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Abstract

A 2P discretization of Maxwell’s equations is studied in terms of the electro-
magnetic potentials using linear and cubic finite elements. The formulation is first
“analyzed with respect to the discrete dispersion properties to show that it is pollution
free. It is then further applied to a simple cylindrical waveguide problem, showing

good convergence to the analytical eigenfrequencies.
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1 Introduction

Spectral pollution remains a major concern in wave theory when solving Maxwell’s equa-
tions numerically. In waveguide calculations for example, spurious computational modes
appear in the physical eigenmodes spectrum: | they are generally of short wavelength com-
parable with the mesh size, and exhibit an electrostatic behavi.or. If the mesh density is
ﬁncreased, new parasitic modes appear in the spectrum in an uhpredicﬁable way and it is

impossible to keep track of the physical solution in a convergence study.

This phenomenon has been known for some time as well among the people involved
in microwave [1], fluid dynamics [2] and plasma theory [3]. Several methods have been
proposed since to solve the variational problem using finite elements in more or less general
cases. Grossly, they either rely on a modification of the functional, so as to “penalize” the
cost of the divergence [4], [5], [6] or allow the solution to be divergence free everywhere
using a modification of the finite elements basis [7],([8],[9], (10], [11]. The penalty method
shifts the parasitic modes according to the size of the penalty term and leads to questions
concerning the threshold sufficient to clean the region of the spectrum under study without

affecting too much the physical modes [12].

Recently a new approach has been suggested to avoid pollution by solving Maxwell’s
equations in terms of the electromagnetic potentials [13]. No extra term has to be included
into the variational problem and the discretization can be. performed with standard finite
elements. The computational size of the problem is increased by introducing an extra
variable; the resulting Laplacian structure may however open the way to iterative resolution
methods which used to fail due to the bad condition of the matrix resulting from the
double-curl operator. The present work first shows that the new approach is pollution free
by analyzing the 1D discrete dispersion relation arising from linear and cubic-hermite finite
element discretizations on a homogeneous mesh. A formulation is then given in 2D in the

case of a cylindrical waveguide and the numerical convergence to the analytical solution is



studied for both types of elements.

2 Weak form in terms of potentials

A usual way of writing the time independent Maxwell’s equations in terms of the electric
field E results in the infamous V x Vx operator which is the source of polllitiOn:
w)2 4w~

VxVxE——(z E—-zwc2 T ext - (1)

\

Addition of an extra term nV(V. E‘) where 7 is the penalty factor, shifts the spurious

modes and avoids pollution.

Exammmg the general vector identity —V x ( Vx v +V(V V = V2 V/ which is a
snmla,r combination of terms, it appears advantageous to use Laplacian operators. This

is possible if Maxwell’s equations are written in terms of the potentials ( A,¢) using the

Coulomb gauge:

V2A KL A+ikoVe = iz, )
V24— ikoV- A = —ATPegt.

-

w = koc is the circular excitation frequency and (J .z4,pe-¢) external sources chosen so as
to satisfy V. j ;1= pest = 0. Note that by taking the divergence of the first equation and
combining it with the second to obtain V3(V. Z) = 0, it is clear that the Coulomb gauge

is satisfied everywhere once it is imposed along the boundaries.

At this stage, it is useful to construct the variational form and to»a,‘na,lyze the dispersion
properties in the context of a finite elements discretization. This is done for the general
case in a 1D slab geometry (&3, &y, ¢;) and assuming the dispersion to be only in (&5, ).
After a multiplication of Eqs.(2) by a test function (F*, G*) and further volume integration,

the weak form is integrated by parts, keeping only the volume contributions relevant for a

T



local analysis:

[

Jav [~@x F)-(vx D)= (V- F)V- D)+ R F - A +iko 7 .w] 0

7 AT 3)
v [(vG) - (V4) = ikev G- A] -0

A finite element approximation is then performed on a homogeneous mesh z; = jh by
writing

(A, 6)u(z) ~Yetmnrc)  w=1.4. (4)

nw(z) is the basis function associated with the mesh point n and used for approximating the
component (Z, ®)w. Expressing the tést'function in terms of finite elements and carrying out
the integration over their finite support, leads to a discrete dispersion relation in the form
of det(B) = 0. This is then solved analytically using a symbolic manipulation software.
Choosing the numerical parameters as b = 1 and k, = 3 finally results in a function relating

the parallel refractive index (#%)? to the precision of the numerical discretization kh.

Fig.1 shows a comparison for linear elements between the standard polluted scheme
Eq.(1) leading to the three solutions (;l.,b,d) and the new scheme Eqs.(2) which has a
degenerated set of solutions (d,d,e). Pollution is present in two branches. The first (a)
corresponds to a short wavelength mode, propagatory below the cutoff frequency. The
second results from the double valued solution (b) which allows, for a given frequency,
the coexistence of two modes. Here again, one of the solutions has a short wavelength
comparable with the mesh size. Note that a solution (e) exisfs for high frequencies and
short wavelengths. It is an unphysical electrostatic mode (¢ # 0) which does not satisfy
V- A= 0. It can however not be excited if the Coulomb gauge is properly imposed so that
(d) remains the only branch approximating (c), showing at the same time that Eqs.(2)
discretized With linear elements are pollution free. The same analysis is repeated using

cubic elements in Fig.2.

Confident of the local properties of the new scheme, we continue with the formulation

of a driven global problem in a specific geometry. Although our aim is to model the wave
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Figure 1: 1D discrete dispersion relation F = (£5)? as a function of kh using linear j

kh

elements. While (c) reproduces the analytical solution, the polluted scheme Eq.(1) leads
to solutions (a,b,d), and the new method Fqs.(2) to (d,d,e): |
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Figure 2: 1D discrete dispersion relation F = (%)% as a function of kh using cubic
elements. While (c) reproduces the analytical solution, the polluted scheme Eq.(1) leads
' to solutions (a = 0,b,b,c,d,e), and the new method Egs.(2) to (¢,c,c.ee).



propagatibn in a toroidal fusion device, we restrict here our analysis to a 2D cylindrical
waveguide in polar geometry (€, €p,€,). Assuming the third coordinate being ignorable,
the variational problem is constructed directly from Eqs.(2), along the same lines as for
Egs.(3). Regularity is enforced after part’ial integration, canceling the surface contribution
of the cylinder axis. As mentioned above, the gauge condition V. A= 0 imposed on the
surface term at the cylinder boundary, is sufficient to select in a least squares sense the

proper gauge in the whole domain. The complete expression finally reads:
/ d0/ pdp {—(L35 + ik, Fy)(L8% — ik, Ag) + (ik. Fr + aF‘)(zic A, — )
~(L2(pF;) + 1”’9 — ik, F¥) 12(pA,) + L% + ik Fy) + iko(F 52 + LFy38 + ik, Fro)
~(5(oF9) - },*’;‘; Y2 (pAs) — 152) + KY(F; A, + FyAg + Fr A, }-

_4_071 dﬂ/ pdp{Fg]extG‘l"F ]cztz}

/. d0/ pp {— (352 + L% + K2H"6) — ikoH" (L2 (pA,) + 13 + ik, AL)}
+/ dOp{zkoH*A ~H* 2%} =0

Prior to the resolution of the discretized Eqs.(5) it is necessary to impose the proper
behavior of the solution on the domain boundaries. Unicity has to be required on the
cylinder axis where a finite number of discrete values of the potentials degenerate to one:
Az = Aife, - &) + Aj(eg - €;) = const.
| 4= 42+ 4G 5) = cons o

A, = AL = const

| 6= ' . ¢ =const = Vi=1..Ng

For a perfectly conducting waveguide, the boundary conditions result in vanishing scalar

and tangential vector potentials

Ay=0 Ai=0 ¢'=0 | v ’ (7)
(B =0 (%F)=0 (§)=0 Vi=1L.Ny ¥

Eqgs.(8) have to be specified only for cubic elements.
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Figure 3: Theoretical (circles) and numerical (z-marks) eigenfrequencies using linear

elements

3 Results

In order to validate the formulation numerical computations are performed in 2D for a
vacuum cylinder, so that the result can easily be compared with the well known analytical

solution.

For the driven problem under discussion, all fundamental eigenmodes can be excited
by an arbitrary spatial distribution of the source current by proper tnning of the antrenna
frequency f = 3% which is chosen’with a small imaginary part. Scanning in frequency and
identifying the mode structure corresponding tq the peaks of the electromagnetic energy,
the numerical solution can be compared with the analytical theory. Fig.3 shows the eigen-

frequency spectrum consisting of transverse electric T'E},, and transverse magnetic T M,,,
! modes obtained using linear finite eléments on a homogeneous mesh 8x8, for polar mode
numbers up to m = 4. This corresponds to the discretization limit of 2 mesh points per

polar wavelength. Note that no solution has been found below the fundamental eigenfre-



Figu;e 4: Cubic-hermite solution for Z L for an eigenmode T Eq;

quency .of the mode T Ey;; as expected from the local analysis, the new scheme has no
spurious modes related to the branches (a) of Fig.1 or (b) of Fig.2. For higher frequencies,
the electrostatic short wavelength modes related to (e) have also properly been suppressed.

All together, this shows that the new scheme is pollution free,

Fig.4 shows the structure of the vector potential in the case of an eigenmode T E;
calculated with bicubic finite elements on a homogeneous grid 6 x 6. Considering the
relatively coarse resolution, the value of the eigenfrequency obtained numerically f"vm =

5.3323 [GHz] is in excellent agreement with the analytical result f* = 5.3314 [GHz).

The quality of the discretization is best judged in a convergence study monitoring the
relative error in the eigenfrequency and the precision of the gauge condition as a function of
the number of mesh intervals. Fig.5 shows the convergencg of the relative eigenfrequency -
for the eigenmodes T Eoy, T Eo1, TEyy and TMeo. Using linear

elements Aw decreases quadratically. With cubics it reaches a convergénce law near to the

o e num _ ,th
deviation Aw = £—z¥

fifth power of the number of mesh intervals, with an excellent initial precision better than
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Figure 5: Relative frequency deviation Aw versus the number of mesh intervals N for the

eigenmodes T Egy, T Eo,, T Ey1, T Moo using linear (z-marks) and cubic (circles) elements

»1o°‘
107}
102 |
© 107
107}

105k

10°L .
10° 10’ 102

N ,
Figure 6: Precision of the gauge é versus the number of mesh intervals N for the eigen-

modes T Eor, T Eoz2, TEn1, T Moo using linear (z-marks) and cubic (circles) elements



1% for two mesh points per wavelength. It is interesting to note the slight degradation
of the convergence rate for the eigenmodes TE);. This phenomenon has to do with the
finiteness of the solution on the cylinder axis which interferes with the natural boundary

condition which selects only the regular solution for p — 0.

As expected from considerations above, convergence is also achieved globally for the
gauge condition V. A= 0. Compared here with a typical variation of the field and aVeraged
over the volume, we define the factor § = (9%.'—'“—') related to the precision of the gauge.

Fig.6 shows a quadratic/quartic convergence of § with linear/cubic elements respectively.

-Although a cubic finite elements discretization is much heavier to implement as far as
the programming is concerned, the computer time required to achieve a precision around
1% in the eigenfrequency is alrea,dy 2-4 times smaller with cubic than with linear elements.
The situation is even more pronounced for higher precisions, as cubic elements have a

higher convergence rate than linear elements.

As a final remark, and to emphasize on the robustness of the method, we note that
the formulation présented in this paper has been extended successfully to the curvilinear -
geometry of a tokamak equilibrium to simulate the linear wave propagation in a cold toroidal

plasma. Results related to that work will be reported elsewhere.
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4 Conclusion -

A 2D discretization of Maxwell’s equations in terms of the electromagnetic potentials has
been shown to be pollution free using standard linear or cubic-hermite finite elements.
Analyzing the dispersion properties of the discrete problem, it was possible to identify the
~spurious branches in the standard approach and to show that the new method does not
suffer from pollution. A formulation has been given for a 2D cylindrical waveguide, showing
good vconvergence to the analytical solution for both types of elements. The excellent
precision achieved with cubic elements already for coarse mesh densities makes them‘ very.

attractive for global modes simulations.
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