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Abstract

Alfvén waves in fusion plasmas play an important role in a number of situations. First,
in Alfvén Wave Heating (AWH) schemes. Second, both theory and experiment have
demonstrated the existence of Global Alfvén Eigenmodes (GAEs). GAEs have been
observed in different tokamaks (PRETEXT, TCA, TEXTOR, etc.) and, more recently,
in a stellarator (Wendelstein 7-AS) where they were shown to become unstable under
intense Neutral Beam injection. Third, the existence and possible destabilization by
fast ions of Toroidicity induced Alfvén Eigenmodes (TAEs) has been evidenced both
theoretically and experimentally. This destabilization could hamper the operation of a
magnetically confined fusion reactor by setting a limit on the number of fusion alpha
particles in the plasma. It is therefore crucial to understand the mechanisms leading to
the occurence of the instability and also those that can stabilize the TAEs by increasing
the strength of the damping. The aim is to be able to devise possible ways to avoid
the instability of Alfvén eigenmodes in a region of parameter space that is compatible
with the functionning of a fusion reactor. A global perturbative approach is presented
to tackle the problem of the linear stability of TAEs. Our model computes the overall
wave particle power transfers to the different species and thus could also be applied to
the study of alpha power extraction in the presence of Alfvén waves. We indicate also
how to go beyond the perturbative approach.



1 Introduction

This paper focuses on some aspects of Alfvén waves in laboratory fusion plasmas of
the tokamak type. Several attempts have been made to heat the plasma in the Alfvén
range of frequencies [1]-[4] and also to drive the plasma current non-inductively [5] .
More recently, it has been shown theoretically [6]-[10] and in TFTR [11] and DIII-D [12],
(13] experiments that some Alfvén eigenmodes (the TAEs) can become unstable in the
presence of fast jons. Such fast ions can arise under intense Neutral Beam Injection (NBI)
or in Ion-Cyclotron heated plasmas in the minority regime that creates a high energy
tail in the ion velocity distribution. In a reactor plasma a population of energetic alpha
particles will develop. It is important to predict whether the Alfvén instability hampers
the operation of the machine.

The theory of Alfvén wave propagation, absorption and destabilization dates from
several decades. A complete review of the theory of Alfvén wave heating is given in
Ref.[14]. The first theoretical work on the destabilization of Alfvén waves by fast ions is
reported in Ref. [15]. Since the discovery of the toroidicity induced Alfvén eigenmode
(TAE) [16] much work has been devoted to this subject [6]-[13], [17]-[19]. The purpose
of this paper is not to make a review of all these works but to highlight some of the main
points in this context and to present recent developments in the understanding of Alfvén
instabilities: a global approach, in which kinetic effects are considered as a perturbation
of the ideal modes, will be presented and some results will be discussed.

The paper is structured as follows. In the next section, we present a brief overview of
the spectrum of Alfvén waves as predicted from various physical models in 1-D and 2-D
geometries. The damping and instability drive mechanisms are presented in Section 3. In
Section 4 we introduce three different models in toroidal geometry. Some typical results
of these models are shown in Section 5, which treats the cases of antenna excitation of

Alfvén waves, and in Section 6, which analyzes their stability in the presence of fast ions.

2 Spectrum of Alfvén waves

In a cold, magnetized, current-carrying, cylindrical plasma column, neglecting electron
inertia [20] the spectrum of Alfvén waves contains global Alfvén eigenmodes (GAEs) [21]
and a continuum. The GAE wavefields have a global structure and their eigenfrequencies
lie just below the corresponding continua. The GAEs belong to the same branch as the
current-driven external kink instabilities. For large parallel wave numbers their frequency
lie just below the ion cyclotron frequency [20] and the GAEs can be identified with the

ion cyclotron waves. The Alfvén continuum eigenmodes are singular at the spatial Alfvén



resonances which, in a single ion species plasma, are defined by
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In a cylinder modelling a tokamak of major radius Ry the parallel wave number kj can
be written as

b= 7+ D) @
where n is the toroidal mode number, m is the poloidal mode number and ¢ is the
safety factor. Let us define a local magnetic set of orthornormal unit vectors which will
be used throughout the paper: €,= Vt/|V), _é||=1_§o / Bo, ?b=‘3|| X €n, where 9 is
the poloidal flux function and By is the equilibrium magnetic field. It can be shown
that the wavefield components E, and B, have a singularity behaviour as 1/(s) — t,.,)
where 9., is the radial position of the shear Alfvén resonance defined by Eq.(1). The
components E,, B, and B) have a logarithmic type of singularity. The singularity is
resolved by adding a small imaginary part in the dielectric tensor: w is replaced by
w(1+4v), with v > 0 to ensure causality. The limit ¥ — 0 gives a finite power absorption.
In the frame of the cold plasma and ideal MHD models, this absorption, called resonance
absorption or continuum damping, is the only absorption mechanism. Also present in the
spectrum of the cold plasma model are the radial eigenmodes of the fast magnetosonic
wave, sometimes called ‘compressional Alfvén wave’. It includes the surface mode which is
the first radial eigenmode of the fast wave for m = —1. The surface mode eigenfrequency,
in a plasma with a density profile, lies in the shear Alfvén continuum and its presence
enhances the coupling from an antenna placed in the vacuum region. This property was
used in the Alfvén wave heating experiments conducted in the TCA tokamak [2]: the
idea is to excite the surface mode and to deposit the wave energy near the shear Alfvén
resonance. The names ‘compressional’ and ‘shear’ qualifying the Alfvén waves should not
be considered too strictly, in the sense that in inhomogeneous plasmas the ‘shear’ Alfvén
waves have a small but finite compressibility (finite B). This point will be illustrated
further in the paper. The finite B of GAEs implies that these modes can be excited by
an antenna: the radial component of the Poynting vector, Ey By, is finite.

When finite Larmor radius (FLR) effects are taken into account (hot plasma model)
there is no Alfvén continuum but instead a discrete set of damped eigenmodes of the ki-
netic Alfvén wave (KAW). The first radial eigenmode is usually the most weakly damped
and subsists in the cold plasma limit. It is therefore identified as a GAE. If electron
inertia is included in the model, the spectrum contains also eigenmodes of the surface
quasi-electrostatic wave (SQEW) [14]. The electron and ion Landau dampings, the tran-

sit time magnetic pumping (TTMP) damping and the ion cyclotron damping are included
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in the hot plasma model. There is no resonance absorption in this model; instead, mode
conversion occurs to either the KAW (if v4/ve. < 1) or the SQEW (if va/vs. > 1). The
KAW propagates inwards and the SQEW propagates outwards from the mode conversion
surface. The cold and hot plasma models are related by the following: when the mode
converted waves are damped before reaching the plasma centre (KAW) or edge (SQEW)
the total powers absorbed given by both models are the same. If that is not the case, the
mode converted wave can establish a standing wave and a peak appears in the plasma
response [22] that has no equivalent in the cold plasma model.

In toroidal axisymmetric geometry the finite aspect ratio couples the poloidal wave
numbers m to each other; m is therefore not a good quantum number. In the cold plasma
model the spatial Alfvén resonance condition of Eq.(1) is expressed by a differential
equation involving the operator V|| to be solved on a magnetic surface (¥ = const).
Therefore shear Alfvén resonances coincide with magnetic surfaces. When a cyclotron
frequency surface w = w, is present in the discharge, all magnetic surfaces intersecting
the cyclotron surface are singular, thereby forming a 2-D continuum [23]. The toroidicity
implies that in AWH scenarios there are usually several resonance surfaces, each of them
absorbing a fraction of the total power. This makes power deposition in the centre of the
discharge difficult, even more so in small aspect ratio, elongated or shaped plasmas due
to the enhanced coupling of the different m’s. Another consequence is that the GAEs
which, in a cylinder, are detached from the continuum now lie inside the continua of other
toroidally coupled modes. This brings a finite, toroidicity induced continuum damping to
the GAEs. We shall see that the GAE continuum damping rates obtained with the cold
toroidal model are much higher than the Landau and TTMP damping of GAEs predicted
by the hot cylindrical plasma model and are in very good agreement with experiment.
We now have an explanation why the GAEs (seen in the experiment as peaks in the
antenna loading) are not as sharp as the hot cylindrical model predicts. While the real
part of the eigenfrequency of most GAEs is correctly predicted by cylindrical models,
there is a noticeable exception: the existence of a GAE just below the m = 0 continuum
can only be predicted by a toroidal model that includes finite w/w,; effects and is in good
agreement with experiment [3].

The toroidal effects on the spectrum of Alfvén modes are most dramatic in the lower
frequency range. While Eqs (1) and (2) predict reasonably well the position of the Alfvén
resonances for cases where the continuum frequencies of different m’s are well separated
from each other, they fail completely when these become close to each other: toroidal
coupling removes the degeneracy of different m’s and gaps appear in the continuum.
For example, the coupling of m with m + 1 creates gaps at rational ¢ magnetic surfaces
g = (Im| 4+ 1/2)/|n|. The frequencies of the centres of the toroidicity induced gaps are



Row/[vao = 1/(2q,/p), where p is the mass density normalized to its magnetic axis value
and vy is the Alfvén velocity on magnetic axis. To first order in inverse aspect ratio
the gap size is proportional to the inverse aspect ratio and the Shafranov shift of the
magnetic surface ¢ = (|m| + 1/2)/|n|. The plasma elongation couples m to m + 2 and
ellipticity induced continuum gaps appear near rational q surfaces ¢ = (Jm|+1)/|n|. The
centers of these gaps is given by Row/v4 = 1/(g,/p). Other gaps are created by the
higher order coupling of poloidal wavenumbers m. This gap creation is similar to the
formation of forbidden energy bands for an electron in a periodic potential in solid state
theory.

Toroidicity and non-circularity have consequences on the spectrum of GAEs. It was
shown [16], [17] that GAEs can exist in the toroidicity and ellipticity induced gaps. They
have been named TAEs and EAEs or ‘gap modes’. The destabilization of TAEs by fast
particles in tokamak plasmas predicted by theory [6]-[10] and experimentally observed
[11]-[13] has recently revived the interest in Alfvén waves. In the context of fusion-
oriented research one should be able to predict as accurately as possible the conditions
that can lead to such instabilities and to determine whether the region in parameter space
where instabilities are avoided is compatible with the operation of a tokamak reactor.

3 Damping and drive mechanisms

In a plasma consisting of electrons, bulk ions and fast ions several damping and drive
mechanisms are at work. The damping mechanisms are :

a) resonance absorption (sometimes called ‘continuum damping’), when the TAE eigen-

frequency matches a frequency of the Alfvén continuum;

b) electron, bulk ion and fast ion Landau dampings due to the curvature drift and the
finite parallel electric field of the wave;

c) transit-time magnetic pumping (TTMP) on electrons, bulk ions and fast ions due to
the finite parallel magnetic field of the wave (compressibility).

d) the non-perturbative interaction with the kinetic Alfvén wave [19]: in certain situ-
ations the Alfvén eigenmode couples to the KAW which carries the energy away,

hence the name ‘radiative damping’;
e) collisional damping on trapped particles [10].

The instability drive is due to the spatial gradient of the fast ion pressure. Passing

particles interact with the wave at the parallel resonance, whereas the wave resonates



with trapped particles at the bounce frequency and its harmonics. In NBI heated plasmas
with parallel injection the first type of interaction will dominate. In ICRF minority
heated plasmas, most of the high energy tail of the minority ion distribution is in the
perpendicular direction to the magnetic field, hence one can expect a substantial number
of trapped fast ions and the bounce resonance will dominate. In a fusion reactor the
alpha particles will be isotropic and both passing and trapped alphas will be present.

From local theories [6]-[9] we know that three basic conditions must be met for insta-
bility:

1 The birth velocity vo of fast particles must exceed the parallel phase velocity vp of
the eigenmode so that the fast passing particles can resonantly interact with the
eigenmode. Or, for trapped particles, the eigenfrequency must be such that it can

resonate with the bounce frequency or its harmonics.

2 The fast particle pressure gradient |dp;/dr| must exceed a given threshold so that the
drift frequency w* is larger than the eigenfrequency wyg .

3 The fast particle induced growth rate, |7y/w|sqst , must exceed the sum of all damping

rates, |v/w|damp-

Theories modelling the wave-particle interaction differ in their basic assumptions:
zero order in FLR, second order in FLR or all orders in FLR [24]; finite drift orbit width
(FOW) [10}; perturbative dissipative kinetic effects only or non-perturbative; collisional
or collisionless interaction only; simplified geometry, expansion in inverse aspect ratio
or full toroidal geometry; simplified poloidal mode coupling or coupling to all orders.
They differ also in the approach, either local or global. Local theories suffer from a
number of shortcomings. For example the TAEs are not localized at a given rational
g = (Jm| + 1/2)/In| surface. They extend over the whole plasma cross-section, with
wavefield components E,, and Bj peaking at all such rational surfaces and E;, B, and B
having a broader radial dependence [18] . Moreover, the eigenfrequencies and eigenmode
structures depend on global geometrical parameters such as the shape of the cross-section
and equilibrium density and q profiles. Local theories usually use some kind of expansion
in geometrical parameters (a/Ro). A more accurate evaluation is needed in order to model
actual and future tokamaks.

The expected density profile of fusion alpha particles in a reactor is largely unknown
and can only be inferred from theoretical models based on a number of assumptions on
transport properties of plasmas yet to be produced. The instability threshold strongly
depends on this profile, therefore we must address the question of Alfvén eigenmode
stability for a wide range of fast particle density profiles.

6



The possibility of exciting TAEs when they are stable is currently investigated at
JET. The saddle coils now installed in the machine serve as antennas. The planned
experiments aim at determining the spectrum of TAEs and their overall linear damping-
growth rate by diagnosing the plasma response. Even in the absence of fast particles
these experiments will be helpful in studying the damping mechanisms acting on TAEs.

For the study of Alfvén eigenmode stability we adopt a global approach similar to that
of Ref. [10]. The eigenmodes are computed globally in true toroidal geometry consistent
with an ideal MHD equilibrium. Kinetic effects (damping and driving mechanisms)
and fast particles are treated perturbatively. More precisely, we first obtain the global
eigenmodes and then use these given eigenmode fields to evaluate the global overall
wave-particle power transfer assuming given fast particle density profiles. The marginal
stability point is obtained by scaling the number of fast particles so that the overall power
transfer is zero. The wave-particle power transfers (to the electrons, bulk ions and fast
ions) are evaluated using the drift-kinetic equations (DKE).

4 Models

4.1 Global toroidal zero Larmor radius model

We consider ideal MHD axisymmetric equilibria Bo= TV + Vi x Vi) where T is the
toroidal flux function, ¢ is the toroidal angle and the poloidal flux ¢ is a solution of the
Grad-Shafranov equation obtained with the bicubic finite element code CHEASE [25] .
The plasma is modelled as a cold, current-carrying plasma [26] neglecting electron inertia.
In the limit w/w; — 0 it is equivalent to ideal MHD setting the adiabaticity index to
zero. The linearized equations for the electric wave field are written in the variational
form :

I

Vx E — JEb
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The plasma is surrounded by a vacuum region V, enclosed by a perfectly conducting wall.
In the vacuum region an antenna is modelled by an infinitely thin sheet D(Z) on which

currents ]_; of given frequency w and toroidal mode number n are prescribed :

—_

Jo = 6(D)VD x Va (5)
a = Ea,.(0)expi(ngo—wt) (6)

where 0 is the poloidal angle. The coefficients a,, are obtained from the Fourier series
decomposition of the actual antenna currents. We have the possibility to model helical
antennas, ‘top/bottom’ antennas of the TCA type, low or high field side (LFS or HFS)
antennas and saddle coil antennas that are installed in JET. Different phasings of the
antenna currents give different toroidal Fourier spectra a,. It is thus possible to select
the desired mode numbers n.

Special care must be taken because of the existence of the Alfvén continuous spectrum.
We add a small imaginary part to the dielectric tensor in Eq.(3): w is replaced by
w(l + iv), with » > 0 to ensure causality. The operator in Eq.(3) is now regular and
can be solved numerically but has lost its hermiticity. The limit v — 0 is extrapolated
from the numerical results of the LION code and gives a finite damping rate if the wave
frequency is in the Alfvén continuum. Second, the discretization scheme must avoid
spectral pollution. The use of hybrid elements in the LION code ensures that [18], [26].

The variational form (3) is written in toroidal axisymmetric geometry using a toroidal
magnetic coordinate system (i, x, ) where x is a general poloidal coordinate, and dis-
cretized with finite hybrid elements in the plasma domain. The vacuum, including the
antenna, is solved with a Green’s function technique. The LION code computes the wave-
field solution of Eq.(3) and the total absorbed power P for given antenna frequencies w.
A global mode shows as a peak on P(w) [18].

4.2 Global toroidal kinetic model for the wave-particle power
transfers

The evolution equation used for the plasma species is the Drift Kinetic Equation (DKE)

at+ ’ aX+dta€ dta ]f(X,G,y,t)_O (7)
where X is the guiding center, ¢ = 2(le +v1), p =v1/2B;, v;=v) €p + g + va,

vz=E x(Bo + B)/B?, vu= (m/qB) €5 x (vJ_/2+v")VlnB B=|Bo+ B\, (E,B)
are the perturbing electromagnetic fields and € g= (Bo + B) /B.



Equation (7) is first solved to obtain a stationary distribution function. To lowest

order in the Larmor radius expansion one obtains

F = F(,¢,p). (8)
In particular for electrons and bulk ions a local Maxwellian distribution is chosen
N(¥) ( € )
F=—"""—exp|-2—-—<], 9
(wv2,())* vih(¥) ®)

with density N and thermal velocity squared v}, = 2T/m. For the fast particles a
slowing-down distribution is assumed [27]

C(¥)

F = N(t/))wfl(vj—v), (10)
_ mys + m; 3T, \?

v, = (&ﬁ'mme) (E) ) (11)

c = 3 (12)

G

47 In (——) + 1]

Ve

where H is the Heaviside function and vo the birth velocity of the fast particles (vo =
1.3 -10"m/s for fusion alphas).

The linearized DKE is then solved to obtain the fluctuating part of the distribution
function } in terms of the EM fields. The operator v, -V is considered as a perturbation
O(e). The linearized DKE is solved to second order in ¢ and only the most dominant
elements among comparable terms are retained. Furthermore, to avoid an integration

along the field line, the differential operator E'" -V, is replaced by its magnetic-surface-
averaged value < V) >= ik, where

$omoonst A1 (IVIEA® + V) E[?)
—

The integrals in Eq.(13) are evaluated along a closed path in the poloidal plane on a

¥ = const surface. Instead of using Eq. (13), one could make the rough approximation

kﬁ = w?/v} for Alfvén waves; but k obtained in this way can be wrong by a factor up

to 3 for TAEs because of the toroidal coupling. The solution of the linearized DKE can
then be written as

kif =

(13)

~ —1q 1 .
f- =k {; (Es — iv)V,E}) Vo F (14)
v2 = - P2 oF
+ [wcquu + (-5‘ + vﬁ) BL-E —zw-—ziB”] B

1 fvd -
—z@: (—; + v|2]) (ﬂ.l. V)EanF},
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where w. = ¢By/m, Qo = w + in — kyvy, with 7 > 0 to ensure causality, ,B = (Vx e")
and V, = (Vo x V§)/|Vp x V|- V.

One can now derive the power absorption formula. The total power exchanged be-
tween the particles and the perturbing EM fields averaged over time reads

de ~%

P, ectes — %e dF ‘ ecies ? dF = JSXda'v. (15)
P (4

We retain only the resonant contribution to Pypecics. Writing Pypecies = Pleme, 4 Pinhomo

we obtain for a Maxwellian distribution
homo 2
P = feo/d3$4w2|k lexp( 25) X (16)
{ }
inhomo vth 2 .
P \/"eos‘m/d:’xV exp(—=zg) { [2z0 —E + (1 + 2z0) By - —sz”] X

"8ww3]k|||
[(1+2zg) (Be - VE]) + 202 2y E,,] [ﬂl —-sz"] (3. V)Eb}

2 |-
+|BL - E —iwB,

22'0;—:E|| =+ (1 + 223) By - l_'f
t

(17)

where w = Ng¥/mey, 20 = w/ kyvin and V1, is equivalent to V,, except that it operates

only on density and temperature. For the slowing-down distribution we obtain

1
homo __
Pime = wa [ Fo) Tk {vaP e

1,7 =
v By + -—v,f By - EI

—_

(18)
2} |

21 o .
+2oge (5, . B +iwB v,,E"+— AL - +- BL - E —iwB,
= i
. w2C U g 0, V,E
inhomo  _ 1 * P . p W\E el |
P r2e@m [ £aV), T {Io (va"+—wc Bs E)(Wc V) + -1 )
L (" o *) vl = VoE)
. AT 1
+ 500 [ BL-E +iwB] (wwc(ﬂl V)E; + P (19)

1, > - '02 - % 12 — = O . .
+=(B1 -V)E, (va,, + w—'i BL-E )] + Lo (BL -V)E, (ﬂl \E +sz”) }

where In—/ dv ——(-—ﬂ-. (20)

v3 403
The EM fields are obtained from a global wave solution. If we use the zero order Larmor
radius model of Section 4.1, in which E) is approximated by zero, Ej must be obtained
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from a more general model. The starting point is the quasi-neutrality condition ﬁ,—ﬁ
As the thermal velocity of the electrons can be comparable to the parallel phase veloc1ty

(vthe ~ |vp]), it is reasonable to evaluate N, using a kinetic model. Integrating f over
velocity leads to

ﬁe= 2t

1 - — .
Mmewwee | kv, (1-2)E - -2-Z (ﬂ_L -E1 —sz") + (

eN, Wee
kyvine

2
) (I_Z):BJ.E] ’
(21)
where Z = Z (W) is the plasma dispersion function [28]. To evaluate N one can
use a cold fluid model for the ions as vy < |vp|. Due to their relatively large mass, the
ions dominate the motion perpendicular to the magnetostatic field. Solving the equation
of motion in the perpendicular plane, one obtains for low frequencies w < we;

-

v=

[E; X e" --z— E.L] (22)

TN{Wei
and using the equation of continuity for the ion density gives

eN;
m' CC

Ni= — [V EL —22— Bi-E. —waBu] (23)

Inserting these density relations in the quasi-neutrality condition leads to

2
b2 (kll'vthc) ] Pu- Bu _in"} '
(24)

2
k|vihe

]_ LW — nad -
E) = S, {I—Z (Z;c:v' Ei + By 'E.L) +

Finally, using the above expression in Eq.(16) for electrons and bulk ions gives

Pphomo _ \/—CO/d3$4w2|k lexp —2(2) X (la‘specie.sl2 +|6.L-E

2) , (@)

1 7 — bnd —
Qelectron = 1-27 (zw_a'v Ei+ ﬂJ. . E.L) ’ (26)
T. 1 7 = - T.
Qion = ﬂl_Z(zu::V'E.L'i'ﬂ.L'EJ.) (1+T)B||
T. - o
14 =42 - E; . 27
+ [ T (k"vt;..) ] BL-EL (27)

Pirhomo can be neglected for these species. This is related to the fact that in the frame

of the present work w > w* for electrons and bulk ions, where w* is the characteristic
frequency of the drift mode. Note that the contributions of Ej to the ion power absorption
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are proportional to T, /T;. As the average kinetic energy of the fast particles is very high
as compared with the energy of the electrons, the contributions of Ej to the power
absorbed by the fast particles can therefore be neglected. In this way, one can write for
the fast particles

2

2 4
homo __ 2 wPfC 'Up 2 3 . 7
A = e [ i { |y e [ B )
bud —>k s el 2
+2wv3]03‘m(B",BJ_-E)+Il B1L-E }a
Pinhamo T? 608‘ &3 ! C 4
1 N m [ £, Iknlw3 {( fo+ vy )ﬂ* %)

+ (,,3_121 + —43) (ﬂ.L - E —in")} (L -V)EL.

The expressions (25)-(29) have been written in toroidal axisymmetric geometry and im-
plemented in the LION code. Marginal stability is reached when the sum of the DKE
powers of the different species Pypecies is zero. Note that the mode is always stable (i.e.
stable for any fast particle density) if Pjomo 4 P}"’"“m" > 0. Thus instead of the necessary
instability criterion of local theories, w —w* < 0, we have the necessary global instability
criterion P}“"’“’ + P}"’“’"‘" < 0. More details about the derivation of the DKE powers can
be found in Ref.[29].

4.3 Global toroidal finite Larmor radius model

The global perturbative approach developed in the previous two subsections fails when
the eigenmode interacts with the KAW or the SQEW: the wavefields obtained with the
zero Larmor radius model are dramatically modified when a kinetic wave is present. This
happens for example when a global eigenmode has an eigenfrequency that crosses that of
an Alfvén continuum. The wavefields cannot be obtained with a perturbative approach
because the inclusion of FLR terms in the equations is a singular perturbation of the zero
order ones. A global wave FLR model in 1-D geometry was already developed [22]. For
the study of TAEs, however, the toroidal geometry must be included in the description.
We describe here recent developments in this field.

The hot plasma dielectric tensor operator g’ in toroidal axisymmetric geometry was
derived in Ref.[30]. This operator includes FLR effects up to second order in k; pr;
and equilibrium gradients effects up to first order in pLi[ Leg, where kj_ is a differential
operator in the perpendicular direction to the magnetic field, py; is the ion Larmor radius
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and L., is the equilibrium scale length. Instead of solving for the wave electric field

—

s 25 -
VxVxE —‘;’—2e E= iwpioT, (30)

where fa is the antenna current density, we use the vector and scalar potentials A and ¢.
The Coulomb gauge is chosen and the equations can then be written as [31]

VIA+4E A+ %€ Ve = —pj, 51)
. . 31
v-(é‘vqs)_iwv-(é’A) — 0

The condition V- A = 0 is imposed on the domain boundaries. In order to simplify the
unicity conditions on the magnetic axis, we set ¢ = 0 there.

Eq.(31), with é from Ref.[30], is projected on the orthonormal set (€, €3, 3”) defined
in section 2 and is written in a weak variational form in toroidal magnetic coordinates
(s,0,), where s = \/W, 1, is the value of 4 at the plasma surface, 0 is the poloidal
angle and ¢ is the toroidal angle. Partial integrations are performed so as to satisfy the
regularity of the solution on axis. The equations are then discretized with Hermite bicubic
finite elements. More details can be found in Ref.[32] about the numerical procedure and
the validation of the code (PENN). This work is still in progress and we report below
on some results. Another possibility is to use a poloidal Fourier decomposition of the
wavefields and solve for the electric field [5].

Note that the DKE powers derived in Section 4.2 can be used with the wavefields of the
FLR model. Unlike the zero Larmor radius model of Section 4.1 the wave parallel electric
field Ej, is consistently calculated. So instead of Egs.(25)- (29) we can use Eqs.(16)-(19).
With this model the stability of Alfvén eigenmodes including the interaction with the
KAW described consistently (non-perturbatively) can be studied. The radiative damping,
mode conversion and kinetic eigenmodes (e.g. ‘KTAE’) are described by this model.

5 Excitation of Alfvén waves with an antenna

5.1 AWH in TCA

As an illustration of a possible AWH scenario we examine the case of the TCA tokamak
[1]-[3]. It is a small machine with a circular cross-section. Its main parameters are:
Ry = 0.61m, a = 0.18m, By, = 1.5T; typical densities on axis are in the range npo =
1 —10 x 10®m~3, and in the usual mode of operation the presence of sawteeth indicates
go close to 1 or lower. The antenna consists of four pairs of straps placed above and

below the plasma column at four equidistant toroidal locations. With different relative
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Figure 1: Level line plots for Re(E,) using the LION code (zero Larmor radius
model). The parameters correspond to the TCA tokamak with f = 245MHz,n =
—2,q90 = 1.05,¢9, = 2.66, By = 1.5T,np = 5.2 x 10¥m-3(1 — 0.6s2)

phasings of the straps different n’s are excited. The toroidal Fourier decomposition of
these antennas is rather pure. In its standard phasing configuration n = +2 are the
dominant components. The antenna generator frequency can be varied in the range
1 —5MHz. The plasma density is observed to rise significantly during AWH, indicating
a substantial effect of AWH on particle confinement or recycling. The parameters were
chosen such as to excite the surface mode and to have an Alfvén resonance surface close
to the magnetic axis.

We show in Fig.1 the contour plot of Re(E,) for n = —2, a helical antenna m = —1,
a density profile np = 5.2 x 101%m=3(1 — 0.6s2), go = 1.05, ¢, = 2.66. The LION code
(toroidal zero Larmor radius model, Section 4.1) was used with v = 0.01. The large edge
pedestal in density and the low ¢ implies that only two main Alfvén resonances are present
in the plasma, at s = 0.35 and at s = 0.915. The inner one has m = —1 dominant, as the
cylindrical model would predict, and the outer one is a toroidally coupled surface which,
in a cylinder, would be the m = 0 but here shows a broad m spectrum with dominant
numbers m = +1,~1,42,43 and 0. The external surface absorbs about 20% of the
total power, which means that about 80% of the power is deposited near the centre. This

is, however, very optimistic: with more realistic density profiles there are many more
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Figure 2: Level line plots for Re(E,) using the PENN code (FLR model). The
parameters are the same as in Fig.1, with T.(s) = 400eV (1 — 0.98s%)%, Ti(s) =
100V (1 — 0.9852)2.

resonance surfaces near the edge. Moreover, the n = +2 component, also present in the
antenna excitation, has Alfvén resonances closer to the edge. As a result, computations
with the LION code show that it is difficult to deposit more than 50% of the wave energy
inside half the minor radius.

We now consider the same case but use the toroidal second order FLR model described
in Section 4.3. The electron and ion temperatures were chosen as T.(s) = 400eV (1 —
0.98s%)? and T;(s) = 100eV (1 — 0.98s%)%. The contour plot of Re(E,) is shown in Fig.2.
Two main differences appear as compared to the zero Larmor radius model. First, a KAW
is present between the former Alfvén resonance at s = 0.35 and the magnetic axis. The
value of w/(kyvee) is 0.41 at s=0.35: mode conversion to the KAW occurs as expected.
The KAW can form a standing wave and this may correspond to the ‘satellite’ peak seen
in the TCA experiment [2]. It has no equivalent in the zero order FLR model. Second,
the former Alfvén resonance at s = 0.915 is replaced by mode conversion to a SQEW
propagating outwards: at s = 0.915, w/(kyvee) = 1.6. At s = 0.81, a small amplitude
m = T structure is present. It corresponds to an Alfvén resonance surface that is also
present in the zero Larmor radius computation. (It does not show up on the wavefield

plot of Fig.1 because of its relatively smaller amplitude). The FLR, calculation shows no
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Figure 3: Resistive antenna power load vs frequency for v = 0.01 (open symbols),
v = 0.005 (filled symbols) and v = 0.0025 (dotted line), using the LION code. The
parameters are typical of the TCA tokamak: f = 2.365MHz,n = —2,q9 = 1.05,¢, =
4.55, Bp = 1.5T,np = 5.2 x 10"®m~3(1 — 0.98s%)°7

mode conversion there: the reason is that w/(kjv;.) is close to unity there and electron
Landau damping is large. As the power absorption diagnostics are not yet implemented
in the PENN code, we cannot tell which fraction of energy is deposited near the centre.
The code computes the total power in two different ways: the power dissipated at the
antenna and the Poynting flux at the plasma-vacuum interface. With a mesh consisting
of 31 radial intervals and 28 poloidal intervals in the plasma, the consistency of these

powers is verified with an accuracy better than 0.5%.

5.2 GAEs in TCA

In the TCA experiment, the density rise during AWH had the consequence that the
Alfvén spectrum was scanned during a discharge even though the generator frequency
was not swept. Peaks in the resistive antenna impedance appeared at specific values of
density [2]. These values were in most cases corresponding to the GAEs as predicted by
cylindrical models, with the exception of the m = 0 case already discussed in Section
2. The puzzle was the order of magnitude discrepancy in the damping rate of these
modes: FLR models in a cylinder predict |y/w|damp of the order of 10~2 [22], whereas the
experimental values are typically of the order of 10-2 [2].

Let us consider a TCA plasma with the same parameters as in the previous section

except ¢, = 4.55 and a density profile (1 —0.98s%)°7. The generator frequency is scanned
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Figure 4: A GAE in the TCA tokamak. Level line plots for Re(E,) using LION.
The parameters are f = 2.365MHz,n = —2,¢q9 = 1.05,¢q, = 4.55, By = 1.5T,np =
5.2 x 10°m—3(1 — 0.98s%)°7

around 2.4Mhz. As in the experiment, a peak in the antenna loading appears (Fig.3).
Measuring its width and taking the limit » — 0, we obtain |y/w|4amp = 1.0 x 10~2, which
is in close agreement with the experiment. The explanation for this result can be under-
stood from Fig.4 which shows a contour plot of Re(E,) for the frequency f = 2.365Mhz.
In the center of the plasma there is a m = —1 structure that is similar to the cylin-
drical model prediction [20] except that it does not extend up to the plasma bound-
ary but is much more localized inside. In the outer regions several Alfvén resonances
are present, at s = 0.79, 0.88,0.93,0.956,0.975,0.989. They are toroidally coupled sur-
faces. (The cylindrical expression (Eqs(1),(2)) predicts positions of Alfvén resonances
at s = 0.82,0.90,0.94, 0.966,0.982,0.994 for m = 0,1,2, 3,4, 5, respectively. The actual
wavefields in torus show instead a rather broad m spectrum). At each of these surfaces,
resonance absorption occurs. This is the origin of the GAE damping rate. Fig.4 also ex-
plains the difficulty in depositing the power in the centre of the discharge, due to the large
number of toroidally coupled resonance surfaces. This number increases with increasing
q: from Eqgs (1) and (2) we see that the continuum frequencies of different m’s are close to
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Figure 5: Level line plots for Re(E,) using LION, The parameters correspond to the
Phaedrus-T tokamak with f = TMHz,n = —7,q0 = 1.5,q, = 3.8, By = 0.7T,ngo =
0.3 x 10%m-3

each other at high q. Small aspect ratio and shaping of the plasma cross-section enhance
the coupling between m’s and it becomes increasingly difficult to deposit the power near
the center.

5.3 Alfvén waves in Phaedrus-T

Phaedrus-T is a small tokamak with main parameters By = 0.92m, a = 0.26m, By =
0.6 — 0.95T, I, = 20 — 90k A, no sawteeth (g0 > 1). One of the aims of the current
research experimental programme is the study of current drive in the Alfvén frequency
range [5]. The density is small for these CD studies, typically ngo = 0.3 x 101m~3. The
antenna consists of two poloidal straps on the LFS of the plasma at toroidal locations
separated by 0.14m. The frequency is f = TMhz which, for By = 0.7T, is just below
the hydrogen cyclotron frequency. The toroidal mode number excitation spectrum of
this antenna is rather broad: typically, at least 10 different n’s are excited. The phase
difference between the two straps can be controlled and thus different toroidal spectra
can be launched.

This is a very different regime as compared with the TCA experiment. With the

large w/wy and high ¢ one can expect a large number of Alfvén resonance surfaces to
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Figure 6: JET saddle coils resistive coupling computed with the LION code for two
possible antenna phasings: two top antennas with (+,-) phasings (dotted line) and
Jour top antennas with (+,-,+,-) phasings. The labels a,b,c,d,e correspond to n =1
modes and A,B,C,D,E,F,G to n = 2 modes. The plasma parameters are Ry = 3m,
Bo = 3.45T, npo = 5x 10°°m=2, » = 102, go = 1.1, ¢, = 3.34, I, = 5MA, < f >=
3.9%, Bt = 0.78, a/R = 0.36, x = 1.63. Note that f = 400kHz corresponds to a
normalized frequency Row/vao = 1.

be excited. This is confirmed by LION code calculations: for n = —7, f = TMhz,
By = 0.7T, npo = 0.3 x 10®m~3, ¢o = 1.5, ¢, = 3.8, we show in Fig.5 a contour plot
of Re(E,). A considerable number of resonance surfaces show up. We made a toroidal
Fourier scan n = —15 to +15. The n = —7 case is the best case for the power deposition
profile and has a reasonable antenna coupling: 38% of the total power is absorbed inside
half the minor radius. Summing the toroidal Fourier components we obtain the antenna
coupling resistance R, for various phase differences A between the straps: R, = 0.165 Q
for A =0, R, =0.093 Q for A = 7/2, R, = 0.089 Q for A = —x/2 and R, = 0.018 O

for A = 7. This is in agreement with the Phaedrus-T experiment.

54 TAEs and EAEs in JET

We consider an up-down asymmetric equilibrium configuration typical of a ‘single-null’
discharge in JET. The parameters are: a/Ro = 0.36, x = 1.63, qo = 1.1, g, = 3.34,
p'(¥) = 2/3 of ballooning optimized p'(y) profile, I, = 5M A, < 8 >= 3.9%, Bpot = 0.78.
For all equilibria considered in this section we keep the same shape of cross-section, value
of go and I*(v) profile, where I* is the magnetic-surface-averaged toroidal current density.
Different equilibria are obtained by scaling the p/(1) profile.
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Figure 7: Contour plots of the real part of the binormal component of the wave
electric field, Re(Es), of the internal (left) and external (right) n = 1 TAEs cor-
responding to the peaks labelled ‘a’ and b’ in Fig.6. The normalized frequencies
Row[vao are 0.2626 (left) and 0.4048 (right).

We first evaluate the plasma response to the antenna excitation at various frequencies
in the absence of kinetic effects. Fig.6 shows the saddle coil antenna coupling resistance
for the case < f >= 3.9% and for two different possible antenna phasings. Saddle coils
excite TAEs in the frequency range f = 80 — 250k Hz and EAEs in the frequency range
J =250 — 500kHz. The different modes have very different couplings and this is due to
different eigenmode structures. The electric field component Re(E;) of some TAEs is
shown in Figs.7 and 8. There are ‘internal’ modes, such as the n = 1 mode labelled ‘a’,
with a relatively modest wave amplitude at the plasma boundary; therefore the antenna
couples weakly to this mode. There are ‘external’ modes, such as the n = 1’b’, the
n = 2’C’ and the n = 3 modes. Their amplitude is large throughout the plasma cross-
section and therefore couple well to an antenna. The n = 2 and n = 3 external modes
have a small amplitude near the magnetic axis: the dominant poloidal mode numbers

at ¢ = 5/4 and ¢ = 7/6 are m = 2,3 and m = 3,4, respectively, and these components
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Figure 8: Contour plots of Re(Ey) of the n = 2 (left) and n = 3 (right) external
TAFEs for the same parameters as in Fig.6. The n = 2 mode corresponds to the
peak labelled °C’ in Fig.6. The normalized frequencies Row/vao are 0.4084 (left)
and 0.4354 (right).

tend to vanish at the magnetic axis. This is not the case for the n = 1 mode which has
m = 1,2 as dominant poloidal mode numbers between the magnetic axis and the ¢ = 1.5
surface. The m =1 component is finite at the magnetic axis. The TAEs studied in Refs
[16], [7], [10], [33] are ‘internal’ modes.

There is an interesting difference between internal and external modes. Fig.9(top)
shows the eigenfrequencies of the n = 1 modes ‘a’ and ‘b’ for a sequence of equilibria with
varying pressure. The mode ‘a’ hardly changes its eigenfrequency and always remains just
above the lower edge of the continuum gap. The frequency decrease reflects the opening
of the gap as the Shafranov shift increases. Its coupling from the antenna remains
quite small and roughly constant. The mode ‘b’, on the other hand, is very sensitive
to variations in the plasma equilibrium. Its frequency decreases strongly with increasing
Brot, by a factor 2 for By, ~ 2.4. For Byn ~ 2.25 the two modes cross each other and for
still higher By, mode ‘b’ enters the Alfvén continuum. The antenna coupling of mode ‘b’

21



0.5

b
~t
2 of
2
8
o 9|
o a
N 1 L 1 1
-_ 0
£ [
O, i .
3 of
. -
g o
§l0r—
o)}
L
B
§°1;l1l L 1
A
e.<'.'9
mg“!
\O-
m‘_
o-n-
°ll a2
0 2.5

1 .
l‘)’pol

Figure 9: FEigenfrequencies of the n = 1 TAEs ‘a’ and ‘b’ (top), JET saddle
coils resistive coupling of mode b’ (middle) and compressibility (ratio of amplitudes
By/ B, )(bottom) of mode ‘b’ versus Ppo for the same parameters as in Fig.6 ezcept
the p'(1) profile which is scaled by a constant factor.
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exhibits a remarkable behaviour: it is linearily proportional to B, (see Fig.9, middle).
The compressibility of the mode (finite B)) increases with B, (see Fig.9, bottom). The
mode ‘b’ becomes less torsional: the ratio of amplitudes E,/E, decreases from 15.4 for
Bpot = 0.78 to 4.1 for Bpy = 2.14. Therefore gap modes are ‘shear’ Alfvén modes only
in a loosely speaking sense. A practical consequence is that it may be hard to see the
mode ‘b’ for low B,, values in the antenna excitation experiments. We note also that
the frequency decrease with increasing beta has been seen in the DIII-D experiment [34].
The factor 2 decrease that we found is of the same order as that reported in Ref. [34].
The authors of Ref. [34] have given another interpretation to this effect and named the
high-beta TAE modes ‘Beta-Induced Alfvén Eigenmodes’ (BAE).

It should be noted that the external TAEs are really global: their wavefield is not
localized near a particular gap position ¢ = (Jm| + 1/2)/|n|. Comparing Figs 7‘b’ with
Fig.8, we conclude that there is no increase in mode localization with increasing n.

6 Stability of Alfvén eigenmodes

In the frame of the DKE model developped in Section 4.2 the stability of Alfvén eigen-
modes (AE) is determined by a balance between the wave-particle power transfers to
electrons, bulk and fast ions. Let us first analyze the parametric dependence of these
powers for the cases of AEs.

The power transfer to bulk species depends on the ratios w/ |kyj|vehe, w/|kylveni and
w/wei (see Eqs.(25)-(27)). The AE eigenfrequencies w scale proportionally to the Alfvén
velocity on axis v4o, 80 the ratio w/|ky|vss. is proportional to 1/+/B., w/|ky|vs: is propor-
tional to 1/4/B;, and (w/we;)? is proportional to 1/ng. Thus for given Ti(s), Ti(s), n(s)
profile shapes the power to bulk ions and electrons for a given AE depends on 3., 8; and
on the bulk density no.

The DKE power to fast ions (Eqs.(28),(29)) depends on the ratio of the birth velocity
vo to the parallel phase velocity v, through the integrals Iy, I; and I, in Eqs.(28)(29). For
a given AE, v, scales proportionally to v49. The power to fast ions also depends on the
fast ion pressure gradient, which can be measured by the fast ion density profile width
31/2. The gradient term in Eq.(29) also contains a derivative of the electron temperature
through the gradient of C' (Eqs.(11)(12)). So the power to fast ions for a given AE, for
a given T, profile, depends on vo/va0, 3173 and the fast ion density.

So one can characterize the overall global stability properties of a given AE mode in
a plasma with given profile shapes of T(s), T.(s) and n;(s) by the parameters 8., 8;, 3y,
vo/v40, w/ws and sy,

Of course the global overall stability of AEs depends also on the eigenmode wavefield
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structure as we illustrate below.

In this section we analyze the stability of the lowest frequency TAEs that have no
continuum damping. These modes are the most likely candidates for destabilization. The
modes shown in Figs.7-8 are such TAEs. We use the perturbative approach, calculating
the DKE powers (Section 4.2) with the wavefields obtained from the zero Larmor radius
toroidal model (Section 4.1). (Remember, this approach does not hold when a KAW or
SQEW is present. Continuum damping of low n modes was extensively studied in Ref
[18] for a wide variety of shapes and profiles. High n continuum damping was analytically
studied in Refs [35], [36]. Only for cases where the profile of 1/ q./p is sufficiently peaked
or hollow the continuum gaps do not overlap and all gap modes are continuum damped.
Otherwise there may be TAEs ‘threading’ the gaps and thus exactly zero continuum
damping. One cannot exclude such cases in a reactor since neither the density nor the q
profile are easily controllable.)

6.1 TAE modes in JET in the presence of fusion alphas

Let us consider the n = 1 mode ‘a’ (Fig.7a) with the parameters T,o = 10keV, T} =
30keV, in the presence of fusion alpha particles with density profiles defined by

ns(s) = ngo(l — s%)™, (32)

and vary the profile peaking by varying x;. Moreover, we define the quantity P(s) by
the relation .
Papesies = /o P(s)ds. : (33)
Fig.10 shows P(s) of the different species, Eqs.(25)-(29), plotted versus s for x; = 22
which gives an alpha particle profile half-width s,/ = 0.176. As expected, the destabi-
lizing term P}""""” peaks around s = 0.15 where the alpha particle density gradient is
maximal. The fast particle stabilizing term P}*™ shows a similar behaviour. The elec-
tron damping, on the other hand, is localized near s = 0.8 (¢ = 1.5) where eigenmode
gradients are very large (see Fig.7a). The ion damping is maximal near s ~ 0.5. This
can be understood from the factor exp{—(w/|ky|v:)?} in P**™. Due to the k variation
with respect to s, the quantity w/|ky|veni is minimal near s ~ 0.5. This example shows
the importance of determining the overall stability globally. Local stability criteria would
give instability if applied near s = 0.2 but stability if applied near ¢ = 1.5 (s = 0.8). The
influence of the eigenmode structure on the stability plays a crucial role. First, through
the profile of eigenmode wave fields and their gradients (Fig.7). Second, through the
profile of k.
Fig.10 shows that, in the presence of a TAE, alpha particles give their energy to
the wave and the wave gives energy to bulk species. This opens thus the possibility of
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Figure 10: Radial profiles of the wave-particle DKE power transfers to electrons
(continuous line), bulk ions (open symbols) and alpha particles (dotted line: P}ome;
filled symbols: P""”'"" ) of the n =1 internal TAE shown in Fig.7. JET pammeters
with Tep = 10keV Tio = 30keV, fusion alpha particles with ny(s) = 10¥m=3(1 —
8%)22, 81/2 = 0.176, vo/vao = 1.73. The other parameters are the same as in Fig.6.

fusion alpha power extraction by non-collisional processes. One can imagine a scenario
in which a TAE would be excited by an antenna. If the TAE is stable but close to the
marginal point, a large power transfer from alphas to bulk species can take place even
with a moderate antenna power. Depending on plasma parameters, this power will be
transfered preferentially to electrons or to bulk ions. For example, if we wish to maximize
the power transfer to bulk ions, we should maximize the bulk ion Landau and TTMP
dampings. This can be done by increasing the bulk ion temperature as we show below.
For the same parameters as in Fig.10 (except the fast particle density profile half-
width s,/, and the central ion temperature T;, which are varied) we show in Fig.11 the
critical volume averaged alpha particle beta for marginal stability, < 8; >, plotted
versus the profile half-width sy, for various central ion temperatures Tjo. The stabilizing
effect of ion damping is clear for T;p > 20keV. We note a remarkable behaviour of
< Bs > Vs 81y2. For sy, < 0.35, flattening the fast particle profile is stabilizing as
one can expect. But for 0.35 < s;/; < 0.55 flattening the fast particle profile actually
destabilizes the mode: the reason is that an increasingly large fast particle pressure
gradient is present near s = 0.8 (¢ = 1.5) where the eigenmode has a large amplitude
(Fig.7a). This effect is not small : < B > is about a factor 2 larger for sy, = 0.35
than for sy = 0.55. This means that about half of the fast particles would be lost if
the fast particle profile widens beyond s,/; = 0.35. For sy, > 0.55, flattening the fast
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Figure 11: Volume-averaged alpha particle beta for marginal stability, < B; >, of
the n = 1 internal TAE shown in Fig.7a, versus alpha particle density profile half-
width sy/5, for various ion temperatures Tyy. The other parameters are the same as

in Fig.6 (JET). (The mode is stable below the curves, unstable above).

particle profile is again stabilizing because of the reduced fast particle pressure gradient.

6.2 TAE modes in DIII-D in the presence of NB-injected fast
ions

In this section we consider the same sequence of plasma MHD equilibria as before but
consider the case where both bulk ions and fast ions are deuterium species. Fast ions
birth energy is 75keV. The temperature and density profiles are chosen as T.(s) =
Teo(1 — 8%)1/2, Ti(s) = Tio(1 — s?)/2, n(s) = no(1 — 0.952)!/2 and ns(s) = nso(1 — s2)*r.
We keep the ratio T;/T, constant at 1.25. Different values of bulk 8, vo/v40 and w /[ we;
are obtained by varying the bulk density no, temperatures T;, and T and magnetic field

B; each over a wide range of values:

By, = 06-225 T

ng = 1.3-30x10"® m™
To = 0.15—12.8 keV

Teo = 0.12-103 keV

We set the major radius of magnetic axis at 1.8m. These parameters overlap those of
DIII-D TAE excitation experiments with NB injection [12], [13], [34].
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Figure 12: < By >, of the n = 1,2,3 TAESs shown in Figs.7-8 versus fast ion
density profile half-width s,;;. The parameters are typical of DIII-D: By = 0.74T,
B =3.86%, no = 2 x 10®m=3, T = 2.05keV, T;o = 2.56keV, vo/va0 = 1.048.

Let us first study the fast particle critical beta corresponding to marginal stability,
< Bf >, for a range of fast jon profile widths s,/; obtained by varying the coefficient
ks in Eq.(32). We show in Fig.12 < B; >, versus s/, for the parameters By, = 0.74T,
ng = 2.0 x10'®m—3, T;p = 2.56keV, Too = 2.05keV. This gives a plasma bulk 8 = 3.86%
and a ratio vo/v4o = 1.048. The n = la internal TAE shows a similar behaviour as in
Fig.11: the decrease in < f; >.. between s;/, = 0.35 and s,/ = 0.55 is an effect of
the particular eigenmode structure (Fig.7a). The n = 1b external TAE does not show
such a behaviour. The external mode amplitude (Fig.7b) is large near the magnetic axis
and this gives a strong destabilization for peaked fast ion density profiles which is not
balanced, as for the internal mode, by large electron damping (see Fig.10). For flat fast
ion density profiles the internal mode is more unstable than the external mode because
of the large mode amplitude and gradient of the internal mode near the ¢ = 1.5 surface.
The n = 2 and n = 3 external TAEs have stability limits very close to each other. This
may explain why several n’s are seen simultaneously in the experiment [13]. For small
81/2, the n = 3 mode is more stable than the n = 2 mode, which is more stable than
the n = 1 external mode. This can be understood from the smaller wave amplitude near
magnetic axis for the n = 3 than for the n = 2 than for the n = 1 external mode.

We now study the TAE stability for various values of vo/v40. The Alfvén velocity
on axis, v 4o, is varied by changing the density no and the temperatures Tj, Teo as 1/no,
keeping By = 0.74T constant, so that 8 = 3.86% is constant. Fig.13 shows < 8; >, for
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Figure 13: < B; > of the n = 1,2,3 TAEs shown in Figs.7-8 versus vo/v a0, for
a fast ion density profile half-width s/ = 0.4. The parameters are By = 0.74T,
B = 3.86%. The density ng is varied, the temperatures are varied as 1/n,.

a fixed fast ion density profile width sy/; = 0.4. For all TAEs, < f#; > is monotonically
decreasing with vp/v4e. This is due to the increase in the number of resonant fast
particles. Again, the similarity of the n = 2 and n = 3 stability limit is evidenced. We
note also that TAEs can be destabilized for values of vp/v49 below unity: the reason is
that the parallel phase velocity is smaller than v4: k| is upshifted due to the toroidal
coupling of several poloidal mode numbers m.

For the same plasma § = 3.86% and fast ion density profile width s,/ = 0.4 we show
in Fig.14 the TAE stability limits plotted versus By. The density ng is varied as B2, and
the temperatures are kept constant, so that A and v4o are fixed. The circles correspond
to Tio = 2.56keV, To = 2.05keV, which gives a fixed ratio vo/vso = 1.048; the squares
correspond to Ty = 1.25keV, T = 1.0keV, which gives a fixed ratio vo/vso = 1.5.
The magnetic field dependence is due mainly to two effects. First, the driving term,
Eq.(29), is proportional to w?,/w?,, which is proportional to 1/By for this toroidal field
scan since ng is varied as BE; the damping terms, Egs.(25)-(28), on the other hand, are
proportional to w?/w?, which is constant for this toroidal field scan. Second, the damping
due to Ej contains a term proportional to w/w, which is proportional to 1/By. (This
term multiplies V- E’, so the damping due to Ej| is important when eigenmode gradients
are large.) So increasing By decreases both the drive and the damping, but in a different
way. One can expect, for the n = la internal TAE, that the stabilizing effect of decreasing

B, is more important than for the n = 1b external TAE, because it has larger eigenmode
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Figure 14: < By >, of the n = 1,2,3 TAEs shown in Figs.7-8 versus By, for a
Jast ion density profile half-width s,/, = 0.4. The parameters are vo/vao = 1.048
(circles), vo/vao = 1.5 (squares), B = 3.86%. The density is varied as BZ.

gradients, so a larger Ej; damping (see Fig.10). Our results confirm this (Fig.14). The
overall stabilization for low By is also seen for the n = 3 TAE: it has larger eigenmode
gradients than the n = 15 external TAE (compare Fig.7 with Fig.8).

We now turn to the analysis of the 8 dependence of the TAE stability. We consider
the n = 1b external TAE and study the marginal stability < 8; >, versus vo/vgo for
different § values. The results are shown in Fig.15, for a given fast ion density profile
width s,/; = 0.4. The parameter vo/v4o is varied by changing the bulk density no and
a constant B scan is obtained by changing the bulk temperatures as 1/ng. For large
vo/v4o the TAE is stabilized when S increases, due to enhanced electron and ion Landau
damping. On the other hand, increasing £ is destabilizing for small vo/v 40: the minimum
vo/v4p for instability goes from 1 for B = 1% down to 0.7 for # = 5.5%. Increasing 3
is lowering the eigenfrequency of this mode (see Fig.9). Consequently the parallel phase
velocity is decreasing and more fast particles can destabilize the mode. Therefore the
threshold in vg/v4g is going down with increasing beta for this mode.

We note that for vo/vso < 2 and 8 = 1% we have < f; >, > 0.2%, which is larger
than the estimated < B, > in TFTR D-T experiments [37] in which no sign of TAE
activity was reported.

More cases are analyzed in Ref.[38]. We have found that < #; > is in almost all
cases always larger than 0.1%. The only exceptions are extremely peaked fast ion density
profiles (sy/; < 0.15) for the n = 1(b) external TAE. When compared with the DIII-D
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Figure 15: < B5 >.» of the n = 1b external TAE shown in Fig.7 versus vo/v 4o, for

a fast ion density profile half-width s,;; = 0.4 , By = 0.74T, and various values of
bulk 3.

experimental database [13], the minimal value of vo/v4o above which TAE instabilities
are seen, the typical values of < 8; > that can make TAEs unstable, the fact that several
n’s are simultaneoulsy destabilized, the fact that the n = 1 TAEs are most often more
stable than higher n modes, the TAE eigenfrequencies, are well reproduced by our model.
These encouraging results make us confident that our model can be applied for a reliable
quantitative prediction of the TAE stability limit in a reactor. Another check of our
model is to compare the perturbed magnetic field in the vacuum with the experimental
probe measurements. For this, a case by case analysis is required including a careful
equilibrium reconstruction. First results obtained with the PENN code on DIII-D shot
71524 at 1875ms indicate that the perturbed magnetic field By has maximum amplitude
at the outboard (low field side) of the torus. We have noted also that the poloidal
structure of By at the probe locations does not reflect simply the By structure in the
plasma near the edge.

Our model could be improved in the following ways. First, for cases where the inter-
action with kinetic waves is important, e.g. when a TAE is intersecting the continuum,
we can go beyond the perturbative approach with the global toroidal FLR model devel-
opped in Section 4.3. Second, other kinetic effects could be included in the wave-particle
transfer, such as the finite orbit width or the effect of trapped particles.

We have shown that in any case a global approach must be used in order to obtain

a reliable quantitative prediction. There are two reasons for that. First, the fast ion
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drive, damping on electrons, damping on bulk ions and damping on fast ions take place
at different radial positions. Second, the TAE wave fields extend over the whole plasma
cross-section. There is no mode localization, even with increasing n. This fact compli-
cates the analysis of experiments in which there is a toroidal velocity shear. The effect of
the velocity shear is then not simply a Doppler shift of the eigenfrequencies. There may
be additional effects on the mode structure and therefore on the damping and drive.

7 Conclusions

We have shown how progresses have been made in the theoretical understanding of Alfvén
waves in fusion plasmas. With the advent of more and more performing numerical tools
and computers, we have been able to study realistic geometries with increased accuracy
and with more and more physical effects included in the models.

Roughly speaking, the theory has been able to make correct predictions first on the
real part of the frequencies of the Alfvén spectrum, and then on the imaginary part
(damping - growth rates) as well. The effect of Alfvén waves on particle and energy
confinement has been observed to be important. The theory is in the present stage not
really able to predict this behaviour, partly because the anomalous transport is anyway
not really understood. Non-linear kinetic theories are required, and this would imply

solving a 3D configuration space and at least 2D velocity space time evolution problem.
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