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Optical diagnostics for plasma density fluctuations

1) Wave propagation through inhomogeneous refractive media

Fundamentally the interaction of electromagnetic waves with a material medium such as a
plasma a scatterig process, by which incident radiation is scattered by a collection of particles. In the
case of plasmas the relevant process is Thomson scattering from free electrons. The scattered light not
only conveys information on the random motion of the particles (incoherent scattering), but also on
their collective motion and spatial distribution properties at scales which can far exceed the Debye
length (coherent scattering). In the latter case it is usually simpler to consider the plasma as a
continuous medium characterised by its dielectric properties. The connection between the continuous
medium approach and the scattering description is given by the forward scattering theorem which
provides a relation between the dielectric constant and the forward scattering amplitude (Jackson,
1975 sect. 9.14).

1.1 Diffraction

In this chapter we shall consider diagnostics for plasma phenomena such as microturbulence
and plasma waves which have spatial scales of the order of the ion Larmor radius or larger and
frequencies well below those of the optical frequencies used to probe them. When the probe beam
frequencies are sufficiently larger than any important charcteristic plasma frequency, such as the
electron cyclotron frequency, we may consider the plasma as a refractive medium with a refractive
index given as
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In the case of a monochromatic of wave number ko and frequency @y in a quasi-stationary
medium (9n/(n—1)0t << @,) , the propagation of the probe beam is governed by a wave equation of

the form

(V24 k2 )E=-k2(n* -1)E , (q.2)
where E is the electric field vector. Formally its solution may be expressed in the form of an integral
equation (Jackson, 1975, sect. 6.6):
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In the case of weak interactions the effect of the refractive medium, quantified by E-E, , on the

incident wave field, may be approximated by assuming E(r’,t)=Eq(r’,t) in the integrand of eq. 3. This is

E@.nln @0 -1 (eq3)

the well known Born approximation which is often implicitly assumed in the interpretation of
scattering experiments.

We may further assume that the incident wave is a plane wave with wave vector ko For
|l =R>>

r’l, the diffracted field E;=E-Ejcan be written in the Born approximation as

k‘; ﬂnz(z’,ﬂ ~1exp(ikr)dV”, (eq.4)
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where k=kq-Ko, and ks=kot/R is the wave vector of the light scattered to the location r. Eq. 4 shows that
in the far field the diffracted field into the direction k4 is proportional to the Fourier transform of n’-1
for the spatial frequency k.

1.2 Geometrical optics

For strong interactions there is in general no simple approximation for egs. 2 or 3. One
particular one, corresponding to forward scattering, is however noteworthy, since it corresponds to the
approximation of geometrical optics. It may be obtained by ignoring the vector nature of the field
amplitude, using the Ansatz E(r)=exp(p+id(r)), where p and ¢ are real functions, to obtain a solution
of the wave equation (Rytov transformation). It is easily shown that the real and imaginary parts of the
wave equation can be written as

(Vo) =kin* +V2p+(Vp) (eq.5) and V2 = -2V gVp (eq.6).

For media which are homogenous at a scale greater than the probe wavelength, the RHS second
and third terms of eq. 5 can be neglected, yielding the eikonal equation of geometrical optics. This
equation defines rays which at every point in space are parallel to V¢ and perpendicular to the
wavefronts defined by ¢=constant. The solution of the eikonal equation is obtained as

¢ -o(r,) =k, I n(l)dl , (eq.7), where the line integral is evaluated along a ray.

1 L2
The field amplitude is obtained using equation 6, Ap(r) = p(r)— p(r,) = —2—;-JY—¢dl (eq.8)
0 ry n
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and back-transforming: |E(1)| = exp %J’_V_le |E(£0)| (eq.9).
0 ry n

In most practical applications it is desirable that the amplitude be approximately constant and rays be
nearly straight. This can be seen to be the case when L [-IJ <<1/| Voml .

1.3 Thin phase objects

A comparison of equation 8 with equations 3 or 4 shows that diffraction phenomena are beyond
the scope of geometrical optics. Paradoxically, many experimental situations can be described using
combinations of both the diffraction theory and geometrical optics. For this reason we need to
investigate the conditions for which we may apply geometrical optics in media where diffraction is
known to occur. In general we’ll be interested in small refractive index changes expressed as n=1+n*,
where [n*| can be arbitrarily small. The corresponding amplitude changes, estimated from equation 7
and 8, are of order p~k*L*n*}/4, where k is the wavenumber of the refractive perturbation of interest .
Considering the terms neglected in the derivation of the eikonal equation (eq. 5), the most stringent
condition is obtained by requiring IVzp | =k’p <<ko’An’=2 ko2n*|, or, introducing the wavelengths of
the incident radiation A=2m/k, and the refractive perturbation, A=2m/k:



L* << A*/ 2% (near field condition, inequality 10).
The condition is pictured on fig.1, showing a plane wave incident onto a refractive medium in a slab of
thickness L, with transverse perturbations of scale A. These scatter radiation at angles *A/A
corresponding to the orders of diffraction *1. Inequality 10 is equivalent to stating that the diffracted

waves must have diverged by much less than a distance equal to A from the incident wave on exiting
the slab.
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Fig.1 Diffraction by a slab with refractive perturbations

Fig. 2 illustrates the wavenumber matching condition kij=kotk. Since we only consider low
frequency perturbations, :;=wtm=0y,, we must require ket |= | ko | corresponding to the Bragg
relation, sin(6/2)=ky/2k. Permissible scattered wave vector lie on the circle in the figure. We may now
note that for an interaction volume of finite depth L, the wavevector of the perturbation is only defined
within Ak,~1/L. From this we may distinguish two regimes depending on whether or not the Bragg
relation can be simultanously satisfied for both orders +1 and —1. As seen from fig.2 the regime of
simultaneous diffraction in both orders corresponds to Ak,>>k?/k, which is equivalent to inequality 10.
This regime is also referred to as Raman-Nath diffraction and refractive media satisfying the near field
condition are called ‘thin’.

Hence over short enough distances we may use geometric optics to describe wave propagation.
In many cases of small-angle scattering the interaction volume may be small enough for describing the
interaction using the eikonal equation, whereas the detection apparatus may be in the far field where
geometrical optics fails.



Fig.2 The wavenumber matching condition

2) Collective scattering diagnostics

A typical arrangement for scattering from refractive perturbations in a plasma is shown in fig. 3.
It involves a probing beam, typically a coherent Gaussian beam from a laser or a microwave source. In
principle scattered radiation could be collected by just viewing the incident beam with a suitable lens
and detector. In general however scattered field amplitudes are extremely small and require
heterodyne (or homodyne) detection shemes. For this purpose the scattered radiation is made to
interfere with a local oscillator. The local oscillator can be provided by a second source, often at a
slightly different frequency (heterodyne detection), or by splitting off a fraction of the source radiation
(homodyne detection). In one common sheme the local oscillator crosses the probe beam inside the
plasma, although this leads to a drop in responsivity for |k|<1/w, where w is the beam width (see
exercises). The intersection of the two beams defines the scattering volume. The local oscillator may
also be introduced using a beam splitter after the scattered radiation has left the plasma (dashed lines
in fig.3). In this case there is no lower limit to the wavenumber response; the instrument functions as
an interferometer for [k|=0. The resulting power density on the detector can be written (up to a factor
€) as

I=|E, +E,

*=|E,| +|E,|" + E,E| + E,E,, (eq.11)

where /o designates the local oscillator field and * denotes a complex conjugate. The detector size is

chosen as to intercept all of the local oscillator and scattered radiation, corresponding to a detectable
power given by:



Fig.3 Typical scattering geometry for heterodyne detection. B incident beam, LO local oscillator, V
scattering volume, S beam splitter, D detector.

P=|(E,E, + EJE, JIS (eq.12)

Equation 12 has the form of a scalar product and means that the detected power will be
proportional to the projection (in the functional sense) of the scattered field onto the local oscillator
field. This scalar product is conserved during propagation and may be evaluated anywhere along the
local oscillator beam. This explains the high selectivity of heterodyne methods. Radiation not
originating from within the portion of space defined by the local oscillator beam, or not propagating in
the direction k,, defined by the local oscillator, does not contribute to the signal. From eq.4 we see that
the detected power is proportional to the spectral power density in wavenumber space of the electron

density fluctuations evaluated at k=kq-ko. For a density perturbation of the form of a plane wave,
n, = n,, cos(kr — ax), satisfying the Bragg relation, the scattered power from within the observation

volume can also be expressed as P, =71’ Pr’A*[* /4, where 1 is the length of the interaction volume

along the probe beam, P, its power and r.=e”/(4meom.c?) is the classical electron radius. Using an array
of detectors it is possible to reconstruct all, or a significant portion, of the fluctuation spectrum. A
multichannel scattering diagnostic, using an optically pumped far infrared laser, has for instance been
used on the TEXT tokamak (Brower et al. 1985,1987, fig.4). This experiment used two coherent far
infrared lasers with A=1.222mm which were optically pumped by a CO, laser. The probe and local
oscillator lasers were actively feedback-tuned in order to achieve heterodyne detection with a stable
intermediate frequency of 1 MHz, permitting a Doppler measurement of the direction of propagation
of low frequency drift waves. The entire optical setup was moveable in the vertical and horizontal



directions, which allowed the characteristics of plasma turbulence to be mapped out for the entire
plasma cross section.

For probe and l.o. fields with Gaussian profiles the product of the spatial and wavenumber resolutions,
AkAx is minimum. The wavenumber resolutions are given by

Ak,/k=Ak,/k=2/rr and Ak,/k=k/(mkr), (eq.13)

where r=wk/n=2w/A (Holzhauer and Massig, 1978).The Gaussian beam half-width w of the incident
and l.o. beams is defined at the 1/e points of the beam intensity and similarly Ak, are defined at the
l/e points of the power spectrum of the l.o. beam. The length of the interaction volume along the
direction z is given by I=2wA/A=rA%\. (eq.14)

The choice of a probing wavelength and scattering arrangements is often a compromise between the
desire for spatial resolution, expressed as /<<L, where L is the plasma size and the desire for
wavenumber resolution. For many types of fluctuations of interest in high temperature plasmas
scattering angles are too small to achieve spatial resolution along the direction of propagation.

Fig.4 Multi-channel scattering diagnostic on the TEXT tokamak (adapted from Brower et al 1985). P
plasma, W dielectric waveguide, L infrared laser sources, D detectors. Probe beam is shown as
continuous line, local oscillator is broken line. Only 3 out of 6 channels are shown, beam
splitters and mirrors are not shown for simplicity.



Scattering diagnostics have been used extensively to study drift wave turbulence in high
temperature plasmas, and to a lesser extent externally excited plasma waves. Radiation sources vary
from millimeter wave sources (Mazzucato 1976, Equipe TFR 1983) such as klystrons through far
infrared lasers (Brower et al 1985,1987) to CO2 lasers emitting in the mid-infrared (Slusher and
Surko, 1980, TFR Group and Truc, 1984). Consequently detection shemes involve (sub)millimeter
diode mixers or liquid nitrogen cooled infrared photoamperic diodes.

3) Transmission methods

Transmission methods are mostly used for measuring macroscopic parameters such as the
density profile through interferometry. These may involve several discrete beams passing through the
plasma at different locations (Véron, 1979) or, if large ports and windows are available, a single wide
probe beam encompassing all or most of a plasma cross section (Hugenholtz and Meddens 1982,
Young et al, 1985). In the latter case the plasma is either imaged onto a multi-element detector or the
detector is in the near field of the interaction region defined by inequality 10. A schematic of an
imaging Mach-Zehnder interferometer is shown in fig.5. Although interferometry may be considered
the queen of transmission methods, an astounding variety of imaging and near field methods has been
developed for investigating various refractive media as occur in transmission microscopy, wind tunnel
experiments and plasma physics (Wolter, 1956, Vasil’ev 1971, Jahoda 1971). These methods usually
emphasize regions of particular interest such as regions of strong gradients or regions which scatter
light and have the advantage of being considerably less sensitive to vibrations than interferometers.
These methods all qualify as spatial filtering methods although their interpretation depends on the
regime of interaction of the probe radiation with the refractive medium. In many early experiments
plasmas were much smaller and denser than those of today’s fusion research devices and could be
studied using visible lasers such as the pulsed ruby laser, using photographic film as a detector.
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Fig.5 Mach-Zehnder imaging interferometer. S1, S2, beam splitters, M1,M2, mirrors, £ X", object and
image planes.
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Fig.6. Schlieren setup with knife edge spatial filter. The instrument can work in shadowgraphy mode
without a spatial filter if the object is displaced form X by a distance -d or if the detection is
displaced to plane 2’ by a distance d'=f;d/f.

A classic example is the knife-edge Schlieren method (fig.6) due to Foucault, who used it for
the testing of astronomical mirrors. In the geometrical optics description refractive index gradients
produce changes in the direction of light propagation which are given by

olx, y)=kV ,$(x,9) (eq. 15)
where ¢ is given by the line integral of eq.7. In the setup of fig.6 the refractive object is illuminated by
parallel light and situated in the object plane X of the telescope formed by lenses L1 and L2. The
detector array or photographic plate is in the image plane X’. The effect of the knife edge is to stop
light with propagation angles below a threshold given by its position in the focus of L1, from reaching
2’. In this case the image will only show those regions of the phase object which produce transverse
phase gradients exceeding a set value. If the illumination is produced by an extended source, every
region in the object plane will produce an image of in the focal plane of L1. Since the displacement of
this image depends on the deflection angle so will the amount of light contributing to the image of the
phase object in X’. Hence the intensity in the image is proportional to the line integrated transverse
gradient of the refractive index. Numerous variants exist depending on the nature of the filtering and
illumination. A simple variation, called shadowgraphy, uses no filter, but instead produces intensity
modulations by means of out-of-focus imaging. From eq. 9 we see that if the object is out of focus by
a distance z, it produces intensity modulations given to first order by

Al(x,y) _ =zVig(x.y)

= -(eq
I, nk,

Since the Schlieren methods consist of simultaneous measurements of transverse wavenumber

. 16)

and position, they are, just as scattering methods, limited by the uncertainty principle to
AV 10)Ax,y22m. The relatively small phase shifts and phase gradients produced by high temperature
plasmas in magnetically confined fusion research preclude the use of geometrical optics based
Schlieren methods in those media. In fact, geometrical optics predicts vanishingly small deflection
angles for plasma density fluctuations of vanishingly small amplitude, whereas the diffraction

10



integrals (eqs. 3 and 4) show that the diffraction angle depends solely on the wavenumber k of the
fluctuations considered, not however, on their amplitudes. In this context, optical filtering methods
cannot be interpreted in terms of geometrical optics, even though there are striking instrumental
similarities between Schlieren methods and wave-optics based filtering techniques.

Optical filtering offers attractive alternatives to the more traditional scattering techniques in the
case of perturbations with spatial scales such that the plasma is optically thin in the sense of equation
10. When comparing the various methods it should be kept in mind that the diffracted light carries
away a certain amount of information about the fluctuations in the plasma, namely about the fraction
of the fluctuation spectrum which satisfies the Bragg condition. It is up to the skills of the diagnostic
designer to extract as much of this information as possible, although the form in which the information
is extracted may differ and require specific interpretation. The essential difference between imaging
and scattering diagnostics is that the former provide a real-space representation of the fluctuations
whilst the latter provide a wavenumber spectrum. Clearly, if all of the diffracted amplitude is
measured, both approaches are equivalent and provide all of the information that can be extracted from
the diffracted wavefield. Depending on whether the fluctuations of interest are spatially homogenous
or not, one or the other approach may provide more directly interpretable information.

The most accomplished of the wave optics based filtering methods is the phase contrast method,
for which Zernike was awarded the 1935 Nobel prize (Zernike 1934, 1935). This method is used to
detect weak phase perturbations (¢<<1) and produces intensity modulations which are directly
proportional to ¢. The phase contrast method was originally invented for the microscopic visualization
of living organisms whithout the need to stain them and later also applied electron microscopy (Thon
1971) and to low mass density aerodynamic flows (Philbert 1964, Veret 1970). One group (Presby and
Finkelstein, 1967) used it to study turbulent perturbations in high density plasmas using a pulsed ruby
laser and photographic film for recording. These authors however appear not to have been fully aware
of linear transfer properties of their filter setup, which only permitted the visualization of perturbations
with wavelengths smaller than about 1mm. The phase contrast method has since been applied to study
density fluctuations in the plasmas of the TCA tokamak (Weisen 1988), the DIII-D tokamak (S.Coda
and M. Porkolab, 1995) and the C-MOD tokamak using wide probe beams produced by CO?2 lasers
(A=10.6um) and multi-element photoamperic detectors.

4) Optical filtering methods for weakly refractive media

4.1 Detection of small phase shifts.

Lets consider the case of a plane wavefront with a complex amplitude profile described by B(x).
It’s interaction with a thin phase object may described by a multiplication with the eikonal phase
factor (eq. 7):

B’(x,1) = exp(ig(x, 1)) B(x) = (1+ip(x,1)) B(x) for ¢<<1. (eq.17)
For simplicity we’ll drop the time dependence and the vector notation for the position x. The intensity,
|B’ |2, of the transmitted beam is unaffected by the transmission through a thin phase object (fig7a).
In order to obtain a detectable change in intensity (power density) we need to add a wavefield that can

11



constructively interfere with the diffracted field i¢p(x), for instance by adding a reference wave of
amplitude iB(x). This can be done using an interferometer such as shown in fig.5. The total wave field
then becomes

B”(x) = B(x)+i¢(x)B(x) +iB(x) and I(x) = |15e”(x)|2 = 2|B* (x)(1 + $(x)) (eq. 18)

) 5 I I i
<n~ 1

e\ ip iQ \
i
>,

Fig 7. Detection of small phase shifis.
a) Transmission through a thin phase object
b) Phase relation of diffracted (i¢) and undiffracted (1) components
¢) Measurement of diffracted component by adding a reference wave (interferometry)
d) Measurement of diffracted component by phase-shifting (internal reference)

The relations between the complex amplitudes are shown in fig.7b and c. Other methods use no
external reference. How do they manage to produce detectable intensity modulations? The answer is
that, in a way or another, they derive a reference from within the transmitted beam (Weisen 1986). In
the case of filtering techniques the different components of the wavenumber spectrum can be acted
upon independently in the focus of lens L1. In the case of phase contrast (fig.8) the diffracted
wavefield is phase-shifted by -n/2 (or +7/2) with respect to the transmitted beam. This leads to

B”(x) = B(x)+¢(x)B(x) and I(x)=|B"(x)|" =|B|’ (x)(1+ 20(x)) (eq. 19)

Other techniques can be understood similarly, although the phase shifts obtained are not
necessarily the ideal Fm/2 for all wavenumbers in the spectrum. Clearly no internal reference
instrument can measure absolute phase changes as does an interferometer. It can only provide a phase
relative to a weighted average of phases in the beam. This leads us to consider the linear transfer
properties of optical filtering methods. The basic concepts of linear optical systems can be found in
many textbooks (Gaskill, 1978) and will be introduced as we proceed.

The effect of an optical system on optical wavefields is described by a linear operation L, which
provides the complex wavefields in the image field, knowing those in the object plane:

L:B(x)— B”(x) = R(x)+ D(x)
L: B(x) > R(x)

L:ig(x)B(x) = D(x)
L:6(x-y)—> h(x,y)

(eq. 20)
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where R(x) is the reference field and D(x) the diffracted field which is linear in ¢. The linear
transformation of the optical wavefields is often described by the impulse response h(x,y). If
h(x,y)=h(x-y) the system is said to be shift invariant and may be characterized by its transfer function
H(k), which is the Fourier transform of h(x). The intensity in the image plane is

I(x) = R () + R* (x)D(x) + Rx)D" (x) + | D[ (x) .(eq.21)

When ¢<<1, |R]* is the dominant term, the interference terms being of order ¢|R|* and the
diffracted intensity a negligible ¢*R”>. What we are interested in, is the linear relationship between
¢(x) and the interference terms in the intensity. We may describe it by another linear operation which
characterizes the optical instrument:

L, : ¢(x) = Al(x) where

AI(x) = R*(x)D(x) + R(x) D" (x) (eq.22).

This linear relation between ¢(x) and Al(x) is described by the corresponding instrumental
impulse response hj(x,y) which is the response AI(x) for a phase perturbation of the form of a delta
function and is obtained by replacing ¢(x) by d(x-y) in equation 22. This impulse response has the
general meaning of a transfer matrix when discretized, and may be inverted in order to reconstruct
¢(x) from AI(x), provided it is well enough conditionned. The Fourier transform of hy(x,x-y) with
respect to the variable u=x-y, for a fixed value of x, is a wavenumber response. We call it the
instrumental transfer function Hi(k) if the system is shift-invariant, i.e. if hi(x,y)=hi(x-y). The impulse
response and transfer function for the instrument as a whole (eq.22) and those pertaining to the optical
wavefields (eq.20) must not be confused. Most optical systems are fairly shift-invariant within the
image field and the transfer function yields an excellent basis for comparison of the various imaging
methods. In the following sections we shall compute the terms of eq.22 for three imaging methods of
interest. Before doing so, we imagine that we use the same illumination source and magnification for a
Mach-Zehnder imaging interferometer as shown in fig.5. From eq. 18 we see that Al=¢I, where I is the
intensity in the output arm of the interferometer. The necessity of splitting the beam leads to I=Iy/2,
T=[B|* being the intensity available for non-interferometric methods using the same source. Hence for
the interferometer we can write

Al =1, -¢/2,hence h,(u)=6(u)/2and H,(k)=1/2.

These functions are shown in fig.11a, a’ and will serve as a comparison for those pertaining to the
methods discussed below.

4.2 Phase contrast

An example of a phase contrast setup is shown on figure 8. Using a telescope arrangement of
two lenses of focal lengths f; and f, it produces a filtered image of magnification f/f, of the thin phase
object placed at the plane X at the plane X’. The phase object is illuminated with a suitably expanded
beam of parallel light from a source such as a laser. The spatial Fourier spectrum of the transmitted
wavefield is mapped onto the focal plane the lens L1. It can be shown that for an ideal lens the
wavefields in X and in the focal plane of L1 form an exact Fourier transform pair (Gaskill 1978) if
their distance to L1 is equal to its focal length f;. In practice however £ may be essentially at any finite
distance from L1, in which case the wavefield in the focus of L1 remains, up to an unimportant phase
factor, the Fourier transform of the wavefield in X. Any spatial frequency (or wavenumber) component
contained in the transmitted field propagates at an angle k/ko and hence appears at a position given by
xx=kAf)/2%. This ‘Fourier plane’ is equipped with a spatial filter called a phase plate which may

13



consist of a glass plate which is slightly thicker for [k|>k;. The difference in thickness is adjusted such
as to phase-shift diffracted light with |k|>k. by -n/2. Lens L2 produces a Fourier transform of this
filtered spectrum, which is equivalent, up to an image inversion and a magnification factor, to a
Fourier back-transformation. The image plane is equipped with suitable light-sensitive detectors such
as an array of photoamperic diodes or a charge-coupled device (CCD). In a practical situation the
system magnification f,/f, is chosen such as to match the size of the image of the phase object to that

of the detector array. In the following analysis of the transfer properties of this systems we shall
assume a magnification equal to unity.

Xk=kAf1/ 27
AX A

ST
/ //\,

Fig8.  Optical setup for phase contrast. X object plane, X’ image plane, L1,12 lenses, P phase
plate, D diffracted wave component, UD undiffracted wave component

The transmitted beam in plane ¥ may be written as:

B(x) = {l+ig(x)}B(x) (eq. 23)
where B(x) is the incident beam. In the Fourier plane the wave amplitude is

B(k)={5(k) +i (k) }® Bk) (eq. 24)
where ~ designates the Fourier transform (FT) and ® denotes the convolution operation defined by
a(k)®b(k) = Ia(«f)b(k—f)df . To obtain eq.24 we have used the convolution theorem, which

states that the FT of a product of functions is the convolution of the FT’s of these functions. The effect
of the phase plate is described b

Bt ={-a- i)é(k)?ﬁ’(k) (69.25),
where C (k) = lforlkl <k, and C(k) = 0for Ikl >k,.

The relevant quantities in the Fourier plane are shown in fig.9. If we wanted to take into account
a finite optical resolution we would also have to specify here that B”(k) drops to zero above some

maximum value of [k|. In practical situations, for extended objects such as plasmas, this is likely to
correspond to wavenumber for which the object is no longer thin in the sense of inequality 10 and
phase contrast not a recommended diagnostic. Also the resolution is often limited by the available

14



detectors rather than by the optical properties of the system. For simplicity we shall therefore assume
that there is no upper bound for the wavenumbers that can pass the optical system.

The wave amplitude amplitude distribution in the image plane is obtained by an FT back-
transform:

B(x) = R(x) + D(x) , (€q.26)

where
R(x)=B(x)+({—-1)B(x)®C(x)

D(x) = i¢(x)B(x) ~ (1+i{{p(x) B(x) ® C(x)}
and C(x) is the inverse FT of C (k). The corresponding intensity is given by eq.21. The interference

terms (eq.22) are:
Al(x) = {B(x)® C(x)]B" (x)¢(x) - B®)|C(x) ® B* (x)o(x) [+ cc.
= 2B(x){[B(x) ® C()Jp(x) - C(x) ® [B(x)p(x)]} (eq. 27)
= 2B(o)|[ BY)C(y - x)dyp(x) — [ Cy - ) By}

From the above equation we see that AI(x) is proportional to the difference between ¢(x) and a
weighted average of ¢ over the neighbourhood of x. The impulse response is obtained by setting

H(x)=0(x-y):

- _ - BWICE-y)
h(x,y)= ZB(X)[B(x)®C(X)]{5(x ») B()®Cx) } (eq. 28)

In the shift-invariant approximation (near y=0) this further simplifies to

B(=u)C(u)

h(x—-y)=h(uw)=21,{0w)—
(=) =) = 210 0@) j BOMC)dv

(eq.29).

We have also used B(x)[Bx)®C(x)]= | B(x) I2=Io(x). This approximation is justified if k. is chosen
large enough as not to substantially affect the incident beam. Finally the FT of hy(u) provides the
transfer function:

H,(k)= 210{1 _BEROCH) } (eq.30)

Benecal,
The numerator is the correlation function of B (k) and C (k). As expected, we see that phase

contrast cannot measure absolute phase shifts: H;(0)=0. The transfer function is shown in fig.9 and the
impulse response is shown on fig.11b’. The transfer function has a soft cutoff at k=k. and becomes
wavenumber independent for higher wavenumbers. If k, is chosen as to match the diffraction-limited
spot size corresponding to B(x) the instrument is sensitive to perturbations with wavelength shorter
than the beam width in the object plane. Its transfer function then comes close to that of a theoretically
ideal internal reference interferometer (see exercises). Note that for k>k, the response is four times
larger than for the interferometer shown in fig. 11a’.

In principle the system could be made arbitrarily sensitive by increasing the incident beam
intensity Io. In practice there are however power limits for the detectors. Photoamperic diodes used at
CO, laser wavelengths (A=10.6um), for example, saturate for power densities larger than about
1mW/mm?®. This is rather modest considering the large powers (several tens of Watts) that can be
obtained from standard laboratory CO, lasers. One can enhance the contrast by reducing the local
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oscillator power in the image plane using a phase plate with a partly transmitting central region. The
effect of a partly transmitting phase plate can be modelled by modifying eq.25 as follows:

B’(k)={1-C (k) + i}é (k)}ﬁ (k) (eq.25b), where ¥ < 1is the amplitude transmission factor. In this

case the transfer function becomes

B(-k)®C (k)
HkKH=2 1—r= — 1 .30b).
" ’1"{ Fhe C(I)LO}(eq )

The intensity due to the filtered incident radiation is approximately }/21 o» hence for refractive
perturbations with k > k_we obtain AI/I =2¢/y.

B(k)
H)/l,

___CW

/ N\

“ke 0 +ke

Fig 9. Fourier plane quantities and transfer function for phase contrast.

4.3 Scintillation

A very simple way of obtaining intensity variations as a result of phase variations is to position
the detector a distance z behind the phase object, as sketched in fig.7a. A practical setup may still
involve an imaging arrangement as shown in fig.8, but without the phase plate. The object is
deliberately positioned out of focus by a distance z. In order to understand this method we need to
calculate the transfer properties of free space propagation. The simplest is to consider monochromatic
plane waves travelling from Z; to ¥, as shown in fig.7a:

E(x,,%,,2,t) = Eyexpilk,z+ k, +k,, —w,t}, (eq.31),

with the relation k: =k?+k% +k,.

Hence the transfer function describing the propagation from X; to X, is simply:

E(x,,x,,z,t)

H_ (k,.k,)=
z( x1 x2) E(xl,x2,0,t)

2 k2
=expik,z = exp{izko 1 —-k—’ﬂl:z—"z} , (eq.32).
0
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A useful 2™ order approximation to eq.32, the Fresnel approximation, is obtained for propagation at

small angles to the z-direction:
2

) k
H_ (k)= exp{zkoz(l - 2—koz)} (eq.33),

In eq.33 we dropped the vector notation for (ky,ky), although we still need to keep in mind that we
are dealing with two-dimensional Fourier transforms. The corresponding impulse response, in the
Fresnel approximation, is

k 2
h,(x)= —O_lexp ikyz(1+ X
21 iz 2

2
z

)} (eq.34).

We may now calculate the intensity at a distance z from the phase object:
B (x)=B(x)®h,(x) = {1+ig(x)|B(x)} ® 1, (x) . (eq.35)

In the notation of equations 20-22:
R(x)=B(x) ®h,(x)and D(x)=i¢(x)B(x)®h,(x).

The interference terms in the expression for the intensity are:
Al(x) = =i{Bx) ® b, (x){p(x)B" () |® K} () }+ cc.

The near field may be defined as the region close to the phase object where the modulus of the
incident beam amplitude is not substantially changed: B(x) ® h, (x) = exp(ik,z)B(x). With this

definition, the instrumental impulse response can be approximated as:

k 3 - 2
h(x,y)= —;; B(x)B () cos{ko (—x—z—zyl} (eq.35),

or, in the shift invariant approximation ( B(x) = B(y), fig 11¢),
- ko kou 2 . . . o
h,(u) = I, cos 5 (eq.36) and its two-dimensional Fourier Transform:
nz z

*

H, (k)=-21, sin{ } (eq.37).
2k,

This transfer function has a very oscillatory character, as shown on fig. 11c’, which makes out-
of-focus measurements difficult to interpret. Also, since the magnitude of the transfer function is
reduced for most wavenumbers, part of the information in the transmitted wavefield is lost. We may
note that for k’<|2koz|, where HiKk)= -Izk%/k,, the ‘intensity distribution is proportional to the
Laplacian 9°0/0x’, just as in the case shadowgraphy in geometrical optics (eq.16). The Fresnel
propagator h,(x) is also useful for evaluating the effect of defocussing on other methods and it is a
very convenient tool for describing the propagation of Gaussian beams.
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4.4 Knife edge and phase blade spatial filters

The ancestor of spatial filtering, Foucault’s knife edge method, can be analysed with the
formalism introduced in this section. Fig. 10a shows the relevant quantities in the Fourier plane. In this
arrangement all the diffracted light with k>k. is stopped, while all the light with k<k., including most
of the undiffracted light, is allowed to pass and form an image in X’. The effect of the knife edge can
be written as

B (k) = B'0)[1- E)), (¢q.38) where E(k) = 1 for & > k,and E(K) = Ofork < k..

This produces a wavefield in the image plane given as

B”(x) ={l1+ig(x)|B(x)}®[6(x) — E(x)] (eq.39), where

E(x) = FT{E(k) }= exp(ik 0)[5(x)/2 +i/x).

Just as in the case of phase contrast we calculate the intensity interference terms for ¢p(x)=8(x-y) to
obtain a wavenumber response:

By (x, ) = =H{B(x) ®[5(x) — Ex)]IB" e}6(x ~ ) - E(x — y) B (0)/B" (0)}+ c.c. (eq.40)
Since the knife is positioned such as not to significantly perturb the undiffracted light we can write

{Bx)®[8(x) - E®)}B" (x) = B(x)B' (x) = I, (x) (eq.41).
This leads to the following impulse response, evaluated at x=0:
h ) =il {B CWE@W _ BEwE @)
B (0) B(0)

Since the impulse response is real and odd, the transfer function is imaginary and odd:

cos(k, u)

} =21, Im(E(u)) =1, . (eq.42).

H (k) =il B (k)*®E(k)_B(—k)®E(—k) (cq43).
B (0) B(0)
a ~
) 1B
- _1 E(k)
|(-5(k)®B(k)|
ke k
b) i
/H(k)/lo
'kc i(c k

Fig. 10 Fourier plane quantities and transfer function for the knife edge method.
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Note that B(tk)® E (£k) — B(0)for k — . If, as is usually the case in experimental
situations, B(k) can be taken to be both real and even, eq.43 further simpliftes to (fig.10b):
b =it |B0® [Eo - E-n)]
B(0)

The impulse response and transfer function are depicted in fig.11d & d’(solid lines).

} (eq.44).

An improved version of Foucault’s knife edge method consists in replacing the knife edge by a
transparent blade causing a phase shift equal to 7 for all light diffracted at angles larger than k./k,.
This case is treated by setting E (k) =2 (instead of 1) for k > k,and E (k) =Ofork < k_in eq.38.

Hence the impulse response and transfer function for the phase blade are therefore simply twice those
of the knife edge. The corresponding transfer function is shown in fig.12d’ (broken line).

Comparing figs 11b’ and d’ we note that for the same value of k. the moduli of H; are remarkably
similar, in shape and absolute value, for the phase blade and phase contrast, indicating that both
methods can extract the information contained in the transmitted beam equally well. However the fact
that H; is imaginary in the former case, as well as the oscillatory character of h;, show that an image
produced by a phase blade will in general be far more difficult to interpret that one obtained by phase
contrast or using an interferometer.

_ “ .
AT A
|

a) b) U A
H H n H H | H/,f
1 -1 - II
. ll +
0 k ke K 7 ke Kk
L_1 --1 II
3 /I
a’) b’) CU U d) /

Fig.11 Impulse responses and transfer function of methods for measuring small phase shifts.
a), a’) Interferometry
b), b’) Phase Contrast
¢}, ¢’) Scintillation
d), d’) Knife edge and phase blade
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4.5 Sensitivity

Since all methods can be compared on the basis of their transfer functions, we only need to treat
the case of phase contrast, assuming photoamperic detectors which produce a photocurrent given
by j=Aen® where ® =1/fwis the photon flux onto the detector of area A and quantum
efficiency 1. In most circumstances, when the background intensity (Iy/y* for phase contrast) is high
enough, the main limitation for photoamperic detectors is due to shot noise (Teich 1968) with a noise
power given by

< ]3> =2eAf X j=2e*ANAfD (eq.45), where Af =Aw/2xis the bandwidth under

consideration. The mean signal power for phase contrast is given by
(j2) =440’y (9°)0; (eq46), with @ =D, =1, /7°.

The signal-to-noise power ratio is then
¢2
S/N = —°<—> (eq.47).

Note that although the S/N ratio increases with illumination intensity, high intensities may
require the direct light to be attenuated (Y<1) in order to avoid saturating the detectors. If this is not
possible, the sensitivity will be limited by the maximum power tolerable on the detector.

The sensitivity limit (S/N=1) corresponds to
4

<N 2 >mm = %f— (eq.48) where N, = jnedl is the electron line integrated density.

Although the wavelength dependence appears to favour the choice of far-infrared wavelengths,
the mid-infrared offers far higher laser powers (tens of Watts) and somewhat more convenient
detectors with quantum efficiencies in the range 20-70%. If a CO, laser (A=10.6pum) and HgCdTe
photoamperic diodes (Anlg=1mW) are used the sensitivity limit corresponds to <¢*>'?=3x10"®radians
or <N.>'"2=10" electrons/m’ for Af=IMHz. If these fluctuations are associated with effective
integration lengths of a few cm, as is the case in many experiments (see exercises), this sensitivity
limit corresponds to a local electron density fluctuation of An~2x10"> m™ and to An./n.~10"*for most
current fusion research devices.
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§) Fluctuation measurements using phase contrast on tokamaks

5.1 Instrumental setup

The phase contrast method has been used on three tokamaks (Weisen 1985,1988b), DIII-D
(Coda and Porkolab, 1992, 1995) and recently on C-MOD, to study broadband turbulence, transient
instabilities and radio-frequency driven waves. Fig.12 shows the phase contrast apparatus which was
used on the TCA tokamak (R=61cm, a=18cm, B1=1.5T) to measure kinetic Alfvén waves and plasma
turbulence. It used a double-sided vertical optical “breadboard”. An 8-Watt waveguide CO, laser and
beam expansion optics were mounted on the rear side (not shown) and the imaging optics and detector
were on the front side. The beam was expanded to a size of 23xScm using an off-axis parabolic mirror
with 190.5 cm focal length obtained by halving an inexpensive mirror for an astronomical telescope.
The other halve , labelled P in fig.13, played the role of lens L1 in fig.8.

GA 'W w

1l

PL

IS,
2

//
N\
%

N

7/
FLOOR

Fig.12 Optical arrangement for phase contrast on the TCA tokamak. PL optical table, X object plane
at the plasma midplane, F vacuum window, CV vacuum chamber, BT toroidal field coil, GA
major axis, P parabolic mirror (f=190.5cm), M flat mirror, MP phase mirror, MI imaging
mirror (f=27cm), 2" first image plane.
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The beam was relayed to, and back from, the plasma by two sets of three flat mirrors, 45x7cm
in size, which were mounted in rigid boxes at right angles to each other in a corner-cube arrangement.
Only two mirrors are shown for simplicity. This arrangement provides immunity against rigid-body
movements of the optical breadboard or any of the mirror boxes. As a result it was possible to suspend
the upper box from the tokamak support frame, while the lower box and breadboard were standing on
the floor. All three assemblies were independently vibration isolated. Without such passive vibration
proofing, active feedback stabilization, as used by Coda and Porkolab (1992) on DIII-D, is necessary
in order to keep the focal spot at the required position in the focal plane of mirror P.

The TCA tokamak vacuum vessel was initially equipped with elongated (23x3.6 cm clear
aperture) composite NaCl windows (H.Ripper and H. Weisen 1987) with a thickness of 3.0 cm, which
were later replaced by ZnS windows. These windows allowed access to more than half of the plasma
poloidal cross section. Unfortunately on larger devices access to such a generous portion of the plasma
cross section is very difficult

Phase mirrors (rather than phase plates) were obtained for both the TCA and the DII-D
experiments by evaporating a layer of aluminium onto flat steel mirror substrates, with thin flat brass
ribbon of the required width (120-1050 um for a diffraction limited spot size of 120um) stretched
across them. A final coating of gold further increased reflectivity. At the design incidence angle of 20°,
the 1.4um deep groove produces the desired 90° phase shift between diffracted and direct light
(fig.13). Contrast-enhanced phase mirrors were also produced, using ZnSe (y=0.4) and BaF2 (y=0.2)
as substrates.

The light reflected from the phase mirror was collected by another off-axis paraboloid, M1 with
focal length f=27cm on TCA, to obtain an image at X’. In the arrangement shown in fig.14 this image
was not used directly, but relayed to X’ in a way suitable for the down-looking liquid-nitrogen cooled
infrared photoconductive detector array shown. This linear array featured 30 elements, 250250 wm in
size and 50um spacing between adjacent elements. The overall magnification was 1/19, allowing a full
coverage of the outer half of a poloidal cross section.

Fig.13 Phase mirror. UD undiffracted
light, D diffracted light. The rays
shown inside the substrate are for

the case of dielectric substrates.

substrate
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Fig.14 Detail of imaging optics with T~
photoconductive detector array. X’ first image Z_,
plane as in fig 12, M flat mirror, MI first =
imaging mirror (f=27cmy), L3 field lens made of b4—s
BaF2 (f=35 c¢m) , L4 second imaging lens
(f=10cm), X’ second image plane with 30-
element detector array in nitrogen cooled dewar L3\ )
DW, PA preamplifiers (gain=4000), MIX mixers yﬁr
arrays for synchronous detection of fluctuations Mi
during radio frequency experiments o MP

Performance tests and calibrations were performed in several ways; using sound waves from a
loudspeaker, together with a calibrated sound meter to measure the pressure and hence density
oscillations, by inserting thin Mylar plastic sheets to measure the step response and by direct
measurements of the impulse response (Weisen 1988b). Only the latter will be presented here, since it
relates directly to the theory presented in the previous sections. It can be shown (see exercise 2) that a
narrow opaque bar produces nearly the same response as a narrow phase object. Hence a narrow metal
bar scanned across the object plane produces a response which is proportional to the impulse response.
Paradoxically, at the image of the bar the intensity is approximately doubled. Figure 15a shows the
experimental impulse response obtained for a mirror with k.=0.3 cm™. The transfer function, obtained
by Fourier transformation, is shown on fig.15b.

—_ J| ‘s [T
P 3,
=7 118
%— 1a
-
4 I A
W=200p n
I I I 1 I 1 I I 1 C 1 1 I 1 1 ) 1 I 1 1I6
16 ulem; 16 06 \iradicm]

Fig.15 Experimentally measured impulse response (left) obtained using the opaque bar method and
corresponding transfer function (right).
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5.2 Applications

The main application of the diagnostic on TCA was to measure kinetic Alfvén waves produced
in Alfvén Wave Heating experiments using external antennae at frequencies in the range 1.8-2.7 MHz
(Weisen et al 1989b). This wave propagates radially inward from the shear Alfvén resonance layer.
The signals from the detectors were synchronously amplified using the mixers sketched in fig.15.
Fig.17 shows the (line integrated) wave amplitude profiles for (n,m)=(2,0) and for (1, 1), as determined
from the antenna phasings. The plasma wave phase profile seen in figs 17a and b is indeed
characteristic of inward propagating waves which are (Landau) damped before they reach the plasma
centre. The jumps by r seen in figl7c however reveal a standing wave pattern characteristic of a
global eigenmode of the kinetic Alfvén wave, observed when conditions are such that the waves can
propagate to the centre and are “reflected back”. The dispersion properties of experimentally detected
plasma waves can be used to provide further information on plasma parameters (Weisen et al 1989a).
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Fig 16 Radial wavepatterns of Kinetic Alfvén Waves in the TCA tokamak. Left and middle:
(n,m)=(2,0) and (1,1) traveling waves. Right: (1,1) global oscillation

The investigation of plasma turbulence using imaging methods relies on correlation
measurements similar to those used for probe measurements (Weisen 1988a, Wootton 1991). We may
for instance compute the cross spectrum of the turbulent signals

Pi(@) = plx,Ax,0) = (¢ * (x, 0)p(x + Ax, ®)) eq.49,

using signals from two detectors (labelled 1 and 2) separated by a distance Ax. The argument ® means

the component of the Fourier spectrum for frequency ®. In practice digitised, stationary signals are

divided into N intervals of the same duration, their temporal Fourier spectra and finally the above

averages are computed. If the turbulent medium is uniform the argument x in eq.49 is immaterial. The

cross power can be normalised as
P, (@)

() =
7 N D1 (@) py (@)

and the coherence lengths as the distance Ax over which the coherence |y, drops from 1 to l/e. In

(eq.50)

tokamak experiments drift wave turbulence is a universally observed feature. Fig.18 shows an
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example of the coherence and the phase of the cross spectrum for drift wave turbulence in TCA at
f=w/2n=100kHz, at the maximum of the spectral power density. The coherence length is about 3cm,
the mean wavenumber, obtained from the phase, about 1.5 cm”. To obtain a fully spectral
representation the cross spectra are Fourier transformed with respect to u=Ax, to yield the power
spectrum:

Sk,w) = J.p(u, w) exp(—iku)du (eq.51),

and the conditional spectrum:
s(k:w) = Jy(u, w)exp(—iku)du (eq.52).

A full power spectrum is shown in fig. 19 for a measurement on TCA and peaks near k=1.5
cm’, which is too low to allow spatial resolution with scattering methods of any wavelength for which
the plasma is accessible to electromagnetic waves (Weisen et al 1988a). These power spectra are the
same as those that could be obtained by multi-channel scattering diagnostics having the same large
probe beam width for adequate wavenumber resolution at small wavenumbers. The measurement of
plasma turbulence using these optical methods suffers two main drawbacks. The first is that the
measurements usually have poor or no spatial resolution along the direction of propagation and hence
provide a superposition of signals from regions with possibly very different behaviour, although
sensible estimates of local properties are possible (see exercises). Scattering diagnostics using longer
wavelengths can only provide spatial resolution for large enough wavenumbers, usually not however
at the small wavenumbers at which the turbulent spectral power density is highest. The second is that
their importance for transport cannot be deduced from the amplitude and spectra of the density
fluctuations alone. Only diagnostics such as Langmuir probes (which are restricted to the plasma edge)

or heavy ion probes can measure the local turbulent flux I"ec <h'\7r> = <7~1E9 / B> , where V, is the

fluctuating radial velocity, Ea the fluctuating poloidal electric field, and Bthe magnetic field.
(Wootton, 1991).
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6) Exercises

Exercise 1. Contrast enhancement

Derive the transfer function of phase contrast for y#1 (eq. 30b), by retracing the steps
corresponding to equations 26-30, starting with the modified equation 25b.

Exercise 2. Effect of amplitude object on phase contrast system

Consider an object with an absorption 0<o<1:

B'(x)=[1-ax)]B(x)

Calculate the resulting intensity change AI(x) resulting from the interference of terms which are
linear in o with those which are independent of o, as well as the terms containing o?. First consider a
small opaque object such as a narrow bar with o(x)=1 for y-w/2<x<y+w/2 and o(x)=0 otherwise,
where w<<D, D being the width of the incident beam. Show that, paradoxically, at the position of the
bar, the intensity is approximately doubled, i.e. AI=],. The power necessary to build up this intensity
spike is compensated by a reduction of intensity elsewhere in the beam. Show that this part is
essentially described by the second term on the RHS of eq.27, with ¢ replaced by -o, proving thereby
that the impulse response of a phase contrast system can be measured using an opaque phase object.
Now calculate the transfer function for weakly absorbing objects: o(x)<<1, neglecting second order
terms in o. Is the phase contrast system a high pass filter for amplitude objects, or is it a low pass
filter?

Exercise 3. The ideal internal reference interferometer

In the previous sections we have learned how to calculate the transfer properties of spatial
filtering methods given a particular optical set-up. We now wish to know what the transfer properties
of a theoretically ideal imaging instrument are, one that would be limited only by basic physical
principles and not by laboratory technicalities. To this effect we express the interaction with the phase
object as giving rise to a diffracted component iD(x),

B’(x) = B(x)+1iD(x)
where D(x) = ¢(x)B(x) and we have assumed ¢ <<1.

Conservation of energy implies ”B"2 =IB*(x)B(x)dx——-"Bﬂzwhere " ll designates, in a

functional sense, the norm of B(x). What does conservation of energy imply for the diffracted
component? Using the scalar product of B and D, decompose the function D into a component that is
parallel in function space to B(x), i.e. Dy(x)=nB(x) and its perpendicular components D, (x)=D(x)-
Dy(x). Show that only D,(x) can contribute to producing intensity modulations as a result of the phase
modulations ¢. Now, defining an ideal instrument as one that makes use of all of the D, wavefield,
calculate Al(x)= B*(x)D, (x)+c.c, compare with equation 27 and following the procedure from
eq.27 to 30, calculate the impulse response and the transfer function. Note in particular, that the

weighting function, with respect to which ¢(x) is measured, is the normalized intensity profile
B'(x)B(x).
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Exercise 4. General limitations at small wavenumbers for internal reference methods

Taking the considerations in exercise 3 a little further, we may ask ourselves what maximum
power we may obtain from any diffraction process, if we use the transmitted beam as a local oscillator,
be it in the near field or in the far field. Since the scalar products of optical wavefields are conserved
during propagation we only need to evaluate the relevant quantities after transmission through the
phase object at Z. The largest possible power is obtained by producing interference between the D,
wavefield and the incident wavefield B, i.e

AP < 2||D l||||B|| < 2||DIIHB|| Provide an expression for the maximum homodyning efficiency

o = ||D l|| / ”D" , first for arbitrary ¢, then obtain £;,,,(k) by setting ¢(x)=0oexp(ikx). Finally consider
a Gaussian beam, B(x)=exp(-x*/2w?) and show that €,,,(k)={1-exp(-K*w%2}2.

Exercise 5. Shot noise from an ideal photodiode
When the photocurrent from a photodiode is large enough the dominant source of noise is due to
photoelectron (Poisson) statistics. Derive equation 45 for shot noise, associating an effective

integration time t=(2Af)"! with the bandwidth Af.

Exercise 6. Effective integration length in a turbulent medium.

098 }
PO |
O Q&%¢lv

A plane wavefront propagating in direction z enters a homogeneous turbulent refractive slab of
thickness L. The turbulence is characterized by a coherence length / in the direction of propagation and
fluctuations with average amplitude n*y,. Calculate the variance of the resulting phase upon exit from
the slab using a random walk argument. Show that the propagation through the slab is associated with
an effective integration length L , = \/E .
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Exercise 7. Line integrated correlation measurements.

Considering the geometry of exercise 6, show that the autocorrelation function for the line-
integrated turbulent fluctuations may be written as

T(Ax, Af) = J’ j T(Ax, Az, Af)dzdAz = L j T(Ax, Az, At)dAz
where T(Ax, Af) = (N (x, )N (x+ Ax, 1 + A1), T(Ax, Az, Af) = (i (x, 2,0)7i (x + Ax, 2 + Az, 1 + At)
and  N(x,1) = [fi(x, z,0)dz and (ii(x,2,1)) = 0.

How can the local autocorrelation function I" be reconstructed from a measurement of I in the

case of homogenous isotropic turbulence? Using a suitable definition for the coherence length 1,, give

an alternative derivation for the result of exercise 6, namely <|N (x, t)|2> = lzL<|n(x, z,t)|2> .

Exercise 8. Line integral through a spherical wavefront

Consider a spherical (or cylindrical) refractive wave of the form 7 (r,f) = f(r)expi(kr — wt),

such as produced by a loudspeaker or a radially propagating plasma wave. Show that for a sufficiently
slowly varying envelope factor f(r), such that df(r)/dr<<kf(r), and r>>A, the line integral can be
approximated by

N(x.t) = [fi(x,2,00dz = f(x)VAx expihe — o +/4), where A =27/ kis the refractive

wavelength.

Answers and hints to some of the exercises

Exercise 2
The answer is

Al(x) =&’ (x)B” (x) - {C(x) ® [a(x) B(x) [{4lC (x) ® B(x)]-2B(x)}
—20(x) BOH{C (%) ® lar(x) B(x) |}
+200(x) B(x){C(x) ® B(x)}-2a(x)B*(x)
+2/C(x) ® [a(x)B(x)]*
The two first RHS terms correspond the RHS of eq.27, since C(x) ® B(x) = B(x), whilst the fourth

and the fifth approximately cancel, the sixth being negligible for small or weakly absorbing objects.
For a narrow opaque object the first term causes a local doubling of the intensity, the second an overall
reduction, and the third another modest local reduction. For weak absorption (0<<1) the third term is
dominant and corresponds to a spatial low pass filter with cutoff wavenumber k..

Exercises 3 and 4

Details may be found in H.-Weisen 1986 (appendix).
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Exercise 6

The problem corresponds to that of a random walk with m=L// steps of amplitude s=ko/n*. The
average walk amplitude for random walk being S=sm'?, the average phase perturbation is

¢rms=k0(Ll)l/2n*rms-
Exercise 7

Details may be found in H. Weisen et al (1988a, appendix). In the case of homogeneous
isotropic turbulence the local autocorrelation function can be retrieved by an Abel inversion on the line

integrated autocorrelation function. The same applies to the cross-spectra.

Exercise 8

Hint: Use the following second order approximation: 7 =+/x2+ z2 E|x+z2/2x| in the

expression of the refractive wave phase, or, equivalently, use the following approximation provided by
-1

2 expifn(0) % 7t/ 4}the +sign being

the method of steepest descent: jexpi{n(z)}dz = 2ﬂ'a
n
®

z=0
2

<0, the - sign otherwise.
z=0

applied when

2
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