LRP 537/96 February 1996

A CLIENT-SERVER-MONITOR DATA
MANAGEMENT ENVIRONMENT FOR
PARALLEL COMPUTATION

S. Wiithrich, S. Merazzi & T.M. Tran

A Client-Server-Monitor data management
environment for parallel computation

S. Wiithrich?, S. Merazzi® and T.M. Tran®

aCray Research (Switzerland) S.A.,
Cray-EPFL PATP Center, PSE, CH-1015 Lausanne

bSMR Corporation, PO Box 41, CH-2500 Bienne 4
¢CRPP-EPFL, 21 av. des Bains, CH-1007 Lausanne

Abstract

A Client-Server-Monitor computational environment is presented. This environment
is based on a data management system which provides tools for the logical and
physical organization of data. Calculations are performed by Client programs on a
distributed memory system under the control of the Server. Data are handled by
means of a Data Base Server module connected to the Server. The Monitor module,
which is based on the XGrafix library [1], offers capabilities for on-line interactive
monitoring of running applications. The MEM-COM Data Base [2] is used as data
management system and communication within the Client-Server-Monitor environ-
ment is done using PVM. Performance measurements are presented as well as expe-
riences with a PIC simulation running on a Cray T3D.

Introduction

Over the last decade supercomputers have become an increasingly employed
tool in a large variety of fields in both academic and industrial institutions. Real
life computer applications require however very large memory and fast process-
ing units. A new generation of massively parallel processing (MPP) computers
have been proposed by a number of supercomputer vendors in order to provide
significant increase in both memory and computational power over the tradi-
tional vector or scalar supercomputers. These systems differ from each other
depending of the memory configuration (shared or distributed) and the chosen
processor type used as processing elements (PE). All the developments reported
in this paper have been made for distributed-memory computer systems. A dis-
tributed-memory system is either a MIMD-type (Multiple Instruction, Multiple
Data) of massively parallel computer like Cray’s T3D or composed of separate

processing units interconnected by a communication network such as a cluster

1

of workstations.

One of the consequence of the growth in power and speed of this new genera-
tion of supercomputers is the very large amount of data one has to deal with. On
serial supercomputers, input and output data manipulation, on-line storage of
information, post-processing treatment of results as well as data archival of large
calculations are often handled by advanced tools such as a data management
system (DMS). With the advent of massively parallel computers, DMS have to be
extended in order to take advantage of the scalability and the larger capabilities
offered by MPP systems. Due to the increase in complexity of these new architec-
tures, special attention has to be paid in order that DMS maintain a high level of
efficiency, while preserving the same level of functionality. The Client-Server-
Monitor is aimed to help engineers and scientists to move from traditional meth-
ods of programming for sequential machines using traditional DMS to the new

generation of MPP computers, by offering a similar programming environment.

The Data Management System

Data management systems have become a common tool for handling data dur-
ing large calculations. Such systems are usually a collection of tools for data and
memory manipulation. They provide support for self-descriptive and context-
free data manipulations as well as for memory and memory-to-disk operations.

The benefits offered are multiple:

* A logical organization of data. Data structures and formats are handled by
means of a high-level language interface. The self-descriptive data representa-
tion entails high visibility of data structures for both the application program-
mer and the user. It allows also symbolic access and manipulation of data

which facilitates code development and testing.

* A physical organization of data. Fast access to large amount of data stored in
memory or on disk is usually critical for large computer application. Portabil-
ity of both binary data bases and codes is also a important issue for multi-
platform development. DMS have to provide archives handling and to facili-

tate the access of stored data by post-processing tools.

Within the Client-Server-Monitor computational environment, the MEM-COM

Data Base is used as DMS. MEM-COM is based on a modular approach which
allows flexible development of code by means of separate modules. Compatibil-
ity between modules is imposed by a standard interface with the data base. Fig-
ure 1 presents a schematic view of the relation between the data base and the

computational modules.

While data bases provide a high level of flexibility, they have often made their
use daunting for users not accustomed to their complexity. In order to gain sim-
plicity, the MEM-COM library provides standard functions in C and
FORTRAN 77 which can be accessed as subroutines or functions. They combine
low-level system calls and eliminate unnecessary internal memory manage-
ment. Below, a short FORTRAN 77 example is shown of how a data base (called
“demo.db”) is opened and a set of coordinates (set number 1) is copied into an

allocated memory region defined by the identificator “idcoor”:

c Open data base file “demo.db”
call opendb(l, ‘demo.db’, ‘o0ld’, istatus)
¢ Load set number one in single precision

call dmmget(l, ’‘COOR.1’, 0, nword, ‘E’, idcoor, istatus)

Computer calculations are usually done in three successive steps (see Figure
1): The pre-processing step defines, generates, or modifies the basic elements of the
calculation (e.g. geometry, mesh, etc.), the calculation itself where large memory
and computational power are required and finally, the post-processing step dur-
ing which output data are analyzed and archived. In the case of a distributed
memory system, these different steps can take place on different computers: Pre-
and post-processing are usually done on a workstation, while the computation
itself is performed on a MPP system. Any DMS faces therefore several problems:
Compatibility between data representation, spread of data among various com-
puters or PEs, and synchronous or asynchronous accesses to and from the data

base.

The Client-Server-Monitor programming environment

In order to cope with these difficulties, the Client-Server adopts a relatively sim-

ple approach based on the “master-slave” programming model. In such a para-

3

digm, the Client programs are controlled by a Server which provides support for
the basic administrative tasks. In addition, a few processing elements can be
dedicated for very specific purposes such as data base handling (Data Base
Server), on-line monitoring and process control (Monitor). The addition of a Mon-
itor module to the Client-Server concept is aimed at providing a graphical user-
interface tool which can be used for program development and debugging and
also for monitoring the time evolution of data during computation. Figure 2
shows the various components of the Client-Server-Monitor. In this environment

one can distinguish the following elements:

The Server acts as a program master. It controls the initialization and starts up
requested tasks (Client programs, Monitor and/or Data Base Server) either on a
local PE or on a remote host or PE. The Server also manages the various pro-
cesses and cleans up all tasks at the program completion. Within the Server mod-

ule, events are controlled by an “event loop” made of blocking reads:

while (1) {
read event
case event from Client
case event from Data Base Server

case event from Monitor

Note that signals cannot be used to handle events, since they are inherently

recursive. Libraries such as PVM or Motif do not allow for recursive coding.

Client programs are written by the user and they consist of either a single pro-
gram written in the SPMD (Single Program, Multiple Data) programming style
or a collection of heterogeneous programs. Request made for writing or reading
data or for on-line diagnostics will activate the Data Base Server or the Monitor
respectively. Explicit message passing is enforced between the various Client
programs by the use of simplified communication calls which allow transparent

data transfer between hosts on which data representation may differ.

The Monitor is a dynamic module which can display 2D and 3D diagrams for
on-line monitoring as shown in Figure 3. The X11-display of the Monitor is based
on the XGrafix library which offers primitives for the drawing of windows,

curves, vectors and 3D plots (each diagram has a multi-curves capability). The

4

Monitor module has been written in C++ to allow a more flexible management of
data. A specific Client has to be chosen to communicate data to the Monitor. This

node is responsible (1) to initialize the diagrams (FORTRAN 77 example):

if (mype.eq.0) then
call MON_start(istatus)
call MON_diagram(l, ‘linlin’, ‘Xaxis’, ‘Yaxis’, ...)
call MON_curve(l, 1, ‘hist2d’, npoints, colorl)
call MON_curve(l, 2, ‘curve2d, mpoints, color2)

endif

(2) to collect the data spread among the clients at a pre-defined frequency and to

send these updated values to the Monitor:

if (mod(nstep,10) .and. mype.eq.0) then
call collectData(x, y, n, z, w, m)
call MON_updcuve(l, 1, x, y, n, time, istatus)
call MON_updcuve(l, 2, z, w, m, time, istatus)

endif

Layout parameters of the diagrams can be changed at run time by means of
menus. A panel is also displayed (see Figure 3) which provides interaction with
the running application. At the present stage, the panel offers the possibilities to
modify the progress of the calculation (Run, Step and Stop), to dump pre-defined
variables in the data base (Save) or to disable temporarily the display (Wait)
without interrupting the calculation. Finally, the Quit option prompts a graceful

stop of the program.

The Data Base Server is an optional module started only if a request is made to
access a data base. The data base access is controlled in a sequential manner.
Data bases are mainly used to store initial input data, to archive intermediate

data which can be used to restart a calculation and to store final results.

Communications between the various actors are made by means of the PVM
(Parallel Virtual Machine) explicit message passing library [3]. This library has
been used for the development of this environment since it provides support for
a large variety of different computer architectures and is easily implemented in

an application. However, it suffers from drawbacks like multiple buffering of

data, the presence of numerous daemons and a rudimentary handling of groups.

Performance measurements

1/O performance measurements depend heavily on the hardware configuration,
such as CPU clock speed, CPU work load, memory bandwidth, I/O controller
configuration, and network bandwidth. Since the PVM library is used to transfer
data within the Client-Server, an overhead is to be expected when performing I/
O operations via the Data Base Server compared to the non-distributed version of
the MEM-COM DMS (stand-alone version), where I/O operations are directly
performed to the disk. In order to measure this communication overhead, tests
have been made to compare results obtained with an I/O test program for three
different configurations: The stand-alone version of the MEM-COM DMS, a local
version of Client -Server, where the Client program (i.e. the I/O test program) and
the Server run on the same computer, and a network version of the Client-Server

where the Client program runs on a remote platform (see Figure 4).

The I/0 test program consists of write and read operations on a single data
base file. A constant number of data sets of size ranging from 1 to 1000 integers,
are first written and then read. Tests have been run on 133Mhz workstations con-
nected by a 10Mbit/sec Ethernet cable. Results displayed in Figure 5 show the
elapsed time required to transfer data sets for the local and network version of
the Client-Server, normalized to the elapsed time taken by the stand-alone MEM-
COM DMS. It can be observed that, compared to the stand-alone version, the
overhead for writing and reading data sets is approximately a factor of 8, respec-
tively 11, if the Server runs on the same platform as the I/O test Client program
(local version) and a factor of about 13, respectively 17, if the Server runs on
another platform (network version). The normalized elapsed time measured is
not influenced by the size of the sets transferred. Although PVM allows the
modification of the size of its internal data buffers, it has been found rather diffi-
cult to optimize this parameter for cases where set size varies significantly. It
should also be stressed that, although the communication overhead measured in
this test is mainly due to the message passing library, results presented in this
section should not be considered as a benchmark of PVM. They are only given as

an indication of the overhead one has to pay when using a distributed DMS.

Nevertheless, the results show an important overhead in communication, which
is mainly due to multiple data conversions and superfluous buffering of data by
PVM. To remedy this situation, a new version of the Client-Server-Monitor is
presently under development, which uses sockets to allow a more flexible man-
agement of communications and to avoid the cumbersome presence of multiple

daemons.

Similar I/O tests have been performed on a Cray T3D. Client programs are
running on nodes of the T3D and the Server module is on the Cray YMP front-
end computer. Unfortunately, data transfer between the T3D and the front-end
computer is difficult to measure since it depends critically on the load of the
front-end machine as well as on the system configuration, both of which are out-
side of the control of the user. Measurements may therefore strongly vary
depending on the time at which the tests are made. To cope with this situation, a
serie of tests has been performed to evaluate the dispersion in measured elapsed

time for such a hardware configuration.

Tests have been made with 1, 8, and 32 Client programs (PEs). Each node
transfers 100 data sets of size ranging from 1 to 1000 integers. Figure 6 presents
average elapsed time for writing and reading data sets. The measured disper-
sion is represented by the vertical bars. Results show a dispersion up to 70% of
the average elapsed times due to the load of the front-end computer. The elapsed
time has also been found to increase proportionally to the number of Client pro-
grams. This is due to the fact that parallel I/O requests made simultaneously by
multiple PEs are serialized by the Server event handler. Data base access time
increases for large data sets. For this test case, it reaches about 0.3 Mbytes/ sec for
large sets with a fully loaded front-end computer (based on the elapsed time and
not the CPU time). These results should not be taken as benchmark of the dis-
tributed PVM bandwidth on Cray supercomputers (see Ref. [6] for performance
overview), since other effects than I/0O transfer rates dominate. These effects
include effective data base operations, serialization of the event handler, and
PVM daemons operations among others. In order to suppress the Server event
handler bottleneck, parallelisation of the event handler by multi-threading the
Server will be investigated in the future. This will, however, substantially
increase the complexity of the Data Base Server due to the treatment of potential

conflicts arising from data dependencies. The additional run-time overhead

implied by the use of threads should however be small compared to the other
UNIX processes involved in the environment such as the sockets, since threads
do not require the allocation of a separate address space and are much cheaper

in terms of creation and context switching.

Experiences with a PIC simulation on a CRAY T3D

The first program that benefited from the Client-Server-Monitor was an electro-
static particle-in-cell (PIC) simulation developed to study beam instabilities in
gyrotrons [4]. Originally written for a serial supercomputer (a Cray YMP) and
using MEM-COM as DMS, this program has been modified for the Cray T3D
architecture. The pre-processing stage is done in three steps corresponding to
different modules: (1) Generation of the computational mesh, (2) initialization of
data and boundary conditions and (3) domain decomposition [5]. The size of the
input data base created for this problem is a few Kbytes. Geometrical quantities
(e.g. coordinates, connectivity), physical quantities and boundary conditions for
each PE are stored as data sets in the data base. The input data base contains also
some relational tables with physical or numerical parameters relevant for the
calculation. During the computation pre-defined sets of physical values are
stored periodically in order to enable restart of the calculation. Results are stored

for post-processing analysis at the end of the calculation.

With the hardware configuration presented above, measurements have
shown that under normal daytime conditions, transmission of data can reach at
best up to IMBytes/sec for large data sets (a few Mbytes). Since the computation
time between two data transfers is large compared to communication time, the
communication overhead is small, except for very large number of PEs where
the serialization of the event handler slows down the access to the data base. It is
clear that the use of the Monitor decreases the speed of the calculation since
interruptions may be requested by the user and additional data have to be trans-
ferred to the Monitor module. It should be noted that, in general, the CPU time
spent to display the graphics is negligible compared to the transfer time (done
via Ethernet). It has also been observed that the serialization of the event handler
serialization speed may become a critical issue for a large number of Client pro-

grams.

In this Client-Server-Monitor environment the only overhead is due to commu-
nication, i.e. there is no additional run-time if no requests are made to the Server.
This concept has the great advantage over a file server type of DMS that it only
transmits those data that are really requested. I/O and paging are restricted to
the Server process, and not the Client process. Concurrent access control are also

limited to the Server process.

Conclusion

A Client-Server-Monitor computational environment has been presented. The
environment, composed of several modules, provides tools for data manage-
ment and on-line interactive monitoring of running parallel applications. A dis-
tributed version of the MEM-COM Data Base is used as data management
system and communication within the Client-Server-Monitor environment is
presently done using PVM. Intensive numerical simulations in the field of
plasma physics have demonstrated the usefulness of such an environment for
parallel computation. Future development will include the use sockets and con-
current access to the data base in order to increase the capabilities of this envi-

ronment.

Acknowledgments

This development has been made in the framework of the Cray-EPFL Parallel
Application Technology Project. The authors would like to thank K. Appert and
O. Sauter for fruitful discussions. F. Lapique is also acknowledged for his help

and many useful discussions.

References

[1] V. Vahedi, J.P. Verboncoeur and P. Mirrashidi. XGrafix library, version 1.1.
University of California, Berkeley, 1993.

[2] MEM-COM, an integrated memory and data management system. Reference Man-
ual, Version 6.1. SMR Corporation, June 1994.

[4]

[6]

G.A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sun-
deram. PVM 3 User's Guide and Reference Manual. Oak Ridge National Labo-
ratory report, ORNL/TM-12187, September 1994.

TM. Tran, G. Jost, K. Appert, O. Sauter and S. Wiithrich. Particle-In-Cell
(PIC) simulations of beam instabilities in gyrotron beam tunnels. Proc. 20th Inter-

national Conference on Infrared and Millimeter Waves, Orlando, December
1995, 124.

T.M. Tran, R. Gruber, K. Appert and S. Wiithrich. A direct Poisson solver for
Particle-In-Cell simulation. Accepted for publication by Computational Phys-
ics Communication.

PVM and HeNCE Programmer’s Manual. SR-2501 4.0, Cray Research Inc.,
1994, 31.

10

pre-processing calculation post-processing

= (]
2 c »
- O = — N += O
=G 14 ol s.2

= S > (o) -

£ Ella =2 c o
S =|ee o dsal o
to) Ec 17 =4

[[m] - ©
o T N o

Figure 1 : Relation between the data base and the computational modules.

Clients

Master server [

Data Base

‘Data Base Server
(optional)

Diagnostics and
Data Monitoring

Monitor (optional)

Figure 2 : Schematic set-up of the Client-Server-Monitor.

11

Tinn = 583

DI

Figure 3 : Example of on-line monitoring of an application.

12

I/O test program

I/O test program

~ | /O test program

MEM-COM library | . ': MEM-COM library

MEM-COM library

| (serverlibrary) (client library) (client library)
. A puioma
o | . PVM library
Data Base | Data Base Serverj
, - |~ MEM-COM library | -
Fotom 4 (server library) f - | Data Base Servenp

MEM-COM library
(server library)

Data Base f§tream Qi/o‘ .

Data Base

Plattorm B

Figure 4 :1/0O test program configuration. Stand-alone version (left),
local (middle) and network (right) Client-Server versions.

20 T] |) 1 L] 1 I)]) 1 I T 1 1 L)] T) 1 1 l 1 1 T ¥ I ¥)

18 | ‘)\]
Y I]
= 16 - 7
? | _
& .}]
°T 14 -
T X —+8B— write (local)
= - —#— read (local)
g 12 - —©— wrrite (network)
5 [~—&— read (network)
z 10 E]
i = —E]
[EEH B e]
8 1 '] I L L |] 1 I 1 1 1 1 I L 1 L 1 I 1 1 i L I 1 1 1] I L H
0 200 400 600 800 1000

Size of set [nb of integers]

Figure 5: Normalized elapsed time for writing and reading data sets with the
local and network versions of the Client-Server.

13

500 1] I L] T 1 L) I T ¥]] I T T T] | T] 1] I] L 1 T I 1 1

[| —B— 1 PE (write) i
. | —#— 1 PE (read) -
w400 | | —e— 8 PEs (write) -
2 [| —@— 8 PEs (read) N
Y | —A— 32 PEs (write)]
-§ 300 [| —&— 32PEs (read)]
- B -
Q I i
(oW B .
-~ - .
9 200 |- -
<U s + 4
b0 I
«s - .
o -]
Z 100 | I E]
0 :I_Lm:'* —r=——r—r—r—t l:i ! I - — | N S R R — . 1 l-

0 200 400 600 800 1000
Size of set [nb of integers]

Figure 6 : Average elapsed time for 1, 8, and 32 nodes of the Cray T3D to write
and read 100 data sets on a data base on the front-end Cray YMP.

14

