmuir probe theory is no longer satisfied

and dedicated theories have to be used in order to make correct interpretation of the

measurements. It was also shown that at pressures higher than 40 mbar, the mean

free paths are reduced to the dimension of the probe so that a shock can be created

in front of the probe, which would make the interpretation of the measurements of the

plasma jet properties more difficult. It was shown that under-expanded plasma jets

at lower pressure can reach Mach 2.8 with the creation of a Mach disc after the first

expansion. Moreover, for highly under-expanded plasma jets, a subsonic region can be

created downstream of the Mach disc when the torch current and the gas flow are low.

It was also shown that the measured physical properties are consistent with the jet

phenomenology such as the presence of expansion and compression zones, the effect of

the pressure and the location of the shock waves.

In the pressure range studied, different regimes of the plasma jet exist: for pressures

lower than 30 mbar, the plasma jets are under-expanded, above 30 mbar they are over-

expanded. At pressures below 6 mbar, the plasma flow becomes rarefied, therefore

classical gas dynamics can no longer be applied.

The results presented in this paper contribute to the understanding of the

supersonic plasma jet behavior at low pressure and can be used to quantify the deviation

from LTE. The extensive mapping of the measured physical properties of the jet will

also serve as input for modelling.
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