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Abstract

The TCV Tokamak offers an outstanding variability of the plasma
shape. Using X-ray tomography, the shape of the inner flux surfaces of
a poloidal cross section of the plasma can be reconstructed, including
fast variations due to MHD activity. The hardware as well as the
software of the 200 channel system developped for TCV is described.

A new, ’dynamical’ calibration is used. The actual plasma tem-
perature and some global profile parameters serve to determine the
spectrum-dependent efficiency of the photodiodes. Compared to a
’static’ calibration with constant calibration factors, an enhanced qual-
ity of the reconstructed images is observed.

The tomographic inversion is performed using a variety of methods
such as Maximum Entropy, linear Regularisation and a new method
making use of the Fisher information of the emissivity distribution.
The merits of the different algorithms which have been implemented
as MATLAB functions are compared.

The tomographic inversion results are analysed with the help of
the biorthogonal decomposition, allowing e.g. identification of MHD
modes without using any a priori information on the poloidal mode

structure.



Recent results on the dependence of sawtooth activity on the
plasma triangularity are presented to demonstrate the performance

of the soft X-ray tomography system.



1 Introduction

The flexibility of the tokamak TCV, the Tokamak & Configuration Variable
is unique. Design parameters of TCV are a 1M A maximum plasma current,
a toroidal field of 1.57 and a maximum elongation of x = 3. The major
radius is B = 0.88m. Width and height of the vessel are 0.55m and 1.55m,
respectively, with an almost rectangular cross section. About 70 % of the
interior walls of the vacuum vessel are covered with carbon tiles. TCV is
regularly boronised.

One of the main objectives of TCV is the study of the importance of
plasma shaping for MHD stability and confinement. Elongations of up to
Kk = 2 and triangularities in the range —0.7 < § < 1 have already been
achieved [1]. The shape is determined by magnetic diagnostics in connection
with the inverse equilibrium reconstruction code LIUQE [2].

A second diagnostic for the plasma shape is soft X-ray tomography, which
in addition allows access to transient phenomena due to MHD activity, which
play an important role in confinement. The problem consists of determining
the distribution of the emissivity of soft X-rays in a poloidal cross section of

the plasma from a number of line integrated measurements. A set of pinhole



“cameras” holding several X-ray detectors each is placed around the vacuum
vessel. A cone is defined by the relative position of each detector and the
corresponding aperture, usually a slit. The field of view should be sufficiently
narrow to justify the approximation of the cone by a line of sight. X-ray
emission along these lines of sight is integrated to yield a set of chordal
measurements. The inversion of the line integrated data to obtain the two—
dimensional emissivity distribution is an ill-posed problem. A great variety
of algorithms to solve this underdetermined problem exists, some of which
will be discussed below. A second problem is the precise relative calibration
of the detectors which is required to obtain a reasonable inversion, which will
also be adressed in the following.

TCYV is equipped with a system of 9 pinhole cameras for soft X-ray tomog-
raphy with 200 lines of sight altogether, which will be described in section
2. In section 3, we will formulate the mathematical problem of tomography
and present a survey of the different algorithms which we use to solve it, one
of which has been newly developped for TCV. A paragraph is dedicated to
the description of a new ’dynamical’ calibration method which has proven
very useful. The biorthogonal decomposition finally is used to analyse the

inverted data.



Section 4 describes some numerical experiments which have been carried
out to access the performance of our inversion algorithms. Some experimen-
tal data recently obtained on TCV have been analysed to investigate the
influence of the triangularity of the plasma on the sawtooth activity. Results
are presented in section 5. We conclude with a brief summary and an outlook

on the future development of TCV’s soft X-ray tomography system.

2 Experimental Setup

The ability of reconstructing complex plasma shapes is strongly dependent
on the number of cameras arranged around the plasma cross section. The
system on TCV makes use of 10 cameras with 20 detector elements each (see
figure 1). The design was also constrained by the available ports and the
necessity of vessel bakeout to up to 400°C.

Due to different sizes of the portholes available on the TCV vessel, three
different types of cameras had to be built, which only differ in the size of the
housing and the positioning of the detector head, the principle of construction
being essentially identical.

The cylindrical camera housings are made of stainless steel. The walls are



formed by three layers of 1mm thick stainless steel with 1 — 2mm spacing
each. The space between the inner two layers is connected to a water-cooling
circuit while a second one can be evacuated to improve the thermal insulation
(see figure 2). The walls of the concentric cylinders are welded to the first front
plate of the cameras via a thin, bended structure to reduce conductive heat
transfer from the ports during bakeout. The first front plate holds a small
aperture which serves to collimate the field of view in poloidal direction. A
second front plate, which is placed several centimeters behind the carbon tiles
of the vessel’s inner wall serves as a heat shield and has a slit which limits
the view toroidally, but not poloidally. An Aluminium plate which closes the
camera rear holds a vacuum feedthrough for the electrical connections as well
as the connections to provide the primary vacuum required inside the camera
to avoid absorption of the soft X-rays on the way between the Be-absorber
and the detectors. The plate can be removed, allowing access to the detectors
without breaking the torus vacuum.

The poloidally collimating aperture is made from Tungsten to prevent
transparency of the trapezoidal edges (see detail of figure 2). A precise
shaping of the edges with a minimum thickness of 20pm was obtained by
electroerosive processing. The optical throughput or étendue géométrique
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of the aperture/detector arrangement varies between 5.7 - 10~°m2sr and
7.7-1073m?sr.

Separation of torus vacuum and camera vacuum is provided by Beryllium
foils with a thickness of 47um which at the same time block off photons with
an energy of less than about 1keV. The Beryllium foil is curved to provide
equal absorber thickness for all detectors, which is essential for a precise
relative calibration.

The detectors are CENTRONIC LD20-5T linear arrays of 20 pn-
photodiodes which were designed for visible and ultraviolet radiation. To
use them as soft X-ray detectors, the glass window was removed. The active
surface of a single diode is 4 x 0.95mm?, the length of an array is 20mm.
The arrays are mounted on disk-shaped printed circuits with a diameter of
55mm. To minimise the distance between detector and the preamplifiers, 20
SMD operational amplifiers with a transimpedance gain of 2.2 - 105V/A and
a bandwidth of 200k H z are mounted on the back side of each printed circuit.
Detectors and preamplifiers are held by aluminium housings which can be
fixed to the inner front plate of the camera which also holds the aperture and
the Beryllium foil.

The output of the preamplifiers is transmitted by twisted pairs of cables,
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with a ground and a signal for each of the detectors. The 22 pairs of cables (20
signals and a 15V power supply) are grouped inside every camera, shielded
and connected to the exterior via a vacuum feedthrough. The signals are
then fed to remotely controllable amplifiers with gains of 1, 10, 100 or 1000.
A two-stage low-pass filter is usually set to the Nyquist frequency to avoid
aliasing. The maximum acquisition frequency of the 12bit analog-to—digital

converters is 10k H z.

3 Data Analysis

The following paragraphs provide the theoretical background of the tomogra-
phy software package developped for TCV. After an outline on tomographic
inversion algorithms, we briefly describe the way we simulate emissivity data
which are used as well for the calibration as for performance tests. Inverted
data are analysed with the help of the biorthogonal decomposition, which will
be presented in the following paragraph. A few notes on the implementation

of the software conclude this section.



3.1 Introductory Remarks

The goal of soft X-ray tomography is to reveal the spatial distribution of the
so—called emissivity g. The emissivity is determined by the plasma parameters
such as temperature, density, and the distribution of impurities and by the
absorbers which define the spectral range which can be observed, usually thin
Beryllium or Aluminium foils. To define the tomography problem precisely
and to clarify to what extent approximations and simplifications are used,
some definitions are at hand.

The dimension of the spectral emissivity G = G(7,v) is power per volume
and frequency interval, where v is the frequency of the radiation. Let §2,(7)
be the solid angle subtended by one of n, detectors with efficiency 7,(v). If we
assume that the power is radiated isotropically, the total power P, detected

by detector #£ equals
— Q fnd
Pl_—_é‘/.dr /dy —-‘9 . G(r’y)-‘r”(l/) £=1...n4 (1)
(4

where the integrals run over the entire frequency range and the cone defined
by the detector-aperture geometry. If the field of view of the detector is suffi-
ciently narrow, we can assume that the emissivity does not vary on a surface

perpendicular to the central line of the cone S;, which is in the following
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referred to as “line of sight”. The volume integral is thus transformed to a
line integral d — A(8) x ds, where ds is a line element along the line of

sight. This leads to

_ (AQ), o
Py ~ y -S[ds/ dv G(7,v) n(v). (2)

where the factor (AQ),, the étendue géometrigue or optical throughput, is
taken outside the integral, which is justified by a theorem of geometrical
optics which states that the throughput is conserved (see e.g. [3]). The chord

brightness f; is defined as

P,

fi= (AQ).Jar (3)

and is measured in [W . m~2]. A further, generally applied approximation is
to assume that possible differences in detector response can be allowed for

using a calibration factor ¢, for every diode (see section 3.4), which leads to

fo=ci- [ dag(f) ()

Se

where the emissivity
9@ = [ dv G(#) (5)

has been introduced.
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3.2 Mathematical Definition of the Tomography

Problem

The task of X-ray tomography is to reconstruct the two-dimensional dis-
tribution of the local emissivity g from a limited number of line integrated
measurements f;. Mathematically, the problem consist of solving the system
of integral equations

fg=/dsg, L=1...n (6)

Se

where the integral is along the line of sight and n, is the number of available
measurements. This system of inhomogeneous Fredholm equations of the first
kind [4] is always underdetermined, since an infinite number of measurements
fe would be required to determine g exactly.

Due to restricted space, the number of line integrated data available in
fusion research is usually limited to the order of some 102, whereas in medical

tomography some 10° are available.

3.3 Possible Solutions to the Tomography Problem

There are essentially two ways to adress the tomography problem:
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e It is possible to reduce the number of degrees of freedom by expanding
the emissivity distribution in a set of orthogonal functions. If we choose
e.g. polar coordinates, a Fourier decomposition for the angular part
and a polynomial expansion for the radial part of g can be used. The
underdetermined system of integral equations is thus transformed to
an overdetermined system of algebraic equations which can be solved
for the coefficients of the base functions using a least-squares fit. This
is done by the Cormack-Granetz algorithm [5], which is widely used in

fusion research.

® The area of the poloidal cross section where we want to reconstruct the
emissivity distribution is subdivided into pixels. The size of the pixels
has to be sufficiently small to justify the assumption of approximately
constant emissivity within one pixel. At the same time, the number
of pixels has to be sufficiently small to provide a tractable system of

equations.

We shall concentrate here on the second possibility.
Many pixel shapes can be thought of: square pixels, radial concentric

pixels with and without angular separations [6], concentric pixels determined
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by the flux surface geometry [7] and even hybrids of pixel and orthogonal
function expansions have been used successfully [5, 8]. In the following, we
shall restrict ourselves to a rectangular grid of square pixels with a horizontal

direction z and a vertical direction y.

3.3.1 Pixel Methods: Some Generalities

An advantage of the pixel Ansatz is that the system (6) is transformed to
a system of algebraic equations in a very natural way. We can store the
Npizel = Ty * Ny, values g; of our two—dimensional emissivity distribution as
lines of the column vector g (n, and n, are the number of pixels in horizontal
and vertical direction, respectively). The n, line integrated data are put into
a column vector f. We get

Npizel

f[= Z Tl,'g,' (l=lnl) (7)
i=1
or simply

f=Txg (8)

where * denotes usual matrix multiplication. In the simplest approximation,

the matrix element T}; is equal to the length of the chord # £ in pixel # 3.
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The size of T is 1y X Npizer, the number of lines of sight times the number of
pixels.

The most obvious idea to solve (8) is to invert T. In most cases this is
impossible, either because there are less equations than unknowns (i.e. the
inverse of T does not exist) or, even if we have ny = nyize, the matrix T may
be badly conditioned.

If we had more line integrated measurements than pixels, i.e. 1y > npiger,

we would try to

minimise x° 9)
with
YiTugi — fi
X =2 (=—=—=) (10)
) J
which is the same as
xzz(T*g—f)T*(’i‘*g—f') (11)

The exponent T denotes transposition. For convenience, we have used the
abbreviations Ty = Ty /oy and ft = fi/oy, where oy is the standard deviation

of f;. The solution of the set of normal equations
TT «Txg =TT «f (12)
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then yields a least-squares-fit solution to the tomography problem. This can
work very well, as has been demonstrated e.g. by Decoste [9].

In the limit of much fewer equations, hence f;’s, than unknown g;’s, we can
always achieve x? = 0, because then there is an infinite number of solutions
(“overfitting”). The general idea to obtain a unique and sensible solution in
case of an underdetermined problem is to look for 2 minimum of a functional

¢ which may be written as
C e 1,
minimise ¢ = X +aR (13)

instead of searching a minimum of x? alone. R is a regularising functional,
the regularisation parameter a is a positive number which determines the
weighting between the goodness-of-fit, represented by x2, and the require-
ments imposed on the solution g by the functional R, e.g. the smoothness of
the solution. In the limit @ — 0, the solution is determined by x? alone as
above, in the limit of very large « it is only the smoothing (or whatever we
may have required) which determines the solution. The most likely solution
must be somewhere in between, so one part of the problem is to find a way
to choose the “correct” value of the regularisation parameter, a second part

is to find a solution g for a given value of a.
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Three different choices of ¢ will be discussed in the following: Linear reg-
ularisation, a new method relying on the Fisher information and Maximum

Entropy.

3.3.2 Linear Regularisation

The first method we want to discuss is the so-called linear regularisation
method. All linear regularisation algorithms have in common that the so-
lution, apart from providing a reasonable fit to the data, is expected to be
smooth (see Press et al. [4] and references therein). Combinations with other
algorithms like the Gilbert-Backus method [4, 10, 11] have also been used
successfully. A comparison to a Neural Networks approach has been pub-
lished by Steriti and Fiddy [12]. We present a two-dimensional extension of
the one dimensional case described in [4].

If we expect a smooth solution, the functional R has to measure the
roughness of the solution somehow. The simplest approach is to require the

solution vector g to have minimum norm,
R=|gl’=g" *g (14)
where || - || denotes the usual euclidean vector norm. This is called zeroeth
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order regularisation.
First order linear regularisation is equivalent to require the solution to

have small gradients. We can choose

R = |lgx|® + llgy [ (15)

as the regularising functional where gx and gy denote the partial derivatives
with respect to  and y, respectively. If we assume that V, and V,, are finite-
difference matrix representations of the corresponding differential operators,

we can write
R = (V. g)T *(Vx g8) + (Vy g)T * (Vy g) (16)

or

R=gl« (VxT * Vg + VyT * Vy) * g. (17)

With the help of the definition
H=V,"*Vy+V,TxV, (18)
we get from (11) and (13)
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Setting all partial derivatives 0¢/8y; to zero, we obtain the normal equations
(TT+ T+ aH) xg = TT «f (20)

which have to be solved for g, which can be done by standard methods like
e.g. LU-decomposition®.

Second order linear regularisation is equivalent to looking for a solution
fitting the line integrated data and having minimum curvature. The regular-

isation functional can be expressed as
R = || Ag|* = (2g)" * (Ag) (21)

If A denotes a finite difference matrix representation of the Laplacian, we
can write

R=(Axg)T+(Axg)=gl *ATxAxg (22)
which means that the matrix H of eqn (20) is given by

H=ATxA (23)

It has to be stressed that the equation (20) is the same for all orders of

linear regularisation. It is just the matrix H which has to be changed, for an

If you are a lucky user of MATLAB, you just employ the ‘\’- operator.

19



n’th order regularisation, H contains the (finite difference) matrices of the
n’th derivative of the solution, analogous to (21). For zero order regularisation
(14), the matrix H is simply the unit matrix. Higher order algorithms are
possible, one can even think of a mixture of different orders ( “solution close
to a differential equation”, see [4]).

The “correct” a has to be determined iteratively, ¢.e. for a fixed a eq
(20) has to be solved. It has to be verified if a certain criterion is fulfilled, if
not, @ has to be changed and a new solution has to be calculated. A possible
criterion is

X* ~ ny (24)

provided the measurement errors g, are known sufficiently well (see the dis-

cussion of Maximum Entropy below).

3.3.3 Minimum Fisher Information

Reinmuth has shown [13] that the so—called Fisher information can success-
fully be used for the assessment of inverse problems. The Fisher Information

of a probability distribution is defined as

A C)
IF_/ o) (%)
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where the prime denotes the derivative with respect to z and we assume that
the integral [ g(z)dz equals unity.

If we identify the distribution g with the soft X-ray emissivity and =
with the pixel index 7, the motivation to use the Fisher information as a
regularising functional is evident. We see immediately from the definition
(25), that minimising the Fisher information of ¢ implies a minimisation of
the absolute value of the first derivative of g, as is the case for first order
linear regularisation (see above). But the denominator of the integrand in
eqn (25) weighs the smoothing in the sense that for a fixed contribution to
the integral, the absolute value of the derivative is allowed to be larger if
the value of g itself is also large than in a case where g itself is small. This
means that the smoothing is strongest where the values of g are small. For
soft-X-ray tomography, this seems reasonable: small values of g correspond
to low emissivity, hence border regions of the plasma with low temperature.
The contribution of these areas to the chord brightness f, are small due
to the transmission function of the Be-absorbers, so not much information
about the low-emissivity regions is contained in the line integrated data f;.
On the other hand we do not want to smooth structure in the center of the
plasma where the emissivity is high, so the weighted smooth provided by a
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minimisation of the Fisher information of g seems to suit our problem very
well.

Instead of treating the fully non-linear problem of minimising the Fisher
information under the constraints (6) as sketched in Reinmuth’s diploma
thesis [13], and by von der Linden [14], we rather exploited the central idea
to conceive a weighted linear regularisation method.

Starting from first order linear regularisation as described above, we are
free to add a diagonal weight matrix W, as long as all elements are greater

than zero (W;; > 0):
Ho Vel s Wx Ve +V, T« Wx U,y (26)

To minimise the Fisher information of the distribution g, we can not directly
insert 1/g; as a weight, since this would make the method nonlinear. Instead,
we start with W) = 1, the unit matrix, which is equivalent to first order
linear regularisation. We solve the normal equations (20) with H defined by
equation (26) and use the solution g(!) thus obtained to determine a new

weight matrix W(1) such that

0
we = &
we = Lo s ™S i=1 27
ij = ——(-;7 05, 9; > 1=1.. «Npizel ( )
9
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and

VV.(Jn) = Wma:c * 5:" > 0: gi(n) <0

where the superscript (n) denotes the solution of the n-th iteration and W,

is an upper limit for the weights. This can be written as
(TT % T 4+ aH™) % g*+) = TT & f ' (28)

where H(™ is defined by (26) and (27) and gV is the new solution. This
procedure can be continued until the weight matrix elements remain con-
stant within a certain limit. It turns out that, although 4-5 iterations may
be needed to have stable W-matrix elements, the solution g remains almost
unchanged after the first iteration, i.e. according to our notation, g(?) repre-
sents a reasonable approximation to the sought—for solution. We have thus
introduced a regularisation which remains linear, but the solution of which

should have minimum Fisher information.

3.3.4 Maximum Entropy

Several algorithms exploiting in one way ore another the information entropy
of a probability distribution exist. The common feature of all Maximum
Entropy algorithms is that the values of the emissivity assigned to the pixels

23



g; are considered as statistically independent, random variables. In addition
to a reasonable fit to the data, the information entropy of the emissivity
distribution is assumed to attain its maximum value.

Different degrees of sophistication and depth of philosophical background
are possible. A brief introduction is provided by [4], although the Bayesian?
aspect of Maximum Entropy is somewhat played down by the authors. A
palatable survey on the theory and different applications of Bayesian Maxi-
mum Entropy is given in a fairly recent book editet by Buck and Mackaulay
[15]. A review of a variety of MaxEnt algorithms has been given by Dja-
fari [16]. We will discuss a Bayesian MaxEnt algorithm described by von der
Linden [17, 18].

Bayes’ theorem relates conditional probabilities P from two events A and

It was Sir Harold Jeffreys who re-discoverd Bayes theorem to approach statistics in
a philosophically different way than the usual “frequentist” school of thought, dominated
by Fisher. The general idea of Bayesian statistics is that we assign probabilities in case
of incomplete knowledge of the system under consideration, i.e. probabilities are rather
degrees of plausibility than relative frequencies of occurence as in the usual frequentist
point of view. Probability theory thus becomes an extension of logic rather than just a

toolbox to handle (seemingly) random data.
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B in the following way:

P(BJ|A)
" P(B)

P(A|B) = P(4) (29)

P(A|B) is the conditional probability of A given that B has occured, P(A)
and P(B) are unconditional probabilities (see [4, 19] or any textbook on

probability theory).
For so-called inverse problems like tomographic inversion, the theorem

can be rewritten as [17, 18, 19]

P(fexplg’I)

P(glfesp, I) = P(g|I) - P 1)

where names and meanings of the symbols are listed below:
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feap experimental, line integrated data (chord brightness)

I any other available information a prior:
g the sought-for emissivity distribution
P(g|I) the probability of the solution prior to any experiment

P(ferp|1) the probability for the experimental data, given only the
prior information I; P(f.;,|I) usually remains unknown
P(f..plg,I) the probability for the measured data f.,, if g and T
were known, known as the likelihood function
P(g|fecp, I) the so-called posterior probability for the solution g,
given the experimental data f.,, and the a priors in-
formation I
The general idea is to search for a maximum of the posterior probability
P(g|fezp, I), i.e. to look for the most probable solution, which is sometimes
referred to as the MAP (Maximum A Posteriori) estimator.
The denominator on the rhs of equation (30) usually remains unknown
and serves only as a normalisation constant. The likelihood function is well-

known and can be expressed as

1
P(fucslg, T) o eop (-2 ) (31)
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with x? given by eqn (11), as usual. Skilling [20] showed that the most unin-

formative, unbiased prior is the entropic one, given by

P(gl) = (%)"m'wfz : - ezp(a S). (32)

The entropy S is defined with respect to a default model m of the emissivity
g as

S= Zgi —-m; —g; ln(%) (33)

The entropy attains its maximum for g given by the default model. If we
combine equations (31) and (32), we see that a maximum of the posterior

probability occurs at a maximum of

Herg) = 33’ +a S, (34

the positive number « still being the regularisation parameter (compare eqn
(13)).

For a fixed, we have to find the solution g*. Following von der Linden
[L7, 18], this can be done introducing n; Lagrangian parameters ), thus
reducing the number of unknowns from npize to ny. Maximising (34) under

the exact “constraints”

0

Fr - fi(g)
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with
flg) = Z Ty g (35)

(36)

is equivalent to maximising

h=aS- 5™ - Ff ta MR- f(g) (87
£ £

with the ~ designing division by the error o, as above and F, designing
an auxiliary variable which will immediately disappear. Setting all partial

derivatives to zero yields

gi = m; exp(— Y ATy), (38)

which automatically assures that the emissivity is nonnegative. The resulting

system of n, implicit equations for the Lagrangian parameters
57 - ZT;,- m; exp (— z Ap Tpi )+ a’tz M=0 (39)
i 17

has a unique solution [17, 18] which can be determined using a Newton-
Raphson scheme [4].
Determining the maximum posterior probability (30) as a function of

the regularisation parameter is a rather formidable task, because it involves
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the evaluation of npis.-dimensional integrals. As indicated in [17, 18], the
integrals become tractable if we expand the integrand into a Taylor series
around the solution g*. In that case the posterior probability can be expressed

as

L
2

1 "pl'zel/z 1 -~ « *
P(g|fe:cp, I) = (ﬂ) : [ det( 5Lt’ + ZZTH g; Tl'i) 'emp( ¢(a’g ) )

(40)
Although quite costly in terms of computer time, this approach to determine
a is much more satisfactory than the ”historic” criterion (24), which is used
in the so—called Classical Maximum Entropy Methods as well as in linear reg-
ularisation. It turns out that the x? of a solution g with maximum posterior
probability can be much smaller than n;. As has been discussed by Skilling
[20] and wvon der Linden [17, 18], the “historic” criterion leads to an under-
estimate of the information provided by the data. The application of (24)
would be justified if we had n, measurements of the same quantity, which is
clearly not the case in tomography or other fields where inverse methods are
used.
An advantage of MaxEnt becomes clear from eqn (38): non-physical nega-

tive emissivity values are automatically excluded. A disadvantage of MaxEnt
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is the amount of calculations involved as well as the fact that pixel emissivi-
ties are treated as completely independent, which results in reconstructions
which tend to be less “smooth” than expected. A smoothing can be intro-

duced applying a so-called “preblur” [19].

3.4 Simulation and Calibration

Artificial data for the emissivity distribution and the chord brightness are
generated using the poloidal flux surfaces obtained from the equilibrium re-
construction code LIUQE for actual TCV discharges. We assume that the
temperature and the density are constant on isocontours of the normalised

flux ¥ = % /9azis. Temperature and density profiles are assumed to depend

on V¥ like

Ne X TNg- U 9ne (41)

T. « T, - ¥° (42)

where the exponents a,, and a7, are adjusted to realistically model actual
profiles measured using the Thomson scattering diagnostic [21]. The central
electron temperature 7, is usually taken from Thomson scattering or mea-

surements of the central 7, by a soft X-ray filter method.
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Assuming a pure Hydrogen or Deuterium plasma, the spectral emissivity

depends on 7. and T, like (see e.g. [22])

Go(7,v) x nl - \/le—Te - exp (— kl;;'e) (43)
where kp is Boltzmann’s constant, h is Planck’s constant and the dependence
of G, on 7'is implicit by ¥ = ¥(7). The distribution (43) describes continuum
radiation, z.e. free-free and free-bound transitions. The distribution is cut off
at low energies by the transmission 7 of our Beryllium absorber, which leads

to

G(r,v) = 1) Gs(F,v) (44)

T(v) = exp(-a(v)), (45)
where data for the absorption coeflicients a(v) were taken from a compilation
by Veigele [23]. If we are only interested in the spectral distribution and not
in absolute values, (43) is also valid for homogeneous distribution of light
impurities up to Oxygen since the 47um thick Be absorbers mounted on
TCV do not transmit line radiation with hv < 1keV.

Two different sets of line integrated data f; are calculated from the sim-
ulated spectral emissivity distribution: one assuming ideal detectors, %.e. de-
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tectors with a spectral efficiency 7(v) identical to unity for all frequencies,
which is also used to obtain the emissivity distribution g. The second set
is obtained using a model of the spectral efficiency of the photodiodes and
experimentally obtained parameters of our actual detectors, which has been
described in [24]. This second set serves to check our calibration method.

A dead layer on top of the photodiodes as well as the finite depth of
the sensitive region lead to an angular dependence of the spectrum averaged
efficiency < 7, >, as defined in [24] and in eqn (47) below. The spectrum
average efficiency can be identified with the calibration factor c; from eqn(4).

Essentially, the integral on the rhs of eqn (2) is approximated by

ffduG'rv

S/ds/ dv G(7,v) 9(v) =~ ff T V) /ds g (46)

or

JIdv G(F,v) nu(v)

=< > =
" I ] dv G(F,v)
S

(47)

where G is a reasonable approximation to the unknown actual spectral emis-
sisvity G, for example (44), and g is given by (5). Instead of calculating
the calibration factors once and for all as usual, the calibration factors used
on TCV are recalculated for every discharge or even separately for different
phases of one discharge using the actual central electron temperature and the
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profile parameters a,, and ar,. The effects of not proceeding like this have
for the first time been described in [25], we will show an example in section
4.2.1.

In addition to the equilibria, we have also simulated MHD mode struc-
tures. We start from a simulation of an equilibrium as described above and

add a perturbation to the spectral emissivity distribution which can be de-

scribed by

v-v,

YuwHeM

2g(2,0) = As(¥)- |1+ ( )2] T os(m-044()  (19)

The amplitude Ag(¥,,), the flux coordinate of the mode ¥,,, with the poloidal
harmonic m as well as the half-width ¥gw s and the time-dependent phase
#(t) are considered as free parameters, § is the poloidal angle. Simulations
of such time series of emissivity distributions have been used to check the

precision of the different reconstruction methods as shown below (section

4.1.2).

3.5 The Biorthogonal Decomposition

One of the strengths of X-ray tomography is the possibility to investigate

MHD activity, i.e. the main interest is rather the investigation of a time
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series of reconstructions than just the reconstruction of a few “stills”. A
mathematical tool which has proven very useful for the investigation of such
time series is the so—called biorthogonal decomposition or BD, see for example
Dudok De Wit et al. [26] and references therein. Technically speaking, the
biorthogonal decomposition can easily be performed using the singular value
decomposition, in the following referred to as SVD.

Suppose we have a matrix X with M lines and N columns. The result of
an SVD of X are three matrices U,S and V so that X can be recovered by
forming their product:

X=UxS*VT (49)

where T denotes transposition. If X were a square matrix, U and V would
contain the eigenvectors of X, whereas S would be a diagonal matrix of the
corresponding eigenvalues. The SVD provides a generalisation to rectangular
matrices. The matrix X is decomposed into a finite number K of “modes”
where K is the minimum of its number of rows and columns. (For a discussion
of the orthogonality properties and the mathematical definitions see [4] or
[26]).

Contrary to previous publications of a successful use of SVD for the
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analysis of soft X-ray data, we rather use SVD after the tomographic re-
construction: If the lines of X contain the time series of the different pixel
emissivities?, the columns of the matrix U represent the spatial “eigen”-
modes, in the following called topos, whereas the corresponding temporal
information is contained in the columns of V or chronos®. The pairs of topos
and chronos are coupled by the elements of the diagonal matrix S, their cor-
responding singular values. The elements of S are stored in descending order,
so that the first topos/chronos pair contains the most important features, the
second contains the most important changes to the “average” described by
pair one and so on.

If we define the global signal energy [26] of X as

M N
Ex = ZZ(Xm,n)za (50)

it can be shown that Ex is equal to the sum of the squares of the diagonal

elements of S:

K
Ex =Y S} K = min(M,N) (51)
k

3This means that the columns of X are formed by the emissivity vectors g as defined

above.

“We adopt here the names used by Dudok De Wit et al. which stem from the greek

words for ’place’ and ’time’.
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The relative signal energy
e = Si/Ex (52)

is a useful quantity to measure the contributions of different features of the

reconstruction, as will be shown below (sections 4.1.2 and 5).

3.6 Implementation of the Software

A software package which includes all the features described in the preceding
sections has been written in the high-level language MATLAB. A library of
processor—optimized numerical routines as described in the LAPACK manual
[27] is provided by DEC. An interface from MATLAB to these so—called
DXML routines has been written by Moret [28]. Matrix multiplication and
LU-decomposition via DXML speeds up the inversion algorithms by a factor
of five. A graphic user interface facilitates data retrieval, calibration and
inversion procedures. Many graphical display options are available. Inversion

results are stored in a common database.
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4 Performance of the Tomography System

4.1 Comparison of different algorithms using artifi-

cial data

We have determined the optimum pixel size in a series of tests, as well with
simulated as with experimental data. As a result, we use a number of 15 pixels
radially, which corresponds to a size of 3.8 x 3.8 em?2. The number of vertical
pixels depends on the elongation of the plasma under consideration. The
grid is usually placed with the help of the last closed flux surface (LCFS)
as given by the equilibrium reconstruction from the magnetic diagnostics.
The outermost rows and columns of the pixelgrid are always chosen such
that their entire pixels are outside the LCFS. The emissivity of those pixels
is forced to zero during inversion by introducing artificial lines of sight. To
assess the performance of the different reconstruction algorithms, we have

used simulated data.
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4.1.1 Simulated Equilibrium

To test the capability of our reconstruction algorithms to reconstitute the
emissivity of an equilibrium, we have used the normalised flux from the equi-
librium reconstruction of TCV discharge #8100 at 0.4 seconds (see figure 4).
This was a limiter configuration in the equatorial plane of the vessel with an
elongation of kg5 = 1.6 and a triangularity g5 of +0.12. The central electron
temperature used to generate the simulated emissivity distribution with the
help of the equations given in section 3.4 was 700eV, the profile parameters
ar, and a,, being 0.8 and 0, respectively, assuming ideal detectors (n = 1).
The simulated chord brightness is displayed in figure 3, the results of the
reconstructions are shown in figure 4 and in table 1.

Figure 4 displays the simulated emissivity distribution (left) and recon-
structions from artificial data without any noise, using four different methods,
namely Bayesian Maximum Entropy, Minimum Fisher regularisation and first
and second order linear regularisation (left to right), as described in section
3.3. The second row shows reconstructions obtained from noisy data, i.e. we
added normally distributed random noise with zero mean and a standard de-

viation of 2.5% of the maximum value of f; on all channels. The dashed lines
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show the poloidal flux isocontours to facilitate a comparison of the different
results.

The Maximum Entropy algorithm yields the “noisiest” reconstructions,
while second order regularisation is smoothest. First and second order regu-
larisation tend to reconstruct an emissivity profile which is slightly broader
than the simulated one. This is not the case for the Minimum Fisher method,
which yields reconstructions slightly less smooth. With respect to noise, the
second order linear regularisation seems to be the least sensitive.

Table 1 provides some figures describing the performance of the algo-
rithms: The number of floating point operations, the elapsed time on a DECa
station and MATLAB V4.1 are listed as well as an average reconstruction

error o which we have defined as

o= \/< (9: — gfim)z > (53)

where < - > stands for an average over all pixels and g™ is the simulated
emissivity distribution.

The results do not seem to justify the 7 x 108 floating point operations
required for the Maximum Entropy inversion. Concerning speed and quality

of the reconstruction, this example seems to favor the second order regular-
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isation method, although the reconstruction error o of the Minimum Fisher
Regularisation is less or equal to that of second order regularisation. We will

see in the following section that this first conclusion will have to be corrected.

4.1.2 Simulated MHD Mode activity

Since one of the main objectives of the soft X-ray diagnostic is the investiga-
tion of MHD activity in the plasma center, we generated a series of emissivity
distributions and artificial line integrated data with a small temporal varia-
tion of the emissivity, simulating a rotating m = 2 island structure.

We chose TCV discharge # 9243 at 0.746s, with negative triangularity
d9s = —0.23 as a base for our simulation. The choice was motivated by
the fact that similar TCV discharges tend to exhibit m = 2 modes which
occasionally lock.

The parameters of the simulation are a central electron temperature of
600eV and profile parameters ar, and a,, of 0.8 and 0, respectively. We
assumed that an m = 2 mode is situated relatively near the center at a
normalised flux of ¥,, = 0.85 with a half-width ¥gwma of 0.15 and a
relative amplitude of 0.1, which means that the variation of the emissivity

due to mode activity is 10% of the equilibrium value at ¥ = 0.85 (see section
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3.4). We calculated 41 successive emissivity distributions and allowed the
phase angle to vary with time so as to simulate a slowing down rotation of
the mode structure. The eight first distributions are displayed in figure 5.

To analyse the simulation and the performance of the different reconstruc-
tion algorithms, we use the biorthogonal decomposition or SVD as described
in section 3.5 or by [26].

The emissivity is stored in a matrix X, the lines of which correspond to
different pixels and the columns of which represent different times. Figure
6 displays the result of an SVD of the simulated emissivity matrix. The
logarithm of the singular values Sy is plotted in the top left of figure 5 vs.
the index k. The top right shows a plot of the maximum emissivity as a
function of time. The second row of figure 5 represents the first three spatial
modes or topos of the reconstruction, in descending order of the corresponding
singular values (left to right). The bottom row displays the most important
three temporal modes or chronos as a function of time.

From figure 5, we conclude that all the structure of the simulated emis-
sivity distribution is contained in the first three topos/chronos pairs, since
the higher singular values are smaller by 14 orders of magnitude. The first
topos/chronos pair represents a kind of average, in our case the equilibrium,
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while the higher terms represent changes with respect to the first pair.

Equal singular values as in this example usually indicate a correlation of
two topos/chronos pairs. In our case, the second and third pair together rep-
resent the rotating island structure. For the topos, broken contours in figure
5 indicate negative values while positive values are plotted using continuous
contours. The relative phase shift of the temporal functions together with the
positive and negative sign of the topos allows to recover the rotating mode
structure.

Reconstructions were produced from artificial line integrated data using
three different levels of noise: zero, 1% and 2.5% of noise, respectively, the lat-
ter representing a rather pessimistic case compared to available experimental
data. We have treated the matrices containing the reconstructed emissivity
distributions in the same manner as the simulated data. One example is
shown in figure 7, the analysis of the Minimum Fisher reconstruction from
noisy data (1%). The noise is clearly visible on the maximum emissivity as
well as on the temporal functions. But in spite of the noise, the first three
topos are almost unchanged as well as the relative signal energies (see table
2). The noise has mainly increased the singular values of the higher order

components (k > 3), which means that it is contained in the topos/chronos
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pairs with with k > 3. (We could thus obtain a filtering of the reconstruction
by leaving those components aside.)

We have summarized the results of the comparison in table 2. The first col-
umn indicates the data set (simulated or reconstructed), the second column
lists the noise level of the artificial line integrated data used for the inversion.
Column three displays the average reconstruction error o as defined in equa-
tion (53). The following three columns contain the relative signal energy of
the first three topos/chronos pairs a defined in section 3.5. The last column
finally indicates if the mode can be easily recovered from the reconstruction
(+), if it can be recognised, even though hardly (0) or if the information is
completely lost (-).

One important information which is not contained in table 2 is the pre-
cision concerning location and spread of the island structure. To judge the
precision of the reconstruction, please refer to figure 8, where the second
spatial “eigenmode”, topos # 2, is displayed for all different algorithms and
noise levels investigated: The top left frame displays topos # 2 from the sim-
ulated distribution. The other frames of the first row show the same topos
from an SVD of reconstructions using artificial data without any noise, using
Maximum Entropy, Minimum Fisher Regularisation and 1** and 2™ order
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linear regularisation (from left to right). The second and third row show the
topos obtained from corresponding reconstructions using noisy data with
noise levels of 1% and 2.5%, respectively.

If noise is negligible, the ability of Bayesian MaxEnt and Minimum Fisher
Regularisation to reveal the mode structure are about the same, although
MaxEnt takes six times more CPU time (compare table 1). In spite of the
very promising reconstructions of equilibria using second order linear regular-
isation, both first and second order regularisation are unsatisfactory because
we want to determine the location, spread and the signal energy of island
structures precisely. What seemed only a slight tendency to “broaden” the
reconstructions with respect to the simulated distribution in case of the equi-
librium now turns out to completely smear out features of interest.

If noise is present, Bayesian MaxEnt does not even recover the mode,
since the reconstruction itself is too “noisy”. The newly developped Minimum
Fisher algorithm on the other hand exhibits a remarkable precision and good
stability with respect to noisy data at reasonable expenses of CPU time. In
fact, it is the only algorithm capable of recovering the mode at 2.5% noise
level without loosing precision on the location and without loss of relative
signal energy to higher components, as is clearly revealed from table 2.
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As a consequence, our new method, Minimum Fisher Regularisation, has
been adopted as the “default” reconstruction method for the soft X-ray to-

mography system of TCV.

4.2 Limitations due to systematic errors

Due to restricted space and the resulting compact camera design, several
sources of systematic errors connected to geometry can be identified. An-

other, independent source of error is magnetic pickup noise.

4.2.1 Geometrical Errors: Angular Factors and Calibration

The use of planar arrays of photodiodes led to angles of incidence of the
different detectors which vary between zero and up to 50°, measured with
respect to the surface normal of the diodes. In connection with the rather
small detector-to—aperture distances involved, this leads to large variations
of the angular factors AQ, which may differ in some cases by almost an order
of magnitude. Of course, there is also an error caused by the fact that the
position of the line of sight is incorrect.

The first reconstructions were tried using positions and distances as given

by the technical drawings. The results indicated that there was a slight prob-
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lem. This was solved using a consistency check between the tomographic
reconstruction and the equilibrium reconstruction from the magnetics for a
series of quiescent discharges with low elongation, small plasma current and
therefore comparatively localised soft X-ray emissivity. We varied the relative
position of the detector array and the aperture, being the most critical pa-
rameter, and compared simulated emissivity distributions which were based
on the equilibrium reconstruction as described above (section 3.4), to our
experimental results. The positions used to calculate the geometry of the
lines of sight and the angular factors were adapted until an agreement be-
tween theory and experiment was achieved consistently for similar discharges
at different vertical positions of the vessel. Figure 9 shows an example of a
reconstruction before and after the consistency checks. As a result, only the
relative poloidal position of the detector and the apertures had to be modi-
fied by about or less than 1/10mm. The mechanical precision of the camera
/ detector head assembly is better than 1/10 of a mm. The difficulties faced
were probably due to the tolerances of the detector assembly itself, i.e. the
Silicon chips were fixed to the housings with limited precision.

Another problem caused by the compact design is the influence of the
spectral and angular dependence of the detector efficiency, which has been
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discussed in detail in [24]. In short, the highly doped zone on the surface of
the diode which is needed to obtain a depletion zone near the surface forms an
absorptive layer for low energy photons. The effective thickness of this dead
layer depends on the angle of incidence, which decreases the efficiency with
increasing angle of incidence for the low energy part of the spectrum. The
increase of the effective thicknesses of the depletion zone and the absorber
with the angle of incidence on the other hand increases the efficiency for high
energy photons. This causes a complicated angular and spectral dependence
of the detector efficiency.

To overcome this problem, we use the dynamical calibration as sketched in
section 3.4. Figure 10 shows an example of reconstructions with and without
calibration using the spectrum averaged efficiency. Simulations as well as
experimental results indicate that for temperatures characteristic of ohmic
plasmas (T, < lkeV) it is sufficient to use identical spectral distributions
for all lines of sight. The use of individual spectral distributions led to no
significant differences with respect to this simpler approximation. This may
change if the plasma temperature exceeds the 1keV-range.

Reconstructions of soft X-ray emissivity distributions from discharges
with high emissivity such as during H-mode exhibited distortions with re-
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spect to the magnetic reconstruction which were very similar to those ob-
served for low emissivity discharges without calibration. This may hint to
the fact that our estimates for the dead layers of the photodiodes are not
sufficiently pessimistic: Krumrey and Tegeler [29, 30] showed that Silicon
diodes with n—substrate and a highly doped p* region on the front side like
the ones we are actually using, may in fact not be adequate for the use with
soft X-rays. They observed an increase of the dead layer thickness with in-
creasing irradiation, due to a charging of the diode surface and a resulting
increase of the surface recombination rate.

To avoid any problem related to calibration in the near future, we are
going to use a new type of diodes especially designed for the detection of
soft X-rays with near-theoretical (ideal) efficiency for photon energies up to

6keV and angles of incidence up to 60° [31, 32].

4.2.2 Magnetic Pickup

Another source of error which is not directly linked to geometry is mag-
netic pickup from the poloidal field coils. There are essentially two different
types: one with a constant amplitude and a frequency of about 1350 H z which

slightly decreases during a discharge. This is due to the rectifiers of the power
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supplies for the magnetic field coils. (The observed frequency equals five times
the frequency of our flywheel generator), a second one is due to rapid changes
of the coil currents. We have calculated coefficients for every detector which
allow to subtract the pickup from the diode signals given the derivatives of
the poloidal magnetic field dB, /dt and dB,/dt at all detector positions. The
coefficients were obtained using so called stray shots — discharges without
plasma, where all coils are switched on and off successively. Usually, a sub-
traction of this kind of pickup is not necessary during a flat top phase of the
plasma discharge and is thus only applied if needed. The amplitude of the
1350H z pickup is usually negligible, it is only significant at very low signal

levels.

4.2.3 Treatment

The errors induced by incorrect geometry and calibration have largely been
eliminated by the procedures described above. To take residual systematic
errors into account, we choose sufficiently large values for the statistical er-
rors. This is done in a systematic manner, i.e. the standard deviations o, of
the chord brightness f; used in all inversion algorithms are weighted with

the inverse of the angular factor AQ, since in our case small angular factors
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imply large angles of incidence and thus larger uncertainties on the angu-
lar factors, misestimated efficiency and amplified pickup noise. Due to the
weighted errors, the effective number of independent data as defined in [17]

is reduced by less than 20%.

5 A Case Study: Plasma Triangularity and

Sawtooth Oscillations

This section is an illustration of the possibilities offered by the TCV tomog-
raphy system and not meant to be an extensive physics study.

In TCV a strong correlation is observed between sawtooth oscillations
and plasma shape. A series of discharges has been obtained with a scan
of the triangularity during the flat top, other plasma parameters such as
elongation or safety factor go; were fixed. One of these discharges is shot #
9650. The plasma current during a triangularity rampdown from 8g5 = +0.4
to 8gs = —0.3 decreased from 380kA to 305kA. The elongation varied only
slightly between ko5 = 1.51 and kg5 = 1.45. The safety factor go5 varied at

the same time from 2.8 at the beginning to 2.6 at the end of the §~rampdown.
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The central plasma electron temperature was = 650eV at a line density of
5.6+ 10"9m 2,

We investigated several time intervals during this rampdown phase with
100 samples each which had been acquired at a frequency of 10kHz, such
that two complete sawteeth were contained in each interval. The line inte-
grated data were calibrated and then inverted using the Minimum Fisher
Regularisation method with a spatial resolution of 15 radial times 23 vertical
pixels. The results of the tomographic inversion were analysed with the help
of the SVD as described in sections 3.5 and 4.1.2. As an example, figure 11
displays the SVD analysis of the time interval between ¢ = 0.455 — 0.4669s
at an average triangularity of g5 ~ 0, the meaning of the different parts of
the figure being the same as described in section 4.1.2.

The first topos / chronos pair represents the equilibrium or a kind of
average profile while pairs #3 and #4 represent a mode. The second topos
characterises a profile change. A look on the corresponding chronos reveals
that this part represents sawtoothing. (broken lines indicate negative values
of the displayed distribution, continuous lines represent positive values). The
shape of topos #2 suggests an interpretation of its zeroes as the sawtooth

inversion radius. A comparison with the location of the minimum and the
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maximum of topos # 3 and # 4 shows that this interpretation is consistent
with the usual identification of the sawtooth inversion radius with the ¢ = 1-
surface, since the mode observed is of the type m = 1, m being the poloidal
harmonic of the mode. As has been shown in section 4.1.2, our new method
yields reliable results concerning the location of the mode structures, so we
conclude that a determination of the inversion radius should be possible
within the limits of the spatial resolution, which is in this case ~ +2cm.
From the series of reconstructions we can thus deduce two figures of in-
terest for the investigation of sawteeth: The first is the relative signal energy
connected to sawtoothing (compare section 3.5), the second is the inversion
radius or, more precisely, two numbers characterising the inversion radius, a
horizontal radius a and a vertical radius b, thus taking the elongation of the
plasma into account. In figure 12, the relative signal energy pi of the saw-
tooth is displayed as a function of the triangularity 8g5. We observe that the
sawteeth have almost vanished for negative values of §. The inversion radius
as deduced from the relevant topos is shown in figure 13 for the different
time intervals investigated. In figure 14 the geometrical mean of the hori-
zontal and the vertical radius, i.e. 7;,, = \/Za - b), is displayed as a function
of the triangularity. Within the limits of error, the inversion radius seems
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to remain constant for 95 > —0.1. Only for large negative values a slight
reduction may be inferred.

To be able to interpret these results, more analyses will have to be car-
ried out where all important plasma parameters should be considered. Here,
we showed that soft X-ray tomography in combination with Singular Value

Decomposition can add useful figures to a sawtooth database.

6 Summary

We have shown that the 200-channel soft X-ray tomography diagnostic of
the TCV tokamak works satisfactory. The spatial resolution we can achieve
using square pixels with constant emissivity as a base for our different recon-
struction algorithms is approximately 3.8 x 3.8cm?2.

The quality of the inversions is improved by the application of a spectrum
and angular dependent calibration, a subtraction of magnetic pickup and an
appropriate quantification of the experimental errors.

We have compared the performance of four different algorithms using
square pixels, notably a Bayesian Maximum Entropy Method, first and sec-

ond order Linear Regularisation and a new method we called Minimum Fisher
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Regularisation. A comparison of the reconstruction of simulated MHD activ-
ity showed that our new method is for the moment the best choice: First
and second order linear regularisation smooth the reconstructed emissivity
distribution too strongly which leads to loss of information concerning the
localisation of island structures. Maximum Entropy on the other hand yields
too noisy reconstructions, thereby consuming six times more CPU time tha;n
our new method. The reason for the comparatively poor performance of Max-
Ent for soft X-ray tomography is probably caused by the major assumption
that the emissivity values of the different pixels are statistically independent
random variables, which is simply not true®. The good performance of our
Minimum Fisher Regularisation algorithm is probably also due to the fact
that the assumptions, the prior information which is put into the algorithm,
is well adapted to the problem: Smoothing is less strong where the soft X-
rays emissivity is high, i.e. at the center of the plasma where we expect to

find the dynamical structures due to MHD activity. Thus less information on

SWe have tested the same algorithm for spectrum deconvolution. For this kind of ap-
plication where photon counting is involved, the assumptions of MaxEnt are adequate. As
a consequence, the Bayesian MaxEnt algorithm as described above and by von der Linden

[17] yielded by far the best results!
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the high emissivity regions is lost compared to linear regularisation.

A very useful tool for the analysis of tomographic inversion is the
biorthogonal decomposition or SVD, as we have demonstrated with simu-
lated data as well as with a case study where the relative importance of
sawtoothing and the inversion radius could be determined from inverted ex-
perimental data where the triangularity of the plasma had been varied.

Further improvements will probably be achieved by the installation of

new soft X-ray detectors.
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Reconstruction of simulated data
TCYV discharge # 8100 at 0.4s
Method flops | time [s] | ooy | 02.5%
Bayesian MaxEnt || 700M 124 | 0.936 | 1.50
Minimum Fisher 22M 17 | 0.175 | 0.382
1% order Regul. | 1.4M 9| 0.503 | 0.518
2" order Regul. || 1.8M 6.5 | 0.303 | 0.349

Table 1: Performance of different algorithms using square pixels. The number
of floating point operations, the CPU time on a DECa station with MATLAB
4.1 and the reconstruction error (see text) for two different noise levels are

compared.
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SVD analysis of simulated data and reconstructions

TCV discharge # 9243 at 0.746-0.75s

n D2 P3 Mode

Simulation 9.98E-1 | 1.08E-3 | 7.63E-4 | +
Reconstruction || noise o

Bayesian MaxEnt | 0% | 0.080 | 9.98E-1 | 1.03E-3 | 8.72E-4 | +

1.0% | 0.120 | 9.88E-1 | 1.39E-3 | 1.24E-3 0

2.5% | 0.230 | 9.40E-1 | 6.80E-3 | 5.00E-3 -

Minimum Fisher | 0% | 0.045 | 9.99E-1 | 7.47E-4 | 6.03E-4 | +

1.0% | 0.050 | 9.98E-1 | 8.29E-4 | 6.11E-4 | +

2.5% | 0.078 | 9.94E-1 | 9.62E-4 | 8.52E-4 | +

1% order Regul. 0% |0.084 | 9.99E-1 | 3.19E-4 | 2.67TE-4 | +

1.0% | 0.080 | 9.99E-1 | 3.59E-4 | 2.84E-4 | +

2.5% | 0.079 | 9.94E-1 | 7.17E-4 | 5.73E-4 0

2™ order Regul. 0% |0.054 | 9.99E-1 | 2.98E-4 | 2.39E-4 | +

1.0% | 0.052 | 9.99E-1 | 3.42E-4 | 2.56E-4 | +

2.5% | 0.056 | 9.96E-1 | 5.93E-4 | 5.59E-4 -
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Table 2: Performance of different tomography algorithms concerning the re-
construction of MHD island structures from simulated data is compared using
the SVD analysis for different levels of noise. For the definitions of the recon-
struction error o and the relative signal energy p; see text. The last column
indicates wether the mode was well recovered (+), hardly recognisable (0) or

lost (-). Compare figure 8
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Figure 1: A view of the experimental setup of TCV’s X-ray tomography
system. All 9 cameras are placed around one poloidal cross section of the
torus. The vacuum vessel with the Carbon tiles as well as the poloidal field

coils and the central solenoid are shown.

Figure 2: A cross section of one of the pin-hole cameras: 1: CENTRONIC
LD20-5T photodiode array with premplifier circuit; 2: 47um thick curved Be
foil; 3: poloidally limiting W-aperture, the detail shows the trapezoidal shape
of its edges; 4: front plate / toroidally limiting aperture; 5: outer spacing
can be evacuated to improve thermal insulation; 6: water—cooled spacing
between inner walls; 7: vacuum feedthrough for the electrical connections; 8:

to primary vacuum pumps; Further explanations see text.
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Figure 3: Artificial data f; for TCV discharge #8100 at 0.4s. open circles:
data with 2.5% noise added (see text). Continuous curve: fit provided by the

Minimum Fisher Regularisation algorithm

Figure 4: Reconstruction of the simulated emissivity of TCV discharge #
8100 at 0.4s. The simulated emissivity distribution is shown as well (top
left) as the different reconstructions. The first row shows reconstructions from

artificial data without noise, the second row was obtained from artificial data

with 2.5% of noise added (see text)

Figure 5: The eight first simulated emissivity distribution for TCV discharge

#9243 at 0.7460-0.7467s exhibiting m = 2 mode activity.

Figure 6: SVD analysis of the time series of simulated emissivity distributions.
Top left: log plot of the singular values Sj vs. the index k = 1...9. Top right:
plot of the maximum emissivity [a.u.] as a function of time. Middle, from left
to right: spatial “eigen”modes or topos, k = 1...3. Bottom: corresponding

temporal modes or chronos

Figure 7: Same plot as 6, but this time for the emissivity reconstructed from

noisy data (1%) using the Minimum Fisher Regularisation algorithm
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Figure 8: Comparison of topos # 2 for different algorithms and different noise
levels. Top left: simulated distribution. First row: reconstruction from artifi-
cial data without noise, from left to right: MaxEnt, Minimum Fisher, 1* and
2" order Regularisation. Middle row: same as above, but reconstructed from
noisy data (1%). Bottom: Reconstructions from noisy data (2.5%). Note that
the rotation of the reconstruction with respect to the original is unimportant,

the correct phase is recovered from #wo topos/chronos pairs.

Figure 9: A comparison of a reconstruction from experimental data before
(left) and after (right) the consistency checks of the geometry. The data were
taken from TCV discharge # 8117, a single null divertor configuration, during

an H-mode phase at 0.5s.

Figure 10: A comparison of reconstructions from calibrated and uncalibrated
data. Left, top: simulated without calibration Left, bottom: simulated data
calibrated using the spectrum average efficiency, same spectral distribution
for all channels. Right, top: reconstruction from uncalibrated experimental
data. Right, bottom: same data, but calibrated using the spectrum aver-
age efficiency, identical spectral distributions. Data were taken from TCV

discharge # 8100 at 0.4s (compare figure 4)
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Figure 11: SVD analysis of a time series of emissivity distributions recon-
structed from experimental data, TCV discharge # 9650 at 0.455 — 0.4669s,
o5 ~ 0. Top left: log plot of the singular values Sy vs. the index k =1...8.
Top right: plot of the maximum emissivity [a.u.] as a function of time. Mid-
dle, from left to right: spatial “eigen”modes or topos, k = 1...4. Bottom:

corresponding temporal modes or chronos

Figure 12: Relative signal energy pi of the topos / chronos pair representing
sawtoothing as a function of the plasma triangularity égs. The results from
TCV discharge # 9650 are indicated by the open circles. For comparison,
data from a similar discharge (# 9553 ), indicated by the crosses, are also

shown.

Figure 13: Inversion radius deduced from the topos are shown together with
the last closed flux surface for the different time intervals, hence different

triangularities of TCV discharge #9650

Figure 14: Sawtooth inversion radius as a function of the plasma triangu-
larity. The radius is defined as the geometrical mean of the vertical and the
horizontal radius: 7;,, = 4/(a - b). Errorbars are given by the pixelsize of

~ 4dem
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