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Abstract

Extensive simulations are performed to investigate effects of electron cy-
clotron instabilities on the gyrotron beam quality, using two-dimensional ax-
isymmetric particle-in-cell (PIC) codes. Both electrostatic and electromag-
netic models, as well as realistic geometries of the gyrotron are considered.
It is found that a large beam density can lead to an electrostatic-instability-

induced energy spread which substantially degrades the gyrotron efficiency.
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I. INTRODUCTION

One of the main prerequisites for efficient operation of high power microwave sources,
such as the gyrotron and the free-electron-laser, is the good quality of the electron beams.
For gyrotrons in particular, the velocity spreads may affect the beam coupling to the elec-
tromagnetic wave. The beam energy spread is important as well, since the energy extraction
efficiency depends strongly on the detuning parameter § = 1 — . /yw where Q.. is the non-
relativistic electron cyclotron frequency, v the electron relativistic factor and w the wave
frequency. In general, beam optics can only induce velocity spreads, producing an almost
mono-energetic beam, since the energy spread induced by the DC space charge across the
thin beam is negligible. This is also the case when considering the effects of the surface
roughness of the gun emitter. On the other hand, beam instabilities which can occur in the
beam tunnel, can induce both velocity and energy spreads, and thus could deteriorate the
beam and its interaction with the microwave in the resonator. On the basis of single-mode
calculations, a substantial reduction of the gyrotron efficiency has been predicted in [1] due
to an energy spread Av/v as small as 1% and less.

Beam diagnostics have been employed recently to measure the beam velocity distribution
in gyrotrons. They are based on the retarding potential technique [2] and the electron
cyclotron emission [1]. Both methods provide only the parallel velocity distribution and
assume a mono-energetic beam in order to estimate the perpendicular velocity distribution.

In the present paper, numerical simulations using the Particle-In-Cell (PIC) method are
presented to study the electron beam instabilities occurring close to the electron cyclotron
frequency Q.. /5. The principal focus is the determination of the various spreads mentioned
above, induced by the instabilities in realistic conditions (geometry, external magnetic pro-
file). Both electrostatic and electromagnetic models are considered. These types of simu-
lations have already been considered in 1D [3] and in 2D [4] in the context of electrostatic
noise amplification in gyrotron amplifiers.

In sec. II, the PIC simulation models are described in detail. The linear theory of



the electrostatic electron cyclotron instability for a uniform plasma and perfectly aligned
gyrocenter beam is briefly reviewed and compared to the 1D PIC simulations in sec. III.
The 2D electrostatic and electromagnetic simulation results are presented in section IV and

V respectively and finally the section VI contains some concluding remarks.

II. PIC SIMULATION MODELS

The simulation model assumes that the beam electron dynamics is fully relativistic. The

equations of motion of the particles are thus written as

du

q 7 x B(Z,1) di
dt  m 0%

- g
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where @ = 4 is the particle momentum, v = \/m is the relativistic factor, m and ¢
are respectively the mass and the charge of the simulation particle and ¢ is the velocity of
light.

In the electrostatic approximation, the electric field is expressed in terms of an electric
potential £ = —V¢ and B is a static magnetic field imposed externally. E(;v) can, for
example, be computed from a set of coils, using the Biot-Savart equations. Each particle
is pushed using Eq. (1) which is time-discretized by the usual second order leapfrog scheme
[5,6]. Using the axisymmetry of the geometry and cylindrical coordinates in which the
azimuthal coordinate 0 is an ignorable variable, the particle phase space coordinates are
(Z,4) = (7,2, ur,ug,u,) and the charge density can be constructed from the ensemble of N,
electrons as

plrv 1) = 03 s - ), )
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The variational form of the Poisson equation, using the charge density as defined by Eq. (2),

1s then
g
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where the integration is performed over the 2D computational domain 2, and # is an arbi-
trary weight function from the same function space as ¢. The Finite Element discretization
of the Poisson equation is then completely defined by choosing the bilinear basis functions
Vi, ¢ =1,...,N on a (r,z) mesh of N grid points [7]. The discretized potential can thus
be expressed as ¢(r,z,t) = SN, ¢i(t)i(r, z), where the coefficients ¢i(t) are obtained by

solving the following linear matrix equation:
N
> Audi(t) = Qi(t)/ e, (4a)
j=1

N,

A = [V Vsrirtz, Qi) = 3L 3 00) 50). (1b)
Dirichlet boundary conditions, ¢ = const., are specified on perfectly conducting walls by
modifying the matrix A;; and the charges (); in a standard manner. Natural boundary con-
ditions (normal derivative 0¢/0n = 0) are automatically included in the matrix formulation
above. The latter conditions are utilized for the field at the symmetry axis » = 0 and to
model the open sides of the boundaries. The electric field at the particle position is finally
calculated from E(r,z,t) = — >N #:()Vi(r, 2). Noe that, by the choice of the bilinear
basis functions ¢;, the charge deposited on the grid Q;, as defined in Eq. (4b), is computed
by an linear assignment, while the electric field interpolation on the particle is stepwise
constant (linear) in r and linear (constant) in z for E, (F,). This scheme is similar to the
energy-conserving scheme described in [5].

At every simulation time step, the beam is continuously injected at the left end of
the computational domain, z = 0, with a prescribed constant current I, a given number
of injected particles N;,; and a distribution function of guiding centers Finj(rg,us,uy, @),
where u ,u)) are respectively the momenta perpendicular and parallel to é, uy > 0and Fis
uniform in the pitch angles . Finite spreads in the guiding center radius r, as well as in the
velocities u, ,u) can be prescribed. The charge of these particles is given by ¢ = —IAt/N;,;
while their mass m is such that the charge to mass ratio is that of an electron q/m = —e/m..

At both ends of the domain, free boundary conditions are applied for particles with u, < 0
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at z = 0 and u, > 0 at z = L,. The total number of particles N, is thus a time varying
function with N,(t = 0) = 0. It increases linearly with time up to approximately one transit
of the beam electrons across the computational domain.

Electrons of a non-drifting plasma could also be simulated together with the beam elec-
trons. The simulated charge of these N,;,, plasma electrons is then q = —€Npasma/Nsim,
where Nyjgsme = [ n0dV and ng is the constant plasma density. At both ends of the domain,
either periodic or reflecting boundary conditions are applied to these plasma electrons so as
to keep N,;,, constant.

The equations (1) and (4) form a complete electrostatic model for the self-consistent
evolution of the electron beam. It has been implemented on a massively parallel computer,
using the domain decomposition technique to parallelize the particles as well as the elec-
trostatic field. The parallel direct matrix solver described in [8] is utilized for solving the
discretized Poisson equation (4).

The extension of this model to include electromagnetic effects consists of solving the
Maxwell equations for the fields E(7,¢) and B(,t). In the axisymmetric case considered
here, the electromagnetic fields can be decomposed into the decoupled TM polarization
(Er, B, By) and the TE polarization (B, B, Eg). The particle equations (1) remain un-
changed but the current density has to be calculated:

Np

Tirz.0) =) a0l ), (5)
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The detailed description of this electromagnetic model and its implementation is given in

[9].

III. REVIEW OF LINEAR RESULTS

The linear theory has been used by several authors to analyze the electrostatic elec-
tron cyclotron instability. In [3], Chu considered a neutral, uniform and infinite plasma

approximation. Assuming an uniform external magnetic field Byé, and a cold electron



beam, represented by the distribution F' = §(uy — uio) d(uy — wup)/(2muy), he found an

approximated linear growth rate for the n™* cyclotron harmonic, w o~ 18 /v, given by

w; = an(kxTL) ﬁlO Wpe, (6)
ket /7,

where $).c, wy. are the non-relativistic electron cyclotron and plasma frequency respectively,
rr. = u10/S is the Larmor radius, 81 is the initial perpendicular velocity normalized to
the velocity of light ¢, vo = (1 +u?,/c? + uﬁo/cz)l/2 is the initial relativistic factor, k, is the
perpendicular component of the wave vector and J, is the n* order of the Bessel function.

The more elaborate model of a perfectly aligned gyrocenter beam has been considered
in [10,11]. The electron density across the magnetic field of such a beam, assuming that it

is cold and centered at = = 0, has the following dependence

y= e 1 7)
ne(x) = —_——
™o\ —a?/r}

where 7. is the beam density averaged over the beam diameter 2r;. The growth rate at the

nt* cyclotron harmonic is then

b= 2| S e, )

where @,; is the averaged non-relativistic plasma frequency. Notice that both growth rates
as given in Eqgs. (6) and (8) exhibit the same dependence in the perpendicular velocity 310
and the density, together with a weak decrease for increasing harmonic numbers n.

A one dimensional electrostatic simulation can readily be done for the model used in
the analytical results presented above, by considering a slab with the Cartesian phase space
coordinates (2, ug,uy) of Eq. (1). The matrix A;; and the charge array Q;(t) of the discretized

Poisson equation (4a) now simplify to

Ay = [l @) de, Q1) = <5 3 ilan(0) ©

Yz p=1
where 5, is the area of the simulated beam slab. The simulation starts by loading a cold and

pertectly-aligned guiding-center electron distribution. A small perturbation §p, = esin(ne,)
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is then imposed on the uniformly distributed gyro-angles ¢,, to excite the n** cyclotron
harmonic mode. The growth rates calculated from the 1D slab simulation are compared to
the analytical predictions in Fig. 1, showing good agreement, especially in the low density
region: the small discrepancy can be attributed to the low density assumption used to obtain
Eq. (8). For high harmonic numbers, the simulation growth rates are slightly smaller than

the theoretical estimates, as can be seen in Fig. 2.

IV. 2D ELECTROSTATIC SIMULATIONS

Let us first consider a simple cylinder of constant radius R, = 5 mm. The Dirichlet
boundary condition (perfectly conducting wall) is applied at » = R,, and Neumann condi-
tions are assumed at both ends, z = 0 and z = L,. A cold annular electron beam with a
pitch angle o = u, fu) = 1.5 and energy Vo = 70 kV is injected at z = 0 into the cylinder,
immersed in an uniform magnetic field B = By,. This geometry can be considered as the
simplest model for the beam tunnel connecting the gun region to the gyrotron resonator.
The simulation starts from noise and, for a given beam current I, the tunnel length L,
is chosen sufficient for saturation to take place before the beam enters the resonator. A
quasi-steady state is reached after about three electron transit times along the cylinder.
Typical longitudinal profiles of spreads at this state are illustrated in Fig. 3, showing the
convective nature of the instability. By performing a time Fourier analysis of the potential
along the axis, ¢(r = 0,z,1), after the quasi steady-state has been reached, it can be seen
that the instabilities occur, indeed, at frequencies close to the relativistic electron cyclotron
frequency wee = Qee/y (see Fig. 4). The Fourier transform in z of this signal, displayed
in Fig. 5, clearly shows that, in addition to the Doppler shifted electron cyclotron branch
w = twee + kv, the low frequency Langmuir wave w = fw,. + k,v, >~ k,v, has also been
excited.

In Fig. 6, the saturated velocity and energy spreads are displayed versus the beam density.

For each value of the beam density, the system length L, is chosen sufficiently large to reach



saturation. The results from the 1D simulation described above are also reported in figure. 6,
showing that the 2D spreads are only slightly larger than the 1D ones: the finite Doppler
shift k,v, does not seems to be an important effect for the electrostatic instability with
uniform B. In most gyrotrons, the beam density w?, /0 is usually smaller than 10~2 since
high current beams are designed to also have large cross-sections. As a consequence, the
maximum perpendicular velocity spread due to the electrostatic electron cyclotron instability
is expected to be around 10%. However, the spreads in y can be as large as 1% which exceeds
by at least an order of magnitude what can be expected from DC space charge effects alone.
As shown in Ref. [1], such values of Avy/v could significantly reduce the gyrotron interaction
efficiency. In order to assert that the instability can occur in the beam tunnel, and hence
degrade the beam quality before reaching the gyrotron resonator, it is important to consider
the effects of non-uniform magnetic fields in the beam tunnel.

In Ref. [4], the effects of the magnetic field gradient have been considered using a linear
magnetic taper. It was shown that the nonlinear saturated spreads are not affected even
though the linear amplification rates k; can change (see Fig. 5 of [4]). This change is due to
the increase (decrease) of the density and 3, in a positive (negative) magnetic field taper,
consistent with the linear growth rate given in Eq. (8).

In the following, we will use the real magnetic field found in two existing gyrotrons:
the first (gyrotron I) is a quasi-optical gyrotron operating at 90 GHz [12] and the second
(gyrotron II) is a cylindrical cavity gyrotron operating at 118 GHz [13]. Experimental mea-
surements have shown that the quasi-optical gyrotron efficiency saturates at a maximum
value of 15% instead of the predicted 22%, while in the second device, the measured effi-
ciencies agree well with the theory prediction. In the simulation, we consider only the beam
tunnel extending from the end of the acceleration region to the center of the resonator, as
shown in Fig. 7. The magnetic field for both cases is computed from the gyrotron coils. The
phase space distribution of the injected beam is specified using the equilibrium obtained
from the electron gun design code Daphne [14].

The steady state frequency spectra of the electrostatic potential ¢ at r = 0, in the case
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of gyrotron 1, are plotted at different axial positions in Fig. 8, revealing that electrostatic
instabilities are developed at frequencies close to the local electron cyclotron frequency we.(2).
As in the uniform B case, a weak excitation at low frequencies could also be observed.

The evolution of the computed energy spreads, displayed in Fig. 7, shows that the max-
imum spreads in gyrotron I are much larger than those in gyrotron II. In addition, the
nstability developed in gyrotron II is not yet saturated, due to the shorter beam tunnel.
The main cause of the larger spreads found in gyrotron I is, however, the larger beam density
reached in the maximum magnetic compression region as can be inferred from Fig.9. Notice
that the correlation between the maximum spread Ay/v and the normalized beam density
wh, /D2 (with Qe calculated using the maximum B field) is practically the same as that
found in the constant magnetic field case, shown in Fig. 6. We thus get the simple result
that gyrotron II has smaller energy spreads because the beam was designed to have a small
density. Referring to the calculations of the efficiency versus the energy spread shown in
Fig. 12 of [1], the efficiency in gyrotron I is expected to decrease to 18% from its mono-
energetic beam prediction of 22%; while in gyrotron 11, the effects of the spreadsinduced by
the electrostatic instability should remain negligible on the efficiency.

The space charge depression induced by an opening in the quasi-optical gyrotron is
simulated, using the geometry illustrated in Fig. 10. In order to single out the effect of the
beam depression, the external magnetic field is assumed uniform. The simulated domain
1s 20 cm long with an opening of 12 cm located at its center. A o = 1.5 and V = 70 kV
cold annular beam is injected at the left side. The steady state velocity and energy spreads
calculated at the right boundary are shown versus the beam current in Fig. 11. By comparing
these spreads with those obtained without beam depression (see e.g. Fig. 6), it is clear that
the space charge depression has no effect on the electrostatic instability.

Finally, the presence of a background plasma is considered by adding a population of non-
drifting cold electrons in the simulation with a specified density. These cold electrons could
roughly model an imperfect vacuum in the gyrotron or the secondary electrons which can

be emitted by the gyrotron walls. We have observed no noticeable effects on the instability,
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except when the background electron density largely exceeds the beam density. In that case,
a strong two-stream instability occurs, drastically changing the phase space distribution of

the beam electrons.

V. 2D ELECTROMAGNETIC SIMULATIONS

The main goal of the electromagnetic simulations is to find whether the electromag-
netic perturbations have an effect on the beam electrostatic instability, thus increasing the
degradation of the beam quality. A detailed investigation, using the full electromagnetic
model, has been conducted and presented in [9]: only the essential physical results of this
investigation are summarized below.

As expected, backward TE and TM waves can easily be excited in the lossless cylinders
considered here, leading to large spreads of the perpendicular velocity Au, /u,. The parallel
velocity spreads Aw/u) however are comparable to those found in the electrostatic case. In
addition, the electrostatic perturbations can be identified in the electromagnetic simulations,
but do not seem to be affected by the electromagnetic perturbations.

Electromagnetic simulations with a magnetic taper have been performed as well, showing
that the magnetic gradient can suppress the electromagnetic instability when the excited
frequency is not close to the cut-off (k, ~ 0). For the particular case of the gyrotron shown
in Fig. 7a, it is found that the magnetic field gradient in the beam tunnel impedes the
excitation of the backward waves.

Although the electromagnetic perturbations can induce very large values of Au, /uy,
they can easily be suppressed in the beam tunnel by introducing absorbers on the wall

and/or by tapering the wall, unlike the electrostatic perturbations.

VI. CONCLUSION

A 2D axisymmetric PIC code has been developed to investigate the adverse effects of

the electron cyclotron instabilities on the electron beam quality in the gyrotron. Both
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electrostatic and electromagnetic interactions are considered. The main result is that the
electrostatic instability can induce energy spreads, of an order of magnitude larger than can
be expected from beam optics, and can thus lead to degradation of the gyrotron efficiency.

The large beam density was identified as the main cause for large energy spreads, which
can be quickly estimated using Fig. 6. In high power gyrotrons which usually operate at
high current, and high frequency quasi-optical gyrotrons in which the beam cross-section
should be kept small in order to couple efficiently with the standing wave of the Fabry-Perrot
resonator, the beam density should, indeed, be kept small. However, this may be difficult

to achieve.
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saturation for 7 =40 A, V5 =70 kV and a = 1.5.

60

=0)

FT of ¢ (R

Z (m) 00 /0,

FIG. 4. The steady state frequency spectrum of the electrostatic potential at the axis R = 0

for I =40 A, V5 =70 kV and « = 1.5.
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FIG. 5. The time and space Fourier transform of the electrostatic potential at the axis R = 0

for I =40 A, Vo =70 kV and o = 1.5.
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of the electrostatic instability.
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