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Abstract

The magnetic topology and particle drift orbits are analyzed in a
monotonic ¢ profile and in a reversed shear TEXTOR equilibrium that
is subject to a magnetic perturbation driven by the Dynamic Ergodic
Divertor (DED). The main results prove that there exists a transport
barrier for the magnetic field lines and for circulating particles in the
reversed shear case when the DED is applied. This transport barrier
occurs near the surface of minimum g value where the KAM theory
may be invalid. Moreover, we have remarked that trapped particles
are lost due to the presence of the ripple and the DED does not affect
their trajectories. To analyze the magnetic topology, we use a sym-
plectic perturbed map and the guiding center orbits are evaluated in
the Boozer coordinates.



1 Introduction

We have studied the magnetic topology and the guiding center drift orbits
in a TEXTOR Tokamak with the Dynamic Ergodic Divertor (DED) [1].
The study has been done with two different equilibria computed with the
3D free boundary VMEC code. The 3D behavior is not due to the DED,
because we treat it as a magnetic perturbation and we do not include it for
the achievement of equilibria. On the other hand, we take into account the
ripple due to the discrete number of toroidal coils. The first equilibrium
is computed by imposing a monotonic profile for the safety factor contrary
to the second one which is a reversed shear configuration. In fact, we are
interested in investigating the difference between these two equilibria subject
to the DED and to compare the difference between the magnetic topology
and the particle drifts.

The fact that the system studied is governed by the KAM (Kolmogorov,
Arnold and Moser) theory (magnetic islands on resonant surfaces, KAM
barriers, etc.) [2], we expect that in a reversed shear system the physics
should be totally different from the monotonic case. Actually, the KAM
theorem assumes that the profile of the safety factor must be a monotonic
function. Some results [3] show that in a reversed shear there exists a strong
transport barrier. So the study of the magnetic field lines yields information
concerning the magnetic properties and the trajectories of particles too. To
analyze the magnetic topology, we use a symplectic perturbed map [4] which
allows us to study the statistical properties of the topology. In particular,
we can evaluate a local diffusion coefficient for the magnetic field lines.

Of course, to complete the analysis, we have to consider the behavior of
particles. The most common way is to use a guiding center drift theory in
Boozer coordinates [5, 6, 7, 8. We have developed a code which is able to
solve the equations of the guiding center orbits in the presence of a radial
magnetic perturbation. To obtain good statistical properties, we have to
solve these equations for approximatively 10 particles. To realize it, we
run the program on a massively parallel computer. For the simulations, we
have put 80 x 103 Deuterium particles and follow them during 10 [ms] in
one hour and half CPU time. With this code, we can compare the results
of the drift orbits with the magnetic topology. What we have found is that
in a reversed shear case, a transport barrier occurs for circulating particles
when the DED is applied. Furthermore, only the circulating particles are
affected by the DED contrary to the trapped particles which are lost only
by the effect of the ripple.

With respect to the organization of the paper, we first review the theory



of the mapping procedure for the magnetic topology and the guiding center
drift orbits in Boozer coordinates are described. Then, we will discuss the
results for a monotonic case profile TEXTOR equilibrium with and without
the DED and compare these results with a reversed shear configuration.
Finally a discussion of the main results will be summarized in the conclusion.



2 Review of the Theory

2.1 The mapping procedure

The study of the magnetic topology is done by using a symplectic perturbed
map [4]. In fact, if we examine the intersections of the trajectory with a
¢ = constant cross section (y is the geometric toroidal angle), we can define
a map:

Jnt1 = Jn + €f(Jni1,0n) (1)
9n+1 = en + ZW/LL(JTH-I) + eg(Jn-Ha an)’ mOd(zﬂ'))
where f = — 02"/ L d(,o%%( and g = — foa de’' % are the contributions of the

magnetic perturbation, ¢ is the rational transform, € is the amplitude of
the perturbation and L the periodicity of the system. The J coordinate is
proportional to the toroidal flux function and can be considered to a radial
coordinate, 6 is a poloidal angle in which the magnetic field lines are straight
[9, 10]. Finally, x is the contribution of the magnetic perturbation and it
is proportional to the poloidal flux function. In this case, the total poloidal
flux function can be written as a contribution due to the equilibrium given
by the VMEC code plus a magnetic perturbation:

Xtot = Xxo(J) +x(J,0,9).
N—— ——
equilibrium DED

By using equation (1), we can analyze the statistical properties of the
system, especially, we can compute a local diffusion coefficient for field
lines. In fact for a open mixed system, we can assume that the probability

of the radial transition is given by a Gaussian distribution P(J, J,,n) ~

\/4"1; o exp—(ZE(JJ‘L);’ [11] when the number of iterations is small. The

fact is that for small values of n, the magnetic field lines can neither see the
openness of the system nor the KAM barriers and so the diffusion must be a
normal diffusive process. Consequently, the local diffusion coefficient D(J,)

can be estimated by D(Jy) ~ ﬂ;’iﬁz;ﬂ&, where the average is done over
an ensemble of initial conditions. For large n, the probability distribution

ceases to be Gaussian.

2.2 The guiding center drift orbit

The guiding center drift orbit theory has been described in [5, 7, 8]. In
this paper, we employ the notation of [6]. As mentioned in [5, 6], we use a



relativistic guiding center theory in Boozer coordinates (s, 9, £) where s =
Y /(s = 1) is a radial coordinates, ¥ and ¢ are a poloidal and toroidal angle,
respectively. The magnetic equilibrium field is given by B = V¢ x V¢ +
V¢ X Vx in the contravariant representation and B = B,Vs + p,J(s) Ve —
1ol (8)VE in the covariant form. 1(s) and x(s) are the toroidal and poloidal
flux functions, respectively, and 27I(s) and 27 J(s) are the poloidal and
toroidal current fluxes.

The Boozer magnetic coordinates are canonical for perturbed magnetic
fields that satisfy the condition 6B = Vx (Y (s, 9, ¢ )B) [5, 7, 8]. We therefore
relate the radial component of the perturbation of the DED coils to the scalar
function Y(s,d, ) by

fho
dB-Vs=——\1I(s
e
where (,/g) ™! = Vs x V¥ V¢ is the Jacobian of the transformation and 6B

is the magnetic field of the DED computed with the Biot-Savart law. If we
assume that

oY 3’1‘),

59 T J(S)a—§ (2)

T(s,9,&) = Z Yron(s) cos(md — nL&) + Y2, (s) sin(md — nLg),

equation (2) gives

Sn (8)

Y. (8) = paml(s) —nLI@)] form,n #0
Tin(s) = O (5) , form,n #0

" o [nLJ(s) — mI(s)]

TS,O(S) = TS,O(S) =0
where

cos(md — nL¢f)

2r 2n/L
688 (s) = 2L/ (2n)? / do / df\/gdB-Vs{ _
0 0 sin(my — nL§)
and L is the periodicity of the system.
By introducing e and m, the electronic charge and the rest mass of
the particle,  the relativistic gamma factor, p the magnetic moment and



p| = p|/(eB), the equations of the relativistic guiding center are given by
(5, 6, 8]

pol(s) [ (u )6B_e32p||6_T]
mo V39 " ym, 09

poJ(s) 11 9B eB? eb%p 6T
[;(z+ e = m 3] (3)

eB2p| BT]

)= '}’moDl [x1(s) + (o) + X)poI'(5) + ol (5) 5

L+, @

1

. 011 4  eB , 8B
A="% o P G et
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105+ 1605 S+ 22, ©)

where

ol -t AL

For the integration of equations (3), (4), (5) and (6), we use a fourth order

Runge-Kutta scheme with fixed time step. The time step is chosen in such a
way that the solution gives similar results by using a variable order, variable
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step size given by the NAG D02CJF library [12] and a fourth order Runge-
Kutta symplectic integrator [13]. Typically, the time step is approximatively
4 x 1077 [s] for all the simulations. Finally, to minimize the time of the
simulation, we have parallelized the algorithm. The parallelization consists
in having a master processor which gives initial conditions to slave Processors
which resolve the equations (3), (4), (5) and (6). With this method, we can
follow up to 10* Deuterium particles during 10 [ms] in one hour and half
CPU time by using sixteen processors. Concerning the initial conditions, we
choose (s,9,£) and the pitch angle randomly. The energy of the particle is
determined by the profile E,(s) = 500(1 — s2) + 100 [keV]. Finally, all the
quantities appearing in equations (3), (4), (5) and (6) are stored on a 3D
array of dimension (100 x 80 x 80) in the (s, %, £) direction.



3 Numerical Results

The first part of the results concentrates on analyzing the effect of the Dy-
namic Ergodic Divertor (DED) [1] in a TEXTOR Tokamak equilibrium with
a monotonic safety factor profile. The equilibrium is computed using the
3D free boundary VMEC code taking in account the ripple due to the dis-
crete number of toroidal coils (less than 1 %). The TEXTOR Tokamak is
composed of sixteen toroidal coils and two vertical field coils. The plasma
current is approximatively 350 [kA] and the value of ¢ at the edge of the
plasma is 3.4 (Fig. 1a). The second part consists to achieve a reversed shear
configuration and to analyze the difference with the monotonic case. The
parameters of the reversed shear equilibrium are comparable to those of the
standard shear case, but the shear is different and the minimum ¢ value is
localized at s ~ 0.8 (Fig. 1a). Finally, the DED is composed of eighteen
helical coils, two of which are compensation coils, inside the vacuum vessel
on the high field side (HFS) and they are aligned to coincide with the pitch
of the field lines on the ¢ = 3 rational surface. We model! the current in the
coils by

Ij = cc x Lysin((j — 1)7/2 + Qt), j=1,16, I, = 15 [kA], Qt = /4

and for the compensation coils I, = *cc x I,/v2sin(57/4 + Qt). As we
note, the magnetic perturbation is assumed to be “quasi-static” and the
periodicity of the system is L = 4. The parameter cc corresponds to the
amplitude of the current in the DED.

3.1 Properties of the magnetic topology

The first analysis consists to study the Poincaré cross section. As the sys-
tem is a Hamiltonian system subjected to a weak perturbation, the KAM
(Kolmogorov Arnold and Moser) [2] theory is applicable. It demonstrates
that on the resonant surfaces (g is a rational number) magnetic islands ap-
pear. On non-resonant surfaces, however, KAM barriers still exist. But
the KAM theory assumes that the rational transform must be a monotonic
function, |¢/(s)| = |(1/¢(s))’| > 0, otherwise the KAM theorem cannot be
demonstrated. By taking a reversed shear configuration, we expect to have
a different behavior for the magnetic field line topology because a transport
barrier will occur [3] near the surface for which /(s) = 0. Another difference
is the separatrix reconnection near this surface. In fact, near this surface,
there exists two identical chains of magnetic islands separated by a KAM
barrier if the perturbation is weak. By increasing it, the width of islands will



grow and at a certain value for the perturbation, the two chains should over-
lap. But contrary to a monotonic case, this overlap does not create chaos
but a bifurcation occurs and this is referred to as a separatrix reconnection
[3]. From the point of view of the topology, the separatrix reconnection is
the bifurcation from a heteroclinical topology to a homoclic topology.

In Fig. 1b), we show the Poincaré cross section for the monotonic ¢ pro-
file equilibrium with an amplitude cc = 0.8 for the DED. Clearly, we see
magnetic island structures on the ¢ = 10/4, ¢ = 11/4 (J/Jpazr ~ .72 and
0.8 respectively) surfaces and a large part of the magnetic field is stochastic
between these two chains. Now if we regard, for the same amplitude of the
DED, the Poincaré cross section for the reversed shear case in Fig. 1c), we
see clearly that a transport barrier occurs near the value J/J0 ~ 5 ~ 0.83.
This is due to the fact that the ¢ value has its minimum near this surface.
Moreover, we expect that this barrier will change the local diffusion coeffi-
cient. By comparing Figs. 2a) and 2b), we see that for the reversed shear
equilibrium the amplitude of the local diffusion coefficient is six times smaller
than for the monotonic case. But we do not observe any transport barriers
in the profile of D, because by definition of the local diffusion coefficient,
D does neither take in account any KAM barriers nor transport barriers
(section 2.1). But by analyzing the probability of transition P(J,J,,n),
we can observe a transport barrier, because P(J,J,,n) can be evaluated
at large iteration number n (section 2.1). In Fig. 2c), we plot P(J, J,,n)
after 25 x 103 iterations for the reversed shear case and the amplitude of
the DED is cc = 0.8. Clearly, we observe a transport barrier near s ~ 0.83
which corresponds approximatively to the minimum ¢ value.

3.2 Guiding center drift orbits

With respect to the behavior of particles, we study the percentage of lost
particles with and without the DED. Firstly, if we analyze the case of the
monotonic safety factor without the effect of the DED, we expect that only
the trapped particles should leave the plasma. Fig. 3a) shows the percent-
age of lost particles as a function of time. The circles represents the total
number of particles lost divided by the total number of particles (80 x 10%),
the crosses and the squares are the total number of trapped and circulat-
ing particles lost, respectively, divided by the total number of particles and
the stars (triangles) are the total number of trapped (circulating) parti-
cles lost divided by the total trapped (circulating) particles. Clearly, only
the trapped particles leave the plasma contrary to the circulating particles
which are confined within the plasma and the total lost particle fraction is
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approximatively 4%. Concerning the distribution of lost particles in a (¢, 49)
cross section, we see in Fig. 3b) that the trapped particles leave the plasma,
where the rippled B field strength reaches a minimum betwenn the sixteen
toroidal coils locations. The fact that we lose the trapped particles only for
0 <9 < = is due to the B x VB drift. Actually, by changing the sign of
particles, we change the 9 position, i.e. we lose particles for 7 < ¥ < 2.
Finally, in Fig. 3c) we plot the particles lost as a function of their initial
positions and we see that the profile of lost trapped particles increases when
Sinit approaches the boundary of the plasma.

By switching on the DED, we expect that only the circulating particles
should see the DED, because the DED is localized to the HFS. So the trapped
particles which are by definition localized on the low field side (LFS), are
not affected by the presence of the DED coils in contrast to the circulating
particles [14]. Fig 4a) shows the behavior of particles lost as a function
of time and clearly the percentage of the total particles lost increases by
a factor 3 compared with Fig. 3a). This increase is due to the fact that
we lose many more circulating particles while the trapped particles lost are
not modified significantly compared with Fig. 3a). Moreover by looking at
Fig. 3b), we can observe that the circulating particles leave the plasma near
the region of the DED (2 < ¢ < 4) and the structure of oblique lines is
caused by the geometry of the coils of the DED. Finally in Fig. 4c), we see
that circulating particles for which the initial radial position is greater than
0.8 are lost. Furthermore, there exists a maximum of percentage of lost
particles at s;,;; ~ 0.9.

Now if we impose a reversed shear configuration, we expect that by
switching off the DED all the statistical properties should be similar to the
monotonic case. In fact, we have found that all quantities are of the same
order. But by switching on the DED, we think that the behavior should
change, because the study of the magnetic field lines shows a transport bar-
rier. By comparing Figs. 4a) and 5a), we observe that in the reversed shear
case the percentage of circulating particles lost decreases by a factor of six
compared with the monotonic case. We can interpret this phenomena as the
development of a transport barrier for circulating particles. We speculate
that the trapped particles do not sense this barrier because the width of
the banana orbit may be greater than the barrier width. This reduction of
lost circulating particles is visible in Fig. 5b) too. Finally, by looking at
Fig. 5c), we see clearly that there exists two different regions for the circu-
lating particles. All circulating particles with initial radial positions that are
smaller than 0.88 are confined, while those with s;;z > 0.88 begin to drift
out of the plasma. This separation of region describes a transport barrier
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and the global behavior inside the barrier is totally different than outside
[15]. The localization of this transport barrier coincides approximatively
with the transport barrier of the magnetic field lines.
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4 Conclusion

This work has shown the importance of the g profile in an equilibrium sub ject
to a magnetic perturbation. The comparison between the magnetic topology
and the drift particles has allowed to observe a strong relationship between
magnetic field lines and the drift orbits. The main result of this paper
demonstrates that only the circulating particles are affected by the presence
of the DED. In comparison, the trapped particles are lost by the effect of the
toroidal magnetic field ripple. In a reversed shear configuration, a transport
barrier occurs for the magnetic field lines and in this case the local diffusion
coefficient is reduced by a factor six.

The particle trajectories are qualitatively the same for configurations
with and without reversed magnetic shear in the absence of magnetic field
perturbations driven by the DED coils. When the DED is activated, a
fraction of the otherwise very well confined circulating particles are lost.
However, the percentage of circulating particles lost in the reversed shear
case is a factor of four smaller than in the standard shear case. This indicates
that the circulating particles may experience a transport barrier similar
to that of the field lines that may be linked to the inapplicability of the
KAM theory in the presence of a non-monotonic g profile. Consequently,
the magnetic topology appears to play a predominant role in the transport
barrier formation. We believe that the transport barrier for the particles is
a consequence of the transport barrier of the magnetic field lines.

Finally, as we have seen, a transport barrier occurs when we have ap-
plied to the equilibrium a magnetic perturbation driven by the DED. Con-
sequently, we could expect that either external magnetic fields such as error
fields or internal instabilities constitute a perturbation to the equilibrium
and could produce a transport barrier if the equilibrium has reversed shear.
But this is still an open question in the physics of magnetically confined
plasma, systems.

ACKNOWLEDGMENTS

We thank Dr. S.P. Hirshman for providing us with the VMEC code
and Dr. K.H. Finken and Dr. A. Nicolai for the input of the DED. This
work was partially sponsored by the Fonds National Suisse de la Recherche
Scientifique and by Euratom.

13



References

[1] Finken K. H. (Ed), The Dynamic Ergodic Divertor (DED) for TEX-
TOR, Rep. Jiil-3285, Kernforschungszentrum Jiilich (1996).

[2] Lichtenberg A. J., Lieberman M. A., Applied mathematical sciences 38
(New York: Springer-Verlag) (1992).

[3] del-Castillo D., Greene J. M. and Morrison P. J., Physica D 91 (1996)
1.

4] Fischer O., Cooper W. A., Plasma Physics Reports 24 (1998) 784.
5] Boozer A. H., Phys. Fluids 28 (1980) 904.
6] Cooper W. A., Plasma Phys. Control. Fusion 39 (1997) 931.

[
[
[
[7] White R. B., Boozer A. H. and Hay R., Phys. Fluids 25 (1982) 575.
[8] White R. B., Chance M. S., Phys. Fluids 27 (1984) 2455.

[

9] Fischer O., Cooper W. A., Plasma Phys. Control. Fusion 40 (1998)
1269.

[10] D’Haeseleer W. D., et al., Flux Coordinates and Magnetic Field Struc-
ture (New York: Springer-Verlag) (1991).

(11] Abdullaev S. S., Finken K. H. and Kaleck A., Phys. Plasmas 5 (1998)
196.

[12] Numerical Algorithms Group Fortran Library, Mark 15, The Numerical
Algorithms Group Limited, Oxford (1991).

{13] Sanz-Serna J. M. and Calvo M. P., Applied Mathematics and Mathe-
matical Computation 7 (London: Chapman & Hall) (1994).

[14] Montvai A., Fusion Enginnering and Design 37 (1997) 427.

[15] del-Castillo D., Dynamics and Transport in Rotating Fluids and Tran-
sition to Chaos in Area Preserving Nontwist Maps PH.D. thesis, Univ.
of Texas at Austin (1994).

14



CAPTIONS

. a) Profile of the safety factor ¢ for the monotonic case (solid line) and
for the reversed shear configuration (dot line) (top). b) Poincaré cross
section for the monotonic ¢ profile with cc = 0.8 (bottom left) and c)
for the reversed shear profile with cc = 0.8 (bottom right).

. Profile of the local diffusion coefficient as a function of the radial coor-
dinate J/Jyq4 for different values of ce. a) For the monotonic g profile
(top left) and b) for the reversed shear profile (top right) (Crosses:
cc = 0.4. Circles: cc = 0.6. Stars: cc = 0.8. Triangles: cc = 1.0).
¢) Probability of the radial transition P(J,n) after 25 x 10% iterations
for the reversed shear case and cc = 0.8. The initial conditions are
P(J,0) = 6(J — 0.775) (bottom).

. Percentage of particles lost for the monotonic ¢ profile without the
DED a) as a function of time (Circles: n [ntot. Crosses: ny.q/ntot.
Squares: ney/ntot. Stars: nyq/ntra. Triangles: Neir/ncir) (top left).
b) As a function of the poloidal and toroidal angles for the total lost
particles (top right). c¢) As a function of the initial radial coordinate
0.3 < Sinit < 0.95 (Circles: nyoy/ntot. Crosses: nyq/ntot. Squares:
Neir/ntot. Stars: nypq/nira. Triangles: ny, /ncir) (bottom).

. Percentage of particles lost for the monotonic ¢ profile with cc = 0.8 a)
as a function of time (Circles: ny/ntot. Crosses: g /ntot. Squares:
Neir[ntot. Stars: ny,/ntra. Triangles: ngy/neir) (top left). b) As
a function of the poloidal and toroidal angles for the total lost par-
ticles (top right). c) As a function of the initial radial coordinate
0.8 < sinit < 0.98 (Circles: nyy/ntot. Crosses: nyq/ntot. Squares:
Neir[ntot. Stars: ngq/ntra. Triangles: ng, /ncir) (bottom).

. Percentage of lost particles for the reversed shear profile with cc =
0.8 a) as a function of time (Circles: mys/ntot. Crosses: ni.q/ntot.
Squares: nci/ntot. Stars: ng./ntra. Triangles: ne,/neir) (top
left).b) As a function of the poloidal and toroidal angles for the total
lost particles (top right). ¢) As a function of the initial radial co-
ordinate 0.8 < siniy < 0.98 (Circles: ngo/ntot. Crosses: ng,/ntot.
Squares: ngr /ntot. Stars: ng/nira. Triangles: ney/ncir) (bottom).
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