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ABSTRACT 

Experiments on the TCV tokamak have shown that rapid vertical movement of diverted ELMy H-mode 
plasmas can affect the time sequence of Edge Localised Modes. The effect is attributed to the induction 
of an edge current during the movement of the plasma column in the spatially inhomogeneous vacuum 
field of a single null configuration. In TCV the fast vertical movement is provoked by the positional 
control coils inside the vacuum vessel, however it is argued that a similar effect might be produced in 
larger devices only using poloidal field coils external to the vessel. A simple model, which includes 
plausible elements of the dynamical behaviour of the edge pressure gradient and edge current, which 
together dictate the MHD stability of the discharge against edge-localised, current-driven modes, is used 
to reproduce some of the features seen in these experiments. 

1. INTRODUCTION 

In tokamak plasmas, the so called high confinement mode (H-mode) is frequently 

accompanied by bursts of MHD activity and deuterium light (Dα) emission, known as edge 

localised modes (ELMs), and H-modes of this type are termed ELMy H-modes [1]. ELMs are 

momentary breakdowns in the H-mode edge transport barrier, and result in the pulsed release 

of up to 10% of the stored plasma energy. The plasma density in an H-mode without ELMs  

(a so called ELM-free H-mode) is generally non-stationary, and can rise uncontrollably until 

the plasma disrupts. The cyclic degradation in confinement provided by ELMs therefore has a 

regulating effect on the particle balance, and allows stationary H-mode operation. ELMs are 

also useful for removing impurities that build up in the plasma interior, and will aid the 

removal of He ash in a working reactor. These beneficial properties of ELMs have resulted in 

the adoption of the ELMy H-mode as the basic operating scenario for ITER. However, ELMs 

have one serious drawback: the projected energy released per ELM in ITER generates an 

unacceptable heat load on plasma facing components. For this reason considerable effort 
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worldwide has gone into investigating the ELM phenomenon, and ways in which the 

damaging effect of ELMs could be ameliorated.  

An important characteristic of ELMs is that the energy released per ELM scales with the time 

interval between ELMs [2, 3]. This suggests that the most damaging ELMs may be avoided if 

a high ELM frequency (felm) can be maintained. Hence it is interesting to consider ways in 

which MHD modes that lead to ELM events may be actively destabilised. It has been 

proposed that exceeding the MHD stability limit for coupled Peeling-Ballooning modes, 

which is a function of the edge pressure gradient (∇pedge) and the edge current density (jedge), 

is responsible for triggering ELM events [4,5]. We therefore seek reliable ways to externally 

perturb these edge parameters in order to trigger ELMs. The motivation for such a study is 

twofold: firstly to investigate the engineering goal of externally controlling the occurrence of 

ELMs, and secondly to gain insight into the physics and dynamics of the ELM cycle using a 

perturbative technique.  

This paper reports a recent attempt on TCV to apply electromagnetic perturbations that 

modulate the edge plasma current density and thereby modify the inter-ELM interval. A 

similar approach to controlling the occurrence of ELMs has previously been investigated in 

the Compass-D tokamak [6] using sinusoidal modulation of the ohmic transformer current. 

This study showed synchronous modulation of the ELM activity, with ELMs occurring in 

bursts only during the positive induced loop voltage part of the modulation cycle. The 

modulation frequency, around 50 Hz, was such that many ELMs occurred during one 

triggered burst. However, it was established during the work that the ELMs could indeed be 

driven unstable by a positive loop voltage, attributed to the increased edge current 

destabilising the peeling mode. During this work on Compass-D, the density rise during the 

otherwise ELM-free phase was reduced by a factor of 5 [6]. 

The work in this paper differs from the work on Compass-D in two respects. Firstly, 

modulating the surface loop voltage using the PF coils outside the TCV vacuum vessel using 

the ohmic transformer coils or the shaping coils did not give interesting results, probably since 

TCV has a significantly longer vacuum vessel L/R time than Compass-D, although some 

slight effects were seen on otherwise ELMing H-modes. Secondly, the new triggering method 

employed on TCV targets specific ELMs, whereas Compass-D showed a change in the 

general ELMing pattern. 
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On JET [7] the effect of ramping the current was also seen to influence the ELMs. 

Recently, another approach aimed at triggering individual ELMs has been investigated on 

ASDEX Upgrade [8] using shallow pellet injection to modify the edge profiles. In this case, 

individual ELMs were also targeted and regularly triggered. 

Cyclic perturbations arriving at the edge from sawtooth crashes in the plasma interior have 

also been shown to have a synchronising effect on the ELM cycle, with the ELM frequency 

locking to the sawtooth frequency or its harmonics [9].  

The presentation of this paper is as follows. In Section 2 we present the details of the 

experiments performed on TCV to trigger ELMs using external magnetic perturbations. It is 

argued that these perturbations couple to the ELM cycle causing synchronisation by 

modifying the edge current density. Section 3 presents estimations of the effect of the external 

perturbation to the edge plasma current density using a simple calculation, and also a detailed 

simulation of the plasma interaction with the vessel and control coils. Comparing our 

observations with a detailed model of the evolution of ELMs is a challenge beyond the scope 

of this paper and in Section 4 we limit ourselves to comparing our observations with the 

behaviour of an illustrative model containing some of the ingredients of a full dynamical 

ELM model. In Section 5 we consider whether this experiment may be scalable to large scale 

devices such as ITER, and in Section 6 we present our conclusions. 

2. THE EXPERIMENTS AND RESULTS 

In this set of experiments, a single null diverted, ohmically heated plasma was chosen as the 

standard condition with an elongation κ = 1.74, triangularity δ = 0.57, plasma current IP = 400 

kA, line average density ne = 6.5×1019 m-3 and ion grad-B drift in the unfavourable direction. 

Under these conditions a stable ELMy H-mode phase was consistently reproducible with an 

average ELM frequency felm ≈ 250 Hz and typically lasting from t = 0.4 to 1.4 seconds, where 

t is the time after discharge initiation. The features of these TCV ELMy H-modes have 

predominantly, though not exclusively Type III characteristics. 

Figure 1 shows a cross section of the TCV vacuum vessel and the locations of the various 

poloidal field (PF) coils. The first and most obvious way to try to modulate jedge was to 

modulate the voltage applied to the ohmic heating transformer coil (labeled OH in Figure 1), 
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in order to induce perturbations in the surface loop voltage. However the amplitude and 

frequency of such perturbations are limited by both the coil amplifier voltage and the filtering 

effect of the stainless steel vacuum vessel. TCV has an unusual advantage of being equipped 

with a set of coils internal to the vacuum vessel (labeled G coils in Figure 1) that are powered 

by a “fast” power supply with a bandwidth approaching 10 kHz. Two sets of three turns are 

located inside the top and bottom outer corners of the rectangular vessel, with opposing 

toroidal current directions to produce a purely radial field on the vessel midplane.  

Single null divertor plasmas are by nature up-down asymmetric. In normal TCV operation the 

discharge is usually shifted with respect to the vessel midplane. Driving the G coils therefore 

has two direct effects: 1) a net surface loop voltage is induced when the plasma is closer to 

one set of G coils than the other; 2) the vertical motion of the plasma caused by the time 

varying G coil currents and the induced vessel image currents will generate an edge current 

because of the up-down asymmetry of the vacuum field. 

The G coils are used for vertical stabilisation of the plasma position. The drive signal to the 

coil power supplies is provided by a feedback control system based on magnetic 

measurements. A series of pulses of 1ms duration, with a variable delay between pulses, was 

injected into the vertical stabilisation feedback loop. This perturbation to the feedback loop 

resulted in spike - like pulses in the G coil current up to 2 kA (peak to peak), illustrated in 

Figure 2. The vertical position stabilisation is a closed loop system that reacts to the 

perturbation as a result of the movement of the plasma current itself. The closed loop response 

to the perturbation provides a complex signal on all of the coil voltage, coil current and 

plasma position signals. Figure 2 defines the inter-pulse interval ∆tD, the inter-ELM interval 

∆telm and the time delay from each pulse to the next ELM  ∆tp→elm. Figure 2 also shows the 

effect of an ELM on the closed loop response. The ELM causes a vertical jump corresponding 

to the change of poloidal beta and inductance in the inhomogeneous vacuum field. 

Figure 3 (left) shows an example of the first of a series of three TCV discharges. In discharge 

#20332 a constant amplitude pulse train was applied to the G coils with a delay between 

pulses decreasing from ∆tD = 7 to 3 milliseconds. The panels show the Dα timeseries 

(indicating the ELM activity), the G coil current, and the series of ∆telm, ∆tD and ∆tp→elm. The 

perturbed current in the G coils is of similar magnitude to the control system response to each 

ELM event. In this case, the ELMs appear to be unaffected by the applied perturbation. In 

particular, there does not appear to be any relationship between the ELM intervals and the 
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interval between pulses as it is swept during the discharge (indicated by the dashed line in the 

figure), nor is there any trend in the time delay from each pulse to the next ELM. The only 

exception is between t = 1 and 1.1 seconds, when the driver period ∆tD crosses the ELM 

period ∆telm, causing ∆tp→elm  to vary slowly over this time. 

Figure 3(right) shows the second discharge (#20333) in which the input perturbation was 

increased by a factor of 4, resulting in current spikes over 1 kA in the G coils. In this case 

∆telm increases well above its average unperturbed value when ∆tD is initially high, and 

decreases gradually below its unperturbed value as ∆tD is reduced. There are several instances 

where the ELM period clearly tracks the driving pulse intervals for significant periods. In 

particular, locking between ∆tD and ∆telm is observed over the following time ranges in 

seconds: 0.6-0.73, 0.74-0.79, 0.81-0.86, 0.88-0.94 and 0.98-1.11. This entrainment is 

momentarily broken a number of times in between these intervals, resulting in wide 

excursions of the ELM period from its local average value.  

It is important to note that the general scaling of ELM amplitude with ∆telm is preserved in the 

presence of the external perturbations, regardless of whether or not the ELMs are entrained. 

This is demonstrated by plotting the ELM amplitude against ∆telm, as shown in Figure 4 for 

discharge #20333. As expected, the ELMs occurring in the absence of the perturbation signal 

(dots) mark out a linear trend in this figure. Small, high frequency ELMs that give rise to the 

large range in ∆telm in this data occurred during non-stationary phases at the beginning and 

end of the H-mode. The ELMs that occurred as the external driver signal was swept from ∆tD 

= 7 to 3 ms (squares) show the same linear scaling of amplitude with ∆telm as that found in the 

absence of the perturbation. This suggests that if magnetic triggering can reliably reduce the 

maximum inter-ELM period, then the largest and most damaging ELM amplitudes should be 

avoided. 

A more illustrative way to observe correlations between the ELMs and the external driver is 

to plot the relative phase, defined for each ELM by  

D

elmp

t
t

2
∆

∆
π=φ →  1. 

Figure 5 shows the variation of φ with the 2π wrapping in phase removed, against the drive 

frequency (fD = ∆tD
-1) for discharges #20332 and #20333. In the absence of coupling the 
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phase smoothly ramps at a rate defined by the difference in frequency between the 

perturbation and the ELMs. This is illustrated by the dotted line in this figure, which was 

produced by taking a linear best fit of ∆telm from a preceding discharge with no perturbation to 

calculate the expected variation of the phase. The phase of the ELMs in discharge #20332 

(solid line connected by points) clearly follows this curve, confirming the absence of coupling 

in this case. The evolution of φ in discharge #20333 contrasts strongly, showing instead a 

staircase pattern, as the ELMs maintain a stationary phase with respect to the perturbation for 

extended periods, before abruptly slipping by 2π radians. These episodes of phase slipping 

correspond to the excursions in the ELM period in Figure 3c).  

The first three rows in Figure 6 show a detailed view of the closed loop response of the G coil 

voltage, current and the plasma position to the input perturbations, for three discharges: 

#20333, #20334 and #22768. In each case, the trace was produced by phase coherent 

averaging with respect to the perturbation times over a time interval from ∆t  = –2 ms to ∆t  = 

+4 ms, where ∆t = 0 corresponds to the onset time of each perturbation. A time window of at 

least 0.4 seconds was chosen for each discharge, which included a period where 

synchronisation between the ELMs and the perturbation was observed and avoided the time at 

which ∆tD crossed the unperturbed value of ∆telm. The last row in Figure 6 shows the observed 

distribution of ∆tp→elm from ∆t  = –2 ms to +4 ms for each discharge, which was taken from 

the ELM occurrences over the same fraction of the discharge. Note that discharge #20332 (not 

shown) has a flat distribution.  

Discharge #20334 repeated conditions of #20333, with a perturbation of the same amplitude 

as #20333, but with the polarity of the perturbation reversed. Entrainment similar to the 

previous discharge was observed in this case, although over a reduced range in fD. Discharge 

#22768 inverted the position of the plasma in the TCV vessel, and used a perturbation with 

the same sign as #20333. Figure 6 shows that the positive then negative perturbation caused a 

downward, then upward shift in the plasma position (∆z) in discharges #20333 and #22768, 

while the opposite polarity perturbation in discharge #20334 caused an upward then 

downward shift in the plasma position. The distributions of ∆tp→elm in each discharge show a 

single significant peak, indicating the coupling effect between the ELMs and the perturbation, 

however the timing of the peak with respect to the perturbation time varies.  For discharges 

#20334 and #22768 the peak coincides with the (respectively negative or positive) peak in IG 

and the leading edge of the excursion in ∆z, whereas for discharge #20333, the peak occurs 
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well after the peak in IG, and coincides with the trailing edge of the excursion in ∆z. The 

consistent feature between all three discharges is that the ELMs are most likely to occur when 

the plasma moves in a direction that gives rise to an increase in the edge current density – that 

is upwards when the plasma is in a single-null lower configuration, and downwards when in a 

single-null upper configuration.   

The sign of the edge current perturbation due to the plasma movement can be argued simply. 

The current in the poloidal field coils responsible for creating the X-point and the up-down 

asymmetry of the vacuum magnetic flux pattern has the same sign as the plasma current. If 

the plasma moves towards this current, Lenz’s law implies a negative surface voltage and 

hence a negative edge current will be induced. Consequently, an upward vertical movement in 

a lower single-null configuration will induce a positive edge current. This strongly suggests 

that the dominant effect of the G coil driver signal is to perturb the edge current by displacing 

the plasma vertically. Increasing the edge surface current has a destabilising effect on the edge 

mode stability [4,5], consistent with provoking the destabilisation of the modes responsible 

for causing an ELM.  

Figure 7 compares details of the frequency entrainment with the external drive for discharges 

#20333 and #20334. The synchronising effect is also visible in the evolution of the phase with 

drive frequency for #20334, which again shows stationary intervals interspersed with rapid 

ramps through 2π between steps. Dotted lines in the figure show the phase variation expected 

if no coupling existed between the ELMs and the driver during episodes where phase slipping 

occurs for discharge #20333. These curves were produced by simply shifting the “no 

coupling” case from Figure 5 vertically to overlay each phase slipping occurrence. In each 

case, the phase slipping in #20333 is faster than with no coupling. This implies that during 

these times the ELM dynamics are still affected by the perturbation even though the ELMs 

have lost synchronisation. In other words, the synchronising effect of the perturbation does 

not appear to be simply the provision of a discrete trigger event, which either leads directly to 

an ELM, or has no effect on the ELM dynamics if it does not. This is also indicated in the 

variation of ∆telm during the phase slipping episodes, shown in Figure 3c). If coupling 

between the ELMs and the perturbation was momentarily lost during one of these intervals, 

then ∆telm would be expected to simply return from ∆tD to a value close to the unperturbed 

average value (∆telm0), such that the size of the excursion in ∆telm would be roughly |∆tD - 
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∆telm0|. Instead, the excursions in ∆telm are shown to occur over a much wider range during 

each phase slipping event.  

Another interesting feature of Figure 7 is that many of the phase jumps during the initial part 

of the fD sweep (140-200 Hz) in these two consecutive discharges occur at similar 

frequencies. This correlation suggests that the momentary losses in phase lock might not be 

intermittent or random events, for example caused purely by the presence of noise in the ELM 

cycle, but may be an intrinsic property of the driven dynamical system.  

Additional experiments were carried out with intermediate perturbation amplitudes. Whether 

or not frequency entrainment took place in each case was ascertained by comparing the 

unwrapped phase of the ELMs during the perturbation with a control discharge in which no 

perturbation was applied, as illustrated in Figure 5.  In so doing, an estimate was made of the 

range in driving frequency over which the ELM frequency was affected. This was compared 

with the peak to peak amplitude of the rate of change in plasma position, which was 

considered to be the governing parameter, as shown in Figure 8. In this figure, the driving 

frequency is normalised by the unperturbed ELM frequency during each discharge, which was 

estimated from the ELM time intervals before and after the perturbation was applied. This 

figure shows that the range of driving frequency over which the ELMs are affected increases 

as the perturbation level, estimated by the plasma velocity, is increased.  

3. ESTIMATION OF THE PERTURBED EDGE CURRENT 

An estimation of the perturbation to the edge current density in response to the externally 

induced vertical displacements may be made as follows. 

The surface loop voltage Vsurf is given by 

extextextLsurf tdt
d)t(VVV ψ∇⋅−ψ

∂
∂

−=ψ−=δ+= u  2. 

where, VL and δV are the steady and perturbed surface loop voltages respectively, ψext is the 

external poloidal flux and the brackets indicate averaging over the last closed flux surface, 

which moves with a vertical velocity u = uz(t) ẑ  in response to the pulsed currents in the G 

coils. The external poloidal flux can be written as  ψext = ψΩ + ψG, where ψΩ is the poloidal 

flux from the E, F and OH coil currents in TCV, the rate of change of which gives rise to VL, 

and the fluxes ψG are contributions from the G coil currents and their vacuum vessel image 
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currents. Assuming that the plasma moves as a rigid body and that ψΩ >> ψG, the level of 

perturbation to the ohmic component of the edge current density can be estimated by: 





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


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  3. 

The average of ∂ψΩ/∂z over the last closed flux surface was carried out numerically for the 

reconstructed equilibrium of discharge #20333 (shown by the dashed line in Figure 1) and the 

peak uz and VL were taken from diagnostic measurements. This yields an estimate for the 

perturbation caused by the second term in the above equation of up to 10%. That is, we expect 

variations in the edge current density of up to 10 % of the steady state ohmically driven 

component to be produced by vertical displacements alone.  

The first term, describing the directly induced currents from the G coils and their vessel 

images, is much more difficult to estimate simply, and we must instead use the DINA code 

[10], which numerically solves the free boundary equilibrium problem, including the transport 

of poloidal flux and thermal energy, assuming instantaneous force balance. DINA was 

previously equipped to model the full TCV plasma control system, including all PF coils, 

power supplies and diagnostics and was convincingly validated for stimulation of the external 

PF coils [11] and for forced VDEs [12]. In these present simulations, the experimental voltage 

waveforms were applied to the G coils with all feedback loops closed as in the experiment. A 

high radial resolution (50 radial grid points) was used to observe the effect of the inward 

diffusing current perturbation. The full simulation lasted for 0.2 seconds and the perturbations 

were applied each 10 msec. Different step sizes led to similar conclusions. In order to pick out 

the typical effect of the imposed perturbations, in the presence of sawtoothing and the slow 

action of the shape control, the perturbation cycles were coherently averaged to increase the 

signal to noise ratio. 

Three discharges already discussed were simulated. Discharges #20333 and #20334 provide 

the reference points with a SNL divertor configuration in the upper part of the TCV vacuum 

vessel (z=+0.23m) and both signs of voltage perturbations. Discharge #22678 is a similar 

equilibrium, but inverted to have a SNU divertor configuration in the lower part of the vessel 

(z=-0.23m).  

The results of these three simulations are shown in Figure 9. The edge current inverts sign 

with the sign of the perturbation, and has the opposite sign when the equilibrium is inverted. 
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This is expected for both the direct induction of an edge current by asymmetry with respect to 

the G coil pair and for the speed in the vacuum field gradients. However, a further simulation 

with a roughly centred equilibrium, in which the first mechanism is smaller, showed similar 

perturbations to the edge current, suggesting that the dominant mechanism is the poloidal 

field asymmetry. No attempt was made in these perturbations to model the H-mode edge 

pedestal. The edge current is significantly modified, by several tens of percent, although this 

perturbation is reduced to typically 5% at radial grid points deeper into the plasma. 

Comparing the time of maximum ELM probability in Figure 6 with the simulation in Figure 

9, the ELM probability peaks where the edge current perturbation is indeed positive, as 

expected. In the case of # 20333, this is well after the voltage perturbation when the plasma 

recovers by moving vertically. For #20334 and #22768 it is on the leading edge of the 

perturbation. 

The DINA simulations confirm the variation of the edge current as the plasma moves 

vertically, and also show the presence of a shorter edge current pulse in phase with the G coil 

current. The current induced by the motion is calculated by DINA to be of the same order of 

magnitude as the simple estimate proposed. The action of the closed feedback loop, the 

distortion of the magnetic surfaces and the inward diffusion of the driven edge current 

together provide a complex behaviour which might be simpler to study with modified 

perturbation waveforms, the object of future study on TCV. 

4. AN ILLUSTRATIVE MODEL OF MAGNETIC TRIGGERING 

Up to this point we have made the simple interpretation that positive perturbations in the edge 

current may destabilise MHD activity and thereby trigger an ELM. This is based on the 

observed correlation of the ELMs with vertical motion in the direction that acted to increase 

the edge current density. In these experiments, frequency entrainment was found to occur for 

driver frequencies both above and below the natural ELM frequency. To explain the latter, the 

perturbation must also periodically have a stabilising effect on the edge conditions, in order to 

cause a delay in the occurrence of the next ELM. This may be provided by the periodic 

reduction in edge current density caused by movement of the plasma in the opposite direction.  

It is interesting to consider whether a simple model of the ELM cycle can reproduce any of 

the observations made during these experiments, such as frequency entrainment, and the 

intermittent losses in entrainment or “phase slipping”. To this end we consider a simple way 
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by which the edge current density J and pressure gradient p′ at the H-mode pedestal may be 

dynamically linked. By including an abrupt drop in p′ when a boundary in (p′,J) space is 

exceeded, which symbolises the effect of crossing an ideal MHD stability threshold, 

relaxation oscillations representing ELMs are obtainable. The aim is to investigate the effect 

on these relaxation oscillations of adding a cyclic perturbation Jext to J.  

The first simplification made in the model is to consider a small layer of fixed width ∆x just 

within the separatrix, so that p′ is simply given by p/∆x, where p is the pressure at the inner 

side of the layer. This allows p to be considered as a dynamical variable rather than its spatial 

derivative. The model equation for p is: 

( )( ) p)J,p(Wt1Q
dt
dp

in −σε+=  4. 

where Qin represents the average power flux into the edge layer and σε(t) represents 

fluctuations of amplitude σ in the power flux. No attempt has been made to model these 

fluctuations self-consistently. Instead, we have tried different functions ε(t): either a 

superposition of several discrete frequencies or a Gaussian noise signal. As will be shown 

later, the results are not critically dependent on the model chosen for ε(t). The function W(p,J) 

is chosen proportional to an ideal MHD instability growth rate: 

( )
MHD

crit pJJ
)J,p(W

τ
−

=  5. 

if J > Jcrit(p), and 0 otherwise. The function Jcrit(p) parameterises the marginal stability 

boundary and is chosen be a parabolic function resembling that proposed by a detailed MHD 

analysis [4]. It is shown by the dotted curve in Figure 10a). The physical idea is that the 

triggering of an ideal MHD instability causes a loss of the energy content in the layer on a 

timescale of the order of ideal MHD phenomena, τMHD, which is a constant in the model.  

The edge current density is modelled by: 

( ) ( )
R

Dext0 fJJpJ
dt
dJ

τ
+−

=  6. 

This equation simply models the return to steady state value Jo(p) of J over a timescale for 

current redistribution τR , which is a constant in the model, and where Jext is an external 
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perturbation at a driving frequency fD. The equilibrium current density Jo is taken to be 

proportional to p′ (and therefore p in this model), which would be expected if the edge current 

was dominated by the bootstrap current.  

When σ and Jext are zero, the equilibrium values of pressure and current (po and Jo) may be 

found by setting the left hand sides of equations 4 and 6 to zero, and the dynamical stability of 

the equilibrium can be evaluated by standard means. Regular relaxation oscillations 

representing an ELM cycle are obtained when the equilibrium is made unstable, for example 

by increasing τR above a threshold value. Figure 10a) shows an example of a trajectory in 

(p,J) space of a relaxation oscillation, or model ELM, computed numerically from the above 

equations. The ideal MHD stability threshold is marked by a dotted line in the figure, and the 

equilibrium curves for dJ/dt = 0  and dp/dt = 0 are marked by dashed lines. Figure 10b) shows 

the evolution of J and p as functions of time, starting from the initial condition p = J = 0.1. 

The model ELM cycle in this case is characterised by a slow increase in p and J (with J 

lagging behind p because of the enforced time constant τR) until the ideal MHD stability 

threshold is reached, whereupon p rapidly collapses, producing the ELM event, until p is 

sufficiently low that the gains in equation 4 represented by Qin outweigh the losses (Wp), 

allowing the cycle to repeat. The time of an ELM is defined by the point at which p reaches 

its peak value. The period of the relaxation oscillation was found to decrease smoothly with 

Qin,, a behaviour typical of type-I ELMs.  

We show in Figure 10c) the time traces of –dp/dt and –dJ/dt for an ELM cycle. The quantity  

-dp/dt can be viewed as the energy flux out of the layer. It occurs in bursts which are 

reminiscent of the typical Dα signals seen in the experiment. Increasing the fluctuation 

amplitude level σ has the effect of increasing the level of random fluctuations in the ELM 

period around a mean value that is almost unchanged  as compared to the σ = 0 case.  

We consider now a perturbation Jext  = J1cos(2πfDt), with an amplitude J1 and a driving 

frequency fD  = 1/∆tD which is ramped slowly over a range that includes the average 

unperturbed ELM frequency felm0, in a similar manner to the experiment. The results of the 

simulations are shown in Figure 11, on the left hand column for J1=0.03 and on the right hand 

column for J1=0.1, with a fluctuation amplitude σ=0.1 for both. On the top row, Figure 11a), 

are the time signals for –dp/dt; the second row, Figure 11b), shows the sequence of time 

intervals between consecutive ELMs, with the driver ∆tD indicated by the dashed line and the 
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unperturbed ELM repetition time, ∆telm0=4.84, by the dotted line; the third row, Figure 11c), 

contains the sequence of time delays between the external current perturbation and the ELM 

time; the fourth row, Figure 11d) shows the unwrapped phase between the driver signal and 

the ELM time plotted as a function of the driving frequency.  

These results are to be compared with the experimental results of Figures 3 and 5. In spite of 

the simplicity of the model, the similarity with experimental measurements is striking. For 

small amplitude J1=0.03 (Figure 11, left) there is hardly any effect of the perturbation on the 

ELM time sequence, which stays fluctuating around the unperturbed value (b). The time 

delays (c) and the phase (d) do not feel a visible effect either. The structure seen in the time 

delays (c) around t=500 is simply due to the point in time when the driving frequency matches 

that of the unperturbed ELM. For a larger amplitude, J1=0.1 (right column), the effect of the 

current perturbation can be observed on all signals a)-d). There is a slight trend to decrease the 

average ELM amplitude as the driver frequency increases above the unperturbed ELM 

frequency, i.e. for t>500 (a). Between t=350 and t=800 the ELM sequence tends to 

synchronise with the driver perturbation with short time intervals for which the ELM times 

are seen to desynchronise. This is most clearly seen on the plots of time delays (c) and phase 

(d). For a driver frequency between 1 and 1.2 the phase exhibits phase “locking” intervals 

separated by phase “slipping” episodes. For a driving frequency between 1.2 and 1.7 the 

phase locks with small fluctuations, and for a driving frequency larger than 1.7 phase slipping 

events occur again. This behaviour is very similar to the phase slipping events found in the 

experiment (Figure 5). 

We have considered several variations of the above model. First, replacing the parabolic 

stability boundary with straight lines in (p,J) space does not have a crucial effect on the 

behaviour shown in Figure 11. Second, we have considered a modified expression for the 

quantity W: 

( ) ( ) ( )( ) EPPPBBB /1JpexpJpexpJ,pW τ+γ−β+α+γ−β+α=  7. 

This function takes a value close to 1/τE (where τE represents the energy confinement time 

between ELM events) when p and J are within the region of parameter space that is stable for 

ideal MHD (“Peeling- Ballooning”) modes, and exponentially grows with J or p when the 

stability threshold is approached and crossed. The idea is to model a confinement degradation 

as the system moves towards the stability limits.  Third, we have considered a Gaussian noise 
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signal for ε(t) instead of a superposition of sinusoidal signals. All these modifications were 

found to have a minor influence on the ELM time behaviour, and the conclusions drawn from 

Figure 11 still remain valid. Another interesting conclusion is that the ELM time sequence 

seems to be rather insensitive to details in the description of the ELM crash, for which the real 

physical processes are certainly quite complex.  

Figure 12 shows the modelled ELM period and the driver period versus time in the left hand 

column, and the unwrapped phase with respect to the driver signal versus time in the right 

hand column, for three cases (the top, middle and bottom rows) in which σ was set to 0, 0.05 

and 0.1 respectively. In each case the model of Eq.(4), (6) and (7) and the same noise 

sequence ε(t) were used. 

The top example shows that the unperturbed ELM period ∆telm0 is about 5.2 in this case, and 

that the noise free response of the model to the perturbation can be classified into two groups 

as ∆tD is varied. Firstly, asymmetric oscillations in ∆telm occur at a rate that decreases with 

|∆telm0 - ∆tD|, and corresponding step-like behaviour occurs in the phase for ∆tD > 6 and ∆tD < 

4.6. Secondly, perfect synchronisation of the ELM period with the driver period occurs for 4.6 

< ∆tD < 6 . The introduction of noise in the middle and bottom rows produces random 

variations in ∆telm both with and without the perturbation, as expected. Although the precision 

of the synchronisation is reduced, the average ∆telm still follows the scan in ∆tD. It is 

interesting to note that the boundary between the two classes of behaviour described above 

becomes increasingly blurred as the noise level is increased. This has the effect of causing 

isolated events where ∆telm undergoes a rapid excursion from ∆tD before returning, and the 

phase ramps through 2π radians. This behaviour is again very similar to the phase slipping 

events found in the experiment, in particular to discharge #20333. Specifically, isolated phase 

slipping events are found on either side of a period during which the phase is roughly flat 

(limited by the noise level) and ∆telm takes on a value close to ∆tD. The close repetition of 

phase slipping occurrences between discharges #20333 and #20334 however, suggests that 

the timing of these events are not determined by fluctuations due to noise. Of course we 

cannot exclude the existence of another non-linear model that produces similar behaviour in 

the absence of noise, in which irregularity in ∆telm is an intrinsic property of the model. 

While neither of these models have a claim to be a full description of the ELM cycle, the 

finding of similar behaviour in the reaction of both experiment and model to external 
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perturbations is significant, and provides some insight to the ELM dynamics. For example, 

the same classes of behaviour in the absence of noise are also found in classical non-linear 

models describing relaxation oscillations, such as the driven van der Pol oscillator. In this 

case, the asymmetric oscillations in the period are known as “periodic pulling” [13], and the 

phase and frequency variation may be described analytically. Our model results imply that 

this may be the root of the process leading to the phase slipping events seen in the 

experiments described.   

5. EXTRAPOLATION TO OTHER TOKAMAKS 

This new result indicating that it is possible to affect the triggering of ELMs raises two 

specific issues, namely the scaling to larger devices and scaling to tokamaks without a fast 

internal coil system.  

To consider the extrapolation from a small to a larger device, we consider the simple case of 

identical tokamak geometries, expanded by a geometrical factor KG. The toroidal magnetic 

field is independently increased by a factor KB. The typical timescale for displacement of the 

plasma equilibrium is independently increased by a factor KT, determined by the properties of 

the vertical position control system, the passive conducting structures and the PF coil power 

supplies. The electrical conductivity at the plasma edge is scaled by a factor KS as a result of 

changes to the underlying transport, probably dependent on the other factors. The following 

steps lead us directly to the change in the toroidal current at the plasma edge when the plasma 

moves by the same scaled distance in the vacuum vessel. 

To obtain the same safety factor at the scaled toroidal magnetic field, the plasma current 

scales as KG KB. The PF currents, which produce the same vacuum flux pattern, scale with the 

plasma current. The values of the scaled flux contours scale as the vacuum currents divided 

by the scale lengths, multiplied by the scaled surface areas, namely as KG
2KB. If the plasma 

moves by a given scaled distance, then the flux change scales in the same way as the flux 

contours. The surface voltage is given by the change in flux divided by the timescale, and 

therefore scales as KG
2KB/KT. The surface electric field scales as the voltage divided by the 

circumference, namely as KGKB/KT. The induced modulation of the current density at the 

edge of the plasma increases with the edge conductivity and the induced electric field 

variations, therefore it scales as KGKBKS/KT. For similar current profiles, the unperturbed 

current scales as KB/KG. The change in the edge current, normalised by the current on axis 
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therefore scales as KG
2KS/KT. This final result is consistent with a simple dimensional 

argument. 

As an example, we scale from these TCV experiments to JET. KG is 2.9/0.88 ~ 3.5. The 

pedestal electron temperature increases by roughly 2keV/0.2keV ~ 10, leading to KS ~30. The 

magnetic field scales as KB ~ 3/1.5 ~ 2. We assume that the timescale of the plasma 

movement increases with the square of the device size, as a first approximation, so KT  ~ KG
2

 

~ 10. With these assumptions, we obtain the desired result that the edge current variation 

should scale by a factor of 36. 

This result is surprising at first sight, since the first guess is that the electromagnetics slow 

down with increasing device size, so the driving terms would slow down. However, the 

dominant term is the increase in the edge conductivity, since we have assumed no skin-effect 

for the diffusion of the flux and no inductive term in the impedance of the edge current, for 

simplicity. For TCV this seems to be a reasonable assumption, whereas for JET this might 

have to be examined more closely. 

This encouraging result that the modulation of the edge current increases significantly for a 

larger tokamak naturally leads us to examine whether the particular feature used in these TCV 

experiments, namely the fast internal coils, would rule out this technique in tokamaks with 

only external PF coils. Generalising is more difficult, since the design of the control system 

for the vertical movement does not obey simple considerations like the ones used to scale the 

edge current modulation. The formulation proposed reduces the question to a simple one, 

namely how does the movement timescale scaling factor KT vary from device to device, 

especially when considering internal versus external control coils. 

The speed of the vertical position closed loop depends on the vessel thickness and the power 

supply limits, which do not have a physical extrapolation, but do have clear tendencies. 

Without reviewing the design details, scaling from TCV to ITER gives a factor of KG
2Ks ~ 

(6/0.88)2x(5/0.2) ~ 200. The plasma vertical position in these TCV internal coil experiments 

has a timescale of ~1 ms whereas the ITER control system should react in under 1 second. 

This implies that such an effect might be relevant even in ITER and that there is no 

fundamental adverse size scaling.  
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6. CONCLUSIONS 

An attempt to modify the ELM frequency has recently been made on TCV by applying a fast 

voltage perturbation to the radial field control coils during single null ELMy H-mode 

discharges. The input signal for the perturbation was added to the vertical stabilisation 

feedback loop, and consisted of a series of square pulses, which produced spike like pulse 

trains in the current through the radial field coil, and resulted in rapid deviations in the plasma 

vertical position. Phase synchronisation was found between the ELM cycle and the external 

perturbation. The ELM frequency was found to track scans in the external driver frequency 

about its unperturbed value over a frequency range that increased with the amplitude of the 

perturbation. It was also found that scaling of the ELM amplitude with the inter-ELM period 

was preserved in the presence of the perturbation, so that by altering the ELM period, we 

were also able to alter the ELM amplitude. DINA simulations showed that when phase 

locked, the ELMs were found to occur at times when the edge current density was increased 

under the action of the perturbation, either by direct induction from the changing current in 

the coil, or by movement of the plasma through the vacuum field. We therefore surmise that 

the effect of our perturbation is to modify the edge stability conditions by modulating the edge 

current, thereby acting to either delay or precipitate ELM events. Momentary interruptions in 

the phase lock were observed to occur during the driver frequency scan in a number of 

experiments.  

Some of our observations suggest a prompt action by the perturbation, leading to an 

instantaneous crossing of the stability boundary governing ELM occurrences. For example, 

generating an edge current via a G coil pulse is shown to lead to a subsequent effect on the 

ELM occurrences, creating a peak in occurrence times after the beginning of the perturbation, 

as shown in Figure 6. Other features are reminiscent of a more continuous modification of the 

cyclic ELM behaviour in response to the perturbation. For example, it is difficult to explain 

by a prompt trigger model the observed synchronisation of the ELMs to a driver with a period 

that is longer than the natural ELM period, as in this case the ELMs must be delayed in order 

to remain synchronised. The DINA simulations show that the effect of the perturbation is felt 

during the whole inter-pulse period making a distinction between these two ideas difficult. 

New experiments with various pulse shapes are planned to resolve this question.     

A simplistic dynamical model of the edge pressure gradient and current density that includes a 

threshold condition analogous to the ideal MHD stability boundary, was used to illustrate a 
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mechanism by which ELMs could become phase locked under the action of current 

perturbations, and also how the observed momentary losses in phase lock may have occurred. 

The potential usefulness of an “ELM control” method based on this approach for ITER was 

examined by extrapolation from TCV using first approximation scaling arguments, and no 

fundamental adverse scaling effects were found. 
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Figure 1: Cross section view of TCV vacuum vessel (dark grey), the carbon tiles (light grey) 
and poloidal field coils. The G coils are located within the vacuum chamber at the top and 
bottom as shown. Also shown in the figure is the vacuum poloidal flux (solid lines) together 
with the separatrix (dashed line), both for discharge #20333. 
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Figure 2: Detail of the perturbation input signals and the plasma response, showing the time 
variation of: a) The perturbation signal input to the plasma control system (Vpert) and the 
closed loop response (Vin) which is input to the fast power supply for the G coil; b) The G coil 
current (IG); c) The perturbed plasma position (δz); d) The Dα signal showing the occurrence 
of two ELMs. The definitions of the perturbation signal period (∆tD), the inter-ELM period 
(∆telm) and the time delay from the perturbation to the next ELM (∆tp→elm) are indicated by 
arrows on the diagram. 
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Figure 3: Comparison of discharges #20332 and #20333: a) Dα signal showing ELM activity; 
b) G coil current, grey bar indicates the duration of the perturbations; c) Inter-ELM interval 
∆telm (points) and the drive period ∆tD (dashed line); d) Time delay from each perturbation to 
the next ELM ∆tp->elm.   
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Figure 4: ELM amplitude (from Dα signal) versus ∆telm for discharge #20333. Squares 
indicate ELMs occurring while the perturbation was activated, and ∆tD was swept from 7 to 3 
ms. Dots indicate all other ELMs that occurred during the discharge, including the transient 
phases at the beginning and end of the H-mode. Note that the amplitude of ELMs both in the 
presence and absence of external perturbations have the same scaling with ∆telm.  
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Figure 5: Comparison of the unwrapped phase of each ELM in the driver cycle as the drive 
frequency is swept in discharges #20332 (points) and #20333 (squares). The repeated step like 
features in discharge #20333 indicate long periods when the ELMs were synchronised with 
the drive signal as its frequency was swept, interspersed by short periods where 
synchronisation was lost. No such features are evident in discharge #20332, which follows the 
curve expected if no coupling existed (dotted line). 
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Figure 6: Comparison of perturbed parameters and the ELM occurrence probability for 
discharges # 20333, # 20334 and # 22768: a – c) Phase coherent averages of the G coil 
voltage, current and perturbed vertical position as functions of time with respect to the 
perturbation input signal (where the perturbation onset occurs at ∆t = 0); d) ELM occurrence 
probability distribution, estimated from the histogram of time intervals to the first ELM 
before and after each pulse (based on about 100 ELMs in each case). 
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Figure 7: Detailed comparison of the unwrapped phase versus drive frequency for discharges 
#20333 (squares) and #20334 (crosses). The dotted line shows the phase variation expected if 
no coupling between ELMs and the driver existed during the episodes of phase slipping for 
discharge #20333. Note that the instances of phase slipping are closely repeated in the two 
examples.  
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Figure 8: Estimated range in driver frequency (normalised by the average ELM frequency 
f0elm during unperturbed periods of each discharge) over which the ELM frequency is affected 
by the applied perturbations, versus the peak-to-peak amplitude of the vertical plasma motion. 
The grey area represents the variation in the unperturbed ELM frequency (∆f0elm). 
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Figure 9: Result of 3 simulations of the G coil perturbation on three equilibria, shown in the 
inset (#20333, #20334, #22768 from left to right). The vertical displacements are with respect 
to the mean vertical position. The edge current perturbations are shown normalised to the 
mean edge current. 
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Figure 10: a) The solid line represents the evolution of trajectory in (p,J) space for the model 
of Eqs.(4)-(6). The dotted line, labelled MHD, represents the stability threshold. The 
equilibrium curves dp/dt=0 and dJ/dt=0 are indicated with dashed lines; b) time evolution of p 
(solid line) and J (dashed line); c) time evolution of –dp/dt  (solid line) and –dJ/dt (dashed 
line). 
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Figure 11: a)Time signals of -dp/dt; b) ∆telm (continuous line with dots), driver ∆tD (dashed 
line) and unperturbed ∆telm0 (horizontal dotted line) c) time delay between current 
perturbation and ELM; d) unwrapped phase between current perturbation and ELM, for a 
small (J1=0.03, left column) and a large (J1=0.1, right column) current perturbation amplitude, 
using the model of Eqs (4)-(6) with a fluctuation amplitude σ = 0.1.
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Figure 12: The response of the ELM dynamics to an external driver according to the model 
using eq. 7 for W(p,J). Each row corresponds to an increasing noise level (σ). Left column:  
ELM period (dots + solid line) and driver period (dashed line) as functions of time; Right 
column: ELM phase with respect to the driver as a function of time.  


