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Abstract

The quest to determine accurately the stability of tearing and resistive inter-
change modes in two-dimensional toroidal geometry led to the development of
the PEST-3 code, which is based on solving the singular, zero-frequency ideal
MHD equation in the plasma bulk and determining the outer data A’, I and
A’ needed to match the outer region solutions to those arising in the inner
layers. No assumptions regarding the aspect ratio, the number of rational
surfaces or the pressure are made a priori.

This approach is numerically less demanding than solving the full set of
resistive equations, and has the major advantage of allowing for non-MHD the-
ories of the non-ideal layers. Good convergence is ensured by the variational
Galerkin scheme used to compute the outer matching data. To validate the
code, we focus on the growth rate calculations of resistive kink modes which
are reproduced in good agreement with those obtained by the full resistive
MHD code MARS.

*E-mail: alexandre.pletzer@crpp.epfl.ch

tPresent address: Theoretical Electrodynamics, Uppsala University, Box 534, S-751 21 Uppsala,
Sweden



» Rek

FIG. 11. Integration contour I' circumscribing the branch line on the Imk > 0 axis for z > 0.



I. INTRODUCTION

In tokamak plasmas, it is known that resistive magnetohydrodynamic (MHD) modes
can provoke disruptions [1] by allowing the formation of magnetic islands about rational,
q = m/n surfaces (where the magnetic field lines close after completing m turns in the
toroidal and n turns in the poloidal directions). The m = 2, n = 1 mode is in particular
effective in this respect. Resistive kink, ¢ = 1 instabilities also appear to be involved in
triggering sawtooth oscillations [2] in plasmas with central ¢ < 1.

Resistive MHD modes are characterized by growth rates 4 which scale as some fractional
power > % of the resistivity 7. Provided 5 is sufficiently small so that the Lundquist number
S defined as the ratio of resistive diffusion time to the characteristic Alfvén time is at least,
say 10° (which is well fulfilled in large scale fusion experiments) one may then apply an
asymptotic matching method [3] to describe these modes. This consists in dividing the
plasma into an outer region where both 7 and + are negligible, and inner layers of small
width L ~ n!/® containing the rational surfaces. All non-ideal effects are concentrated in
the inner layers. The outer region and the inner layers give rise to solutions to be matched.

The asymptotic matching method was adopted by most analytic works on linear resistive
modes, which predict that tearing modes are stable if the outer region matching quantity
A’ (= jump of the logarithmic derivative of the normal magnetic perturbation) is negative
in the pressureless limit [4], or smaller that a positive threshold in the finite pressure case
if the resistive interchange index Dg < 0, the plasma being resistive interchange unstable
if Dp > 0. This result is due to Glasser, Greene, and Johnson [5], henceforth referred
to as GGJ. Since these data can be entirely determined in the ideal region, the stability
properties can be investigated without solving the higher order, inner layer equations. This
is one advantage of the asymptotic matching method over the full resistive MHD approach,
as used in MARS [6] for instance. The flexibility in the choice of physics in the inner layer
also leaves the door open to study more complex non-ideal models, including weak rotation of
the resonant surfaces [7,8], diamagnetic rotation, trapped particles etc. A general formalism
making no assumption as to the symmetry in the inner layer has been developed [9].

A major difficulty in computing the matching data remains, however, due to the presence
of regular singularities of the outer region equation at the rational surfaces. They give rise
to two distinct Frobenius solutions (i.e. with fractional power-like behaviour): the weakly
singular small solution and the dominant big solution which is non-square integrable. The
complete set of outer matching data is defined as the ratios of small to big solutions, involv-
ing all admissible tearing and interchange parities. Until recently, there was no algorithm
capable of computing the outer matching data to sufficient accuracy so as to compete with
the full resistive MHD code MARS. The solution to the accuracy problem was initiated by
Miller and Dewar [10] who derived an integral expression for the outer matching data, based
on the so-called ‘Generalized Green’s Function’ (GGF) method. This integral method is less
sensitive to the pointwise accurate representation of the solutions, which is necessarily af-
fected near the rational surfaces. The GGF scheme was extended and applied to cylindrical
plasmas by Pletzer and Dewar [11], where the existence of a variational principle was found
and was utilized to unveil symmetry relations among the outer matching data. The purpose
of this paper is to apply this method to axisymmetric toroidal plasmas, and validate it by
comparison with MARS results.



This paper is organized in the following way: the straight-field line coordinate system is
presented in § II. We review in § III the derivation of the ideal marginal stability equation
for the normal displacement field in the outer region. This equation can be regarded as a
generalization of Newcomb’s equation [12] to toroidal geometry. The Frobenius expansion of
the small and big solutions about a rational surface is determined in § IV. When the leading
exponents of the singular solutions approach an integer, the big solution must be redefined.
This situation, treated in § V, occurs in particular when the pressure gradient vanishes at the
rational surface. A global solution is constructed in § VI from the approximate Frobenius
solutions. The dominant part of the big solution is extracted analytically to become a
driving term, and the remaining contribution captured by a finite element response function
which bears the leading small solution behaviour (in addition to a regular solution). The
outer matching data are defined in § VII and extracted in § VIII by means of the GQGF
method. Section IX focus on the numerical implénientation of the Galerkin fnite element
scheme, which also discusses the condition that the piecewise linear elements yield quadratic
convergence for the matching data. In § XI, we present careful comparisons between PEST-
3 and MARS growth rate computations, for zero and finite pressure n = 1 resistive kink

modes.

II. MAGNETIC FIELD LINE COORDINATES

We work in the non-orthogonal coordinate system (3,6, () where the equilibrium mag-
netic field lines

B=V(XVyY+q(x)Vixvl (1)

appear straight when graphed in the (6, () plane. That is, the safety factor

B-v(
= — 2
1) = 5575 (2)
is a function of the poloidal flux coordinate
1

only. We use 1 as radial coordinate, § as poloidal-like coordinate which increases by 27
along the short periodicity length and ¢ as toroidal-like angle which increases by 27 after
one turn in the toroidal direction (see Fig. 1). Note however that ¢ is not in general equal
to the toroidal angle ®; this happens only when the Jacobian

J=(Vxve-v()! (4)

of the transformation from (1, 0, ¢) to cartesian coordinates (X, Y, Z) is of the form f(¥)X2.
The equilibrium is assumed axisymmetric so that J; applied to a scalar quantity is zero.



III. MARGINAL-STABILITY EQUATION FOR THE OUTER REGION

Away from the resonant magnetic surfaces, we are concerned with the solution ¢ of the
zero-frequency, linearized MHD stability equation [13]

Fie = -BX[VX(Q+&JIxn)]—nIxn(Q+&£.Jxn)
+2Uvepe-viyp+ v (I'pv-¢)=0. (5)

Here, ¢ is the ideal displacement-field, n = Vv /| V | the unit vector normal to the magnetic
surface, €, = n-¢, Q = V X(¢ XxB) the magnetic field perturbation, I' = 5/3 the ratio of

specific heats and

Jxn-(B-vn)

————— 6
v oP ©

Owing to the assumed continuous symmetry, the ( dependence of ¢ is taken to be that of
the single-Fourier mode exp(—in(), where n is the toroidal-mode number, which we assume

to be non-zero. Using (1), this allows one to write

U=

JB-V. = (3 — ing)- = Dy (7)

when applying on a perturbed, scalar quantity.

The parallel displacement is eliminated by the magnetic differential-equation
B:-v(I'pv-¢) = 0 obtained when dotting (5) with B, to give the incompressibility con-
dition V¢ =0 as an exact result [14,15] for n # 0. To eliminate the other component of ¢
lying within a magnetic surface in favour of the contravariant )-component

=6V, (8)
one dots (5) with s = V¢ XB/|V |? and obtains [15], again assuming n # 0,
vi$(B-vE)
+&Ixn = ———22 4+ V (GPE). 9
Q+¢ L+ v.(ePe (9
Here v, is the surface gradient operator (| — nn)-v, | being the unit dyadic, ¢ =
—(v-v,)"1J ! is the surface Green’s function operator, and P¢ is defined by
vyB-V¢ —Jxv¢5)
PE=JV- ( . 10
¢ P (1)

The G operator is computed from its inverse
Gl =nPTIV P+ in(TV0:V,()0 + 0s(TV ,0-V ,()in — G (T |V ,0[*)5. (11)

Another useful form, which can be obtained from Eqs. (34)-(36) of Dewar, Monticello, and
Sy [16], is

o 9BV g@) . . g(p) -
O =D gl D Doyt T e g e Il (1)
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with g(¢) defined as the covariant magnetic field component B-¥ & /|v ®|? along the toroidal
direction (it can be shown [16] that the ignorability of { ensures that g is a function of ¥

only).
One can rewrite the operator P more explicitly
P =Dydy + Q, (13)
in terms of

Vv o P go
Q=Dy—— ' @blz Ds + Dy (}Z;E I‘7§b|2 + Z7l7?{)

—in(Jls|*o + ¢' + Ry), (14)

where  denotes derivative with respect to 1,

JJB g

measures the parallel current and Ry = 9R /3 the residual shear, with
VyY-vH— v
R=IV¥VO-_VYVE (16)

[V )2

being the integrated residual-shear. The operators d, and 8y in (14) act on everything to
their right (including the ¢ and @ variation in the equilibrium quantities).
Substituting (9) into (5) one obtains the two-dimensional Newcomb equation

v -(F-¢)
=L{=0 17
gTEED - 1 (17)
where
LE = —(3yDs + QNG (D48, + Q)€ + K¢, (18)
and
=2JU+JBV ——
[vyP l/)l"’
1
=2pTky + To2s|* + a(q’ +7?,9)+Dg TV op Dy. (19)
In (18), @ denotes the Hermitian conjugate
<u, va> = (Qu,v) (20)
of Q for arbitrary 27 periodic functions u(6) and v(8), with
2 27 27
(u,v) E/ d¢ dfu*v = 27 dfu*v (21)
0 ) 0

defining the surface inner product.



From (11) and (19) we see that G and K are Hermitian surface operators

sy )

so that
(u, Lv) = (Lu, ) (23)

where

Ya
(u,v) = / dip (1, v) (24)
0
for all sufficiently regular u and v, i.e. those belonging to the Hilbert space
H={u:|W(u,u)| < oo} (25)
spanned by all functions for which the ideal energy functional
W(u,v) = 1 {(Pu,GPv) — (u,Kv) + (1, DeGPv)], } (26)
is bounded and such that v satisfy natural boundary conditions
DeGPul,, = M(0)o(s,0) (27)

at the plasma-vacuum interface ¢, (and regularity condition at ¢ = 0), M(0) being an
arbitrary real, 27-periodic function of 8. The self-adjoint form of L, (18) with (27), ensures
that W is symmetric. The reduced ideal stability criterion against global modes [15] then
reads

W (u,u) > 0 (28)

for all non-zero v € H.

IV. SINGULAR SOLUTIONS

Since W(¢,£) is obtained by integrating —1(¢, LE) by parts and keeping the end point
contribution, we find the treatment of ideally stable and unstable plasmas for which
W(€,€) # 0 incompatible with L = 0 and ¢ € H. We are therefore led to consider
solutions lying outside the Hilbert space M, i.e. solutions which are singular and diverge
faster than ~'/2. This can occur about the rational surfaces ¥ = v; where the safety factor

q(¥:) = ¢ = my/n, (29)

is rational. The highest order derivative 9y DyGD,3y in (17) has a regular singularity there,
as Js — inq has a one-dimensional null space spanned by exp(im;0), with m; integer. In
cylindrical geometry one needs only to consider one rational surface at a time, for a mode



with given poloidal m and toroidal n numbers [¢ o expi(m8 — n()], provided ¢ is mono-
tonically increasing. However, coupling of the m modes produces in general several coupled
rational surfaces in toroidal geometry, for given n. We shall assume the presence of N ra-
tional surfaces 1;, 0 < ¥; < -+ < ¥§ < 9, in the plasma, and also assume non-vanishing
magnetic shear there, ¢'(v;) # 0.

We can then expand all surface operators

G=Gi+ W — )G+ (¥ —:)2G"/2+ -
Q=Qi+ (W —)Q+ (¥ —:)2Q"% /2 + - -- (30)
K=Ki+ @ —o)Ki/24+ (4 — ) K"+ (2

Dy = Di — (¢ — tbi)ing, — (¥ — ;)%ing"; /2 + - - -

in Taylor series, where D; = 93 — im;, and the solution
E(:0) = (¥ = %)™ [60(0) + (¥ — v)&1(0) + (3 — $:)°€(0) + -] (31)

in Frobenius series about 4;, ¢ = 1,2--- N. Here, (¥ — %;)* has no definite parity so that
it should be interpreted as either the even

(¥ —¥)¥ = [ — f™ (32)
or the odd
(¥ — )2 = | — i *sgn(yp — ;) (33)

generalized function [17], each parity generating a linearly independent solution which we
denote by £, and {_, respectively. For o; = —1,—2, -3 .., we show however in Appendix A
that only one parity survives according to whether «; is odd or even.

The extraction of the coefficients ¢ is obtained by inserting (31) and (30) in (17) and
equating each order to zero. At lowest order [in (¢ — %;)*~?] one finds

— ((1,‘ — I)D,-Q;D,-a,-fo(ﬂ) =10 (34)

allowing also for the presence of regular solutions having a; = 0 or 1, provided the co-space
of Dy is non-empty (i.e. there are non-resonant poloidal modes m # m;). The regular
solutions, which are locally arbitrary except for their resonant m; component, cannot be
dismissed in the construction of the global toroidal solution in § VI; their effect being to
remove the disjointness of the solutions on either side of the singular ¥ which exists in the
one-dimensional case [11]. However, since their analyticity ensures trivial matching across
i, they are not relevant to the inner layer physics, being merely the extension of the constant
= solution of Eq.(21) in GGJ, to the outer region. All toroidal layer models should thus
allow for the presence of a displacement solution which is constant (at least at lowest order).

The remaining part of this section therefore deals with the set of singular solutions for

which (in general) a; # 0,1 so that, from (34), we get

Dify =0
u£=0} (35)



purely resonant modes, & and xo o exp(im;8), at lowest order in the Frobenius expansion
of ¢, where

X=GP¢ (36)

and Dy is, from (9), the total, incompressible, pressure perturbation B-Q-¢vp It
appears therefore more efficient to express (31) as the double Frobenius series [18]

y£(¥,0) = (% = ¥)F {yo(0) + (¥ — %)ys (0) + (% — ) y2(6) + - -} (37)

yz(i), (39)

and (17) as the set of first-order equations

where

(A= 1 Dpdy)y=0 (39)
in 1, where
_ [ -9 G-
A:( % —(Q—{—inq’)f)' (40)
Writing
Yo = uexp(im;0), (41)

we find at next order in the expansion

< l[A,[m, >u ; l?-é- my, (42)

<lly; >= !
N )@+ D)

for the non-resonant components (assuming «; # —1), and the eigenvalue problem
< m;lA; +inglog | |m; > u =0, (43)
determining both «; and u, where

<l >
<>

-

= [3" df exp(—ilf)-
2x JO
= Jo" d exp(—ilf) - exp(il'0) (44)

denote surface averaging [not to be confused with the surface inner product (21)]. From
(43), one derives the indicial equation

(a; + l)a,- + D[ =0 (45)

and also a relation between

Yo = < m;IQ,'Im,' > —-iana;
0 — -
< milg,- llm; >

$o (46)
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and the arbitrary coeflicient £,, where

1 <m;lC;m;><m¢g,-‘lm;>—<m,~Q,~+infmg>"‘<m,~Q;m,->
Dyt = L 4 <K 67 Qi + ing 2

4 n2 q{2 ’ (47)

is the Mercier stability index against local ideal modes (again assuming n and ¢! # 0). In
order for

oy = ——%— + —D[ (48)

to be real, we must require Dy(¢;) < 0,7=1,2--. N. Defining

i = \/—Dr(), , (49)

we obtain the small solution £*) by taking af-s) = —1 + p; which can be either positive or

negative. The most negative exponent a{?) = —1 — pi in (48) gives rise to a non-square
integrable solution ¢®) (a®) < —1) referred to as the big (or large) solution. It is readily
seen by introducing (37) into the ideal energy expression (26) that £®) has infinite W, thus
£®) & H.

Equating order (v — 1;)**? of (39) to zero, gives

<W”>ZW—m&m+m
X {Z <lHAi+ingi(a; + 1) 1 I >< U'lys > + < l|Alm; > u}
; lsém,-, (50)
and
<milyr > = — <mylAi +ingi(as + 1) | |m; >71

X { Yo <miAll >< lly; > + < my|AL + Lingla; | |m; > u} .
I#m,

(51)

The above procedure to obtain the y; can formally be pursued to arbitrary high order
assuming a; # 0, —1,—2--- and no infinite y; are encountered on the way. From a numerical
viewpoint however, only the lowest order derivatives of the discretized representations of Q
etc. can be accurately estimated. This limits to a few orders the maximum number of
Frobenius coefficients that can be computed.

V. ZERO-3 FROBENIUS EXPANSION

It appears from Eqs. (42) and (50) that Eqs. (31) and (37) cannot be the correct
expansions when ¢; = a,(b) = —1,~2-.. as this leads to infinite coefficients < | # m;|&x >.
This is not in fact the only circumstance where & becomes infinite, a similar problem also

9



arises when the matrix < m;|A; + ing/(e; + 1) | [m; > in (51) is singular which happens
when a'(’) = oz,(b) + 1. More generally, the Frobenius coefficients of the big solution diverge
at some order if yu; = 1/2,1,3/2,--.. We verify here that the physically important limit of
?'(¢¥:) — 0, is one of these “special cases.”

From (15) we have o(;) = 0; independent of 8 and using (12), (14) and (19),

< lle;lm; > = —10; < m,—lQ;Il >* /n (52)
< llQ,-lm,- > = —ian&m‘. —10; < llg;‘llm; > /n ’
Inserting these expressions in (47) we get D; = —1 so that
;) =0
a,-(b) = —1} (53)

take integer values in this limit. Note that the distinction between the regular solution
mentioned in § IV and the continuous component of ¢(*) disappears as both have identical a’s.
The small solution is thus not uniquely defined; any amount of even £(*) can be absorbed into
the regular solution, or can alternatively serve to redefine the big solution whose Frobenius
expansion now overlaps the small solution expansion.

Inserting (52) in (43) and (46) we obtain the following eigenvectors

1
() —
u - (—ia;/n)

1
(s) —
s (—z’a.-/n —ingl/ < m;|Gi~ m; > ) ’ o

which are used to determine, e.g. (42). Using (52) and (54), it is found that < I|A;|m; > u®
vanishes, thus cancelling the zero in the denominator of (42) so that < I # m;|y®) > yields
an arbitrary, finite contribution which we may set to zero.

The divergence of the big solution Frobenius coefficients arises at resonant order O(|s —

¢i[0$b)+1) here because < m;|A; +ian(a,(b) +1) | |m; > is singular. This is best seen by using
the inversion formula

. 1 (s)g(e) B)gl®)
< milA; +ingis | m; >7'= — ( - lu +— 1u ) (55)
g \s+5 —pi s+ +pu
valid for arbitrary s, with the row vectors
T = <milG: M mi > (ioi/n +ingl/ < milG T mi > 1 ) /ing! (56)
1) = — < my|Gi7Ymy > ( ioi/n 1 )/ing, )’

being the adjoint eigenvectors, T < m;|A; + ingla; | |m; >= 0. The eigenvectors and their
adjoints satisfy T*u(®) = a)u® = 0 and Tu® = T*)u(®) = 1. Equations (56) and (54) are
substituted into (51) to yield,
u
ingi(1 — 2u)
_ O< milAlmi > —Ling! | ]u(b)u(b)'
ing;

<mily® > = -

(57)
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Thus, < m;ly{") > ul® at leading order in (1 — 24;)~!; the big solution becomes linearly
dependent on the small solution in the limit of x; — 1/2, with all but the lowest, resonant
order O(|¢ — z/;,-l“gb)) and the next non-resonant order O(|y) — d);l"’gb)“) being infinite in (31).
It is known [19] that this problem can be overcome by seeking an independent solution which
contains a power expansion times In |t) — ¢;] in addition to the Frobenius expansion (31). A
natural way of motivating this ansatz is given in Miller & Dewar [10] and Pletzer & Dewar
[18], where a new big solution

ye =y 8 4 sy (v + s_(p)y§) (58)

is defined by adding small solution components of same and opposite parities to y®). The
above equation is of course valid for all g; since any linear combination of big and small
solution is also a solution of (39) so that the sy are rather arbitrary. When < mglyib) >
is infinite, however, we take the sy corresponding to the appropriate parity (i.e. s_ for
kF=1,3,--- and si; for k =2,4,--) to cancel the infinite Frobenius term

lim s(p) = =0 < mily{® > +0 ([k - 2p°) , (59)
ui—kf2

with < mly® >« u®/(k — 24;), so as to have finite Frobenius coefficients at all orders
in the newly defined y®). The well known logarithmic terms in the expansion arise here
naturally after taking the limit,

1_ . 1,
lim (1 — )27 (3 — )7t
p,,*-—rk/z k _ 2/1’

= (=) T In g — . (60)

As we have a(® = a® + 1 at 8 = 0, we choose

a(® A (4
o (1) = u fm,lA,lm,>u (61)
2 ingi(1 — 2u7)

in (59), to find the new big solution

u(®) ) ) < m;|Allm; > u®
— exp(tm;0) — ind
T [< m;|Allm; > — | ing!’/2]u®
- ing}

+ O (| — il In |y — i) + O — 1) (62)

which is (purely) resonant up to O (|1 — :|°). In the following, we assume we are dealing
with big solutions that are properly defined for all values of g; (no infinite Frobenius co-
efficients), hence we will implicitly assume the renormalization (58) for half-integer values
of p;. It has been customary to take s(x;) = 0 in most preceding works [5]; this is only
appropriate for 2u; # k. Taking s(y;) # 0 for other values of y; is permitted provided the
mner solutions undergo the same renormalization so that the matching between outer an
inner solutions remains consistent. This point will further be discussed in § VIII

)
y® o y® = u® In [y — ;| exp(im;b)

u® exp(im;0)

11



VI. GLOBAL SOLUTION EXPANSION

In order to construct the most general outer solution, let us focus on a rational surface
¥; in which vicinity we write the solution of the outer equation (17) as

E=Y {eWe) + DD+ O(ED) 5 i — R < <hi+ By (63)

a linear combination of big and small Frobenius solutions of even p = + and odd p = —
parity, plus a regular solution O(£(7)). Equation (63) is valid within the radius of convergence
R; of the Frobenius expansions. In the ‘special case’ where a,(b) is integer, the regular solution
can be absorbed in the big solution and the sum in (63) involves only one parity (e.g. p = —
for a(b) —-1).

Due to the linearity of the outer equation, the only relevant data for the matching of outer
to inner solutions are the ratios of small coeflicients c( Y to big coefficients cfi), which must
be evaluated at all rational surfaces : = 1,2... NV, These coeflicients depend on Eq.(17) and
on the boundary conditions (27). They can be computed assuming e.g. the ¢(*)’s to be held
fixed so that the ¢(*)’s may be regarded as response coefficients to driven big solutions. (The
converse where the ¢(®)’s are determined in relation to the ¢(*)’s can also be done [8] but is
numerically more tricky, the big solutions being strongly singular.) In the present approach,
we choose to prescribe the big solutions via their Frobenius expansion whereas the small (and
regular) solutions are determined numerically. However, since it is in practice impossible to
compute the infinite number of terms in (31), we must be content with prescribed solutions
that approximate the exact ¢ ®) to sufficient order.

Let 6,,, be the prescribed solution which possesses the big solution behaviour of parity p
as ¥ — ¥; and &, be a fundamental solution of (17), we define the response solution f(,p)
satisfying the forced equation

Lé () = —Lés, (64)
for all : = 1,2-.- N and relevant parities p, as
Eir) = &ip — by (65)
The condition that € ~ ¢®) to sufficient accuracy is
i) €M (66)

i.e. £ must be square integrable, therefore involving only small and regular solution compo-
nents to leading order. To satisfy (66), we require the source term in (65)

Léy=0(69) as -y (67)

to be of order recessive to £(5), that is the effect of L on f is to annihilate each term in the

big Frobenius expansion up to an order (3 — 1,/);)"56)“"" which vanishes faster than the small
solution. Here, k — 1 represents the order at which the expansion of £ can be truncated so
as to have

12



i o _p®)) — (s)
Jim (6 =€) =0 (¢9). (68)
The truncation order is in general different for the resonant ! = m; and non-resonant ! #m;
poloidal modes. The following table §1VGS the minimum number N, of resonant, and N, of
non-resonant Frobenius terms < llfk > to include in ¢ for various y;:

O<ﬂ,<%ﬂ,:%%<ﬂ‘<l..
N,.Z 1 2+10g 2 .. (69)
N, : 1 0 2

In the 3 = 0 case, the mixed Frobenius and logarithmic expansion involves the resonant

terms expounded in (62).
Conditions (68) and (67) are satisfied by

. 5()
$ip = Suif,

where o(£(*)) represents the truncation error of the big expansion and

+o0 (6(8)) as @ — Py (70)

2,212
dmnq]

< m;|GTm; > (1)

fi

a positive normalization factor which will turn out to be convenient.

Although ¢ ¢ H, we wish to have similar Hermiticity properties to those (23) satisfied by
square-integrable dlsplacements This requires f,p to be “well behaved” [e.g. of O(£(¥)] at
all j # i, 7 =1,2,--- N. As the behaviour of ﬁ,p is otherwise arbitrary away from ;, we
find it convenient to limit the support of f,-p by multiplying it with the bell shaped function
shown in Fig. 2, whose extension is shorter than the distance separating 1; to the nearest
rational surface, respectively ¢ = 0 for ¢ = 1 or 1, for i = N. That is,

L) =05 j#14 (72)
and
éip(z/’ =0) —
En (b = ) } =0 (73)

Applying this prescription to all rational surfaces we then write the most general solution

N
§= E Zfipcip (74)

P i=1

as an expansion, ¢;, = Qs fic® ,p , in fundamental solutions ¢;, = 5(,,,) +§,p, with f(,p) extracted
using (64) and £, prescribed by (70).
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VII. DISPERSION RELATION

Using assumption (66), we seek a weak solution
W(“’é(ip)) = %(u’ Léfp) (75)

where W is defined by (26). Equation (75) is obtained by multiplying (64) by an arbitrary
test function u € H and integrating the left-hand side by parts. It is readily seen that
the boundedness of W: |W(u,&s,)| < oo Vu such that (u,u) < co combined with (67)
guarantee that

g(ip) = Z fgs)D;'q,ip + 0(5(8)) +0 (f(r)) as ¥ — 9, (76)
q=+7_
J =1,2--- N, is depleted of £®)’s. Notice that f(;p) extends over the entire plasma and

exhibits a mixture of even and odd asymptotic parities, even though f;p is localized and
has definite parity. [In cylindrical geometry, the absence of regular solution prevents the re-
sponse solution to “leak” across the rational surfaces, confining f(,-p) to within (9;_q, ¥iq1).]
The brackets around the indices ip are therefore a reminder that these refer to the localiza-

tion/parity of the driving é.
The proportionality coefficients D between ¢ and £(®) form the outer matching matriz

J
A’ B’
[ PI AIJ ? (77)

which contains N XN submatrices A’ = L(A%) = D!, ., etc. representing the even and
odd small solution response coefficients

s) __ b
cg'q) = Z D;'q,ipcip = 22 D;q,ip”ifict('p)’ (78)
ip ip

D=

B

to driving big solution of even and odd parity, respectively. The matching matrix D’ forms
a complete set of data allowing for the matching of outer to inner solutions, regardless of

the inner layer model.
We use capital letters to denote the Frobenius solutions

—=(b,s) — (1/) - ¢t)
Zp ——_Li

O(Eb'a agb,s)_l
as YoV 1 (79)

1

)
Y-t
+0 ,——i

p

arising in the inner layers ¢, ¢ = 1,2--- N, of width L; — 0. Similarly we write the inner
fundamental solutions as

_ E0)65:64 NG —a®
Zp= —m—+;q L7 Digan(n)L7™ } as (¥ —;)/L; — +oo0 (80)
147

q

and the global solution as

(1]
(1

ipCip- (81)

K3
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Equations (79)-(81) are defined by analogy to Eqgs. (74), (70) and (76). The condition that
the outer solution (74) match the inner solution in the region of overlap, i.e. where ¢ — ;
and (¢ — v;)/L; — *oo, yields

of®
Cip = L ey (82)
and
D'c = D(v)e (83)
where ¢T = (14 ---eny - ---en_) is the vector of coefficients ¢ip in (74), leading to the
dispersion relation
det[D'—D(y)] =0 (84)

for the growth rate v, with the matching matrices D' and D(y) obtained by solving the outer,
respectively inner equations. Expression (84) applies to general asymmetric (with respect
to the 1;) layers for which the inner matching data matrix D(v) is full [8]. In the analytical
inner layer model of GGJ [5], the inner solutions of complementary parity and those located
in different layers 1; decouple so that

_ 1 | (Ai()éi;)  (0)
00) =3[ G (3 i (83)

becomes diagonal, with the inner data being related

Aip /i fi L
A:;zi;}[}“‘ } ’ (86)

to the inner matching data Ay of GGJ [20].
From the discussion in § V, only the A’ submatrix is relevant in the pressureless limit,
simplifying even further (84) to the tearing mode dispersion relation

i-(7)éji
det (A;,. - -Af(%) =0. (87)
Fiils

A;
A;

VIII. EXTRACTION OF THE OUTER MATCHING DATA

The outer matching data (77) are the leading coeflicients of the small Frobenius solution
present in £. In the cases where £(7) is recessive to £ in (76), as in cylindrical geometry or
when p < 1 in toroidal geometry, there exists a simple formula

; ot
Digip = 1/,1531 L/ (Y = i) 5w <3 (88)

based on the asymptotic behaviour of E(;p) about ;.
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Since ¢} may be absorbed into ¢®) in the 3 = 0 case, the regular solution can be
dismissed so that (88) applies there also. Recalling that only the odd parity ¢ is selected
when 8 = 0, and that only the discontinuous part of { matters, (88) then reduces to

A=y s mi=1 (89)
the jump,

[ 0= tim {{ -l =1 Ly} (90)
of £;_y across 1;. This expression is equivalent to the definition A’ = [0,(B-v¢)/B-v¢]
dating back to Furth, Killeen, and Rosenbluth [4].

Seeking a formula for D’ valid for all u’s in toroidal geometry, we introduce the surface

bilinear concomitant [21]
P(u,v[Y) = — (u, DyGPv) + (DeGPu,v) (91)
with < -,- > defined in (21), which arises
(u, Lv) = 9y P(u,v[) + (Lu,v) ; uw,veH (92)

when performing double integration by parts on L. We emphasize here that (92) is valid only
if u and v are reasonably ‘well behaved’ functions. The bilinear concomitant is sometimes
used to extract a linearly independent solution from a differential equation. It may be
thought of as a generalized Wronskian. Taking v = £®) and for v either the small or regular
solution, we immediately see from (92) that P(¢®), £y is pointwise constant ezcept at
the rational surfaces (where £®) is badly behaved).

We shall first evaluate this constant for u = f,(,b) and v = fg’). This is straightforward
as we have already derived the Frobenius expansion of x = GP¢ = (¢ — 1;)*{x0 + xi(y —
i)+ -} in § IV. Using a similar expansion for P(é, £()) = (3 — ;)2 += (P, + Py (9 —
¥i)+---}, we obtain Py = 0 since & and xq are purely resonant, and P, = 2u; f; after taking
e = ) =1, using (46) and noticing the anti-Hermitian property < m;|Q;|m; >*= — <
m;|Qi|lm; > following from (14), with f; defined in (71). One can show that all higher order
terms P, k > 2 vanish. We are thus left with

P(f,(,b)y 6;8)) = 2”tft(¢ - "/)i)o—pq (93)
so that, according to our notation where 24 =1 and 2% = sgnz, P(¢®), ¢) is discontinuous
[P(&, €V = 411 fibq (94)

at ; if ¢®) and £() have same parity. We now see that to make (92) true in a generalized
function sense, we must subtract off the § function contributions at the rational surfaces,
yielding an equation reminiscent of that defining a Green’s function

(u, Lvy = 0y P(u,v|) — Z[[P(u, v)]6(xb — ¥i) + (Lu,v). (95)
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The Hermiticity condition (u, Lv) = (Lu,v) then only holds if u and v satisfy the physical
boundary conditions (27) and if [P(u,v)]; = 0 at all ¢;.

Focusing on P(¢®),£7) we find the assumption of constant P incompatible with the
power series representation (1 — ;)" { P, + Pi(¢ — i)+ - - -} for all non-integer o® | unless
all the coeflicients P, vanish so that

[P(E®, ] = 0. (96)

This is can be verified [22] explicitly to hold for x # 1/2, 1, 3/2-.-. The concomitant between
the big and the regular solution must hence be zero everywhere except when g is half integer.
We therefore get from (95),

% (éf'ng(jQ)) = % (Léim g(ia)) - %ﬁp(éipv E(J'q))Bf (97)

after recalling that the ¢ have supports vanishing at the boundaries (73). Inserting (96) and
(93) in (76), we find

$[Pi Eio))]i = Diy (98)
so that (95) reduces to the fundamental result
Dipjq = W(g(ip)’é(jq)) +3 (éipv Léjq) . (99)

which expresses the outer matching data matrix in terms of the ideal energy functional W
involving the response solutions (65), and a “prescribed energy” composed of the predeter-
mined € only. This is referred to as the Generalized Green Function (GGF) method, as ¢
and £ play a similar role in (97) to that of a solution and its Green’s function.
A number of interesting properties are immediately apparent from (99). Since (f,'p, ijq)
is symmetric under interchange of ip and jq by virtue of the localization hypothesis (72)
and (73) of £, we also have
D.. =D

19,59 Jje.ep”

(100)

It was shown in [11] that this property is intimately related to the existence of a variational
principle: 5D§p,jq/6£{,-p) = 6D§pyjq/5{v(jq) =0 for f(ip) and E(jq) satisfying (64).

Most plasmas being characterized by small 8 values such that o(*) and a® are nearly
integers, it is therefore of interest to study the impact of renormalizing the big solution

F. 3 . £(s) o ¢(9)
'EJQ = é:Jq + 5546 (8)+ 51—6—%3) as 1 — 1, (101)
Gy P €Goy — S+ &y — 85-E2,

on the determination of the matching martrix D’. Transformation (101) is similar to (58),
satisfying (67) while keeping &, = {;,) + &;, invariant. We assume here the transformation
to take place at ; only so that qu remains localized in agreement with prescriptions (72)
and (73). Using Eqs. (98) and (94) we obtain

D . D

T ip,iq

= D:p,jq — 6ij (6pgsi+ + 6p,~5i-), (102)
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which shows, in particular, that s;_ # 0 leaves the submatrices A’ and A’ unaffected,
their limit as # — 0 remaining well defined. Here, we distinguish the matching data D:, i
from the transformed matching data DJq i Which do not, strictly speaking, represent the
coeflicients of small to big solutions. To remain consistent with the usual approach [4,5], we
will perform the matching using the untransformed matrix D’ in § XI.

Finally, let us point out that the ideal stability criterion (28) is contained in (99) [23] as
D, ;, has the same definiteness as W near the marginal stability point where the prescribed
contribution to the energy becomes negligible with respect to the ideal part. A clear mani-
festation of a transition from ideal stability to instability thus translates into a sharp drop

from +o00 to —oo in the behaviour of the eigenvalues of D}, -

IX. IMPLEMENTATION OF THE GGF SCHEME

If we multiply the response equations (65) by an arbitrary, well behaved function —Ju*
and integrate over the plasma, we find

W(u’gip) = %(u, Léip)' (103)

Equation (103) is called the weak form of (64). But rather than computing L¢ by taking the
truncated Frobenius expansion of £{¢) and applying the L operator on it, we prefer to make
use of the double expansion (37) by adding two (cancelling) terms 1nvolv1ng Xip

Lép = — (&pDa + QT) Xip + Kip + (%Dg + QT) (}25,, — g?f,',,) (104)

in the source term. This is motivated by the observation that if é,p is rather arbitrary away
from the rational surfaces, so is the conjugate variable x;, which can depart from ng,p
long as

Xip —gpéip ~ o (& |
- (8¢D9 + Qt) iip + Kjéip ~ O gg(’)g } as ¢ ¢1 (105)

by analogy to (67). Thus, the discrepancy between ¥ and GP¢ must be of same order as
the correction (68) betweenf and £®). Inserting (104) in (103) and integrating by parts the
term (u, 8y Do[X — GPE]) — permitted as (¥ — GPE) € H — we obtain the new weak form,

W(u’é(ip)) =3 (u, - [3¢Dg + QT] Xip + }Céip) +3 ('Pu, Xip — gpgip) ) (106)

which, while being equivalent to (103), possesses some important numerical advantages. In
particular, only first order dy operators are present in (106) compared to second order in
(103). Second, no derivatives of G and Q need to be computed, except at the rational surfaces
for the determination of the Frobenius expansion. This results in an increase in accuracy
which has a particularly beneficial effect when a(*) and a(® differ by a large amount, so that
many Frobenius terms are required in £ in order for L to kill (approximately) the singularity
in (67). The use of expression (104) is not limited to the weak form only, multiplying (104)
by 1x, and using condition (105) such that (€ig» [04Dg + Q1]0(£®))) can be freely integrated
by parts, we find the quasi-Hamiltonian form of the prescribed energy
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% (éjq’ Lét’p) = % (éjq’ - [awpe + QT} iip + K:éip) + % (péjw f(t'p - gpéip) (107)

used in (99) to determine the outer matching data.
We approximate the solution f(;p) by the finite expansion (Ritz approximation)

M L
&y = 2_: %5 el (v, 0) (108)
in the basis functions
el (1,0) = ex(th) exp(ilf) (109)

with ex(1) belonging to the Sobolev space Hys and exp(il8) spanning the finite-dimensional
Fourier space Hj ;: f,p) € Hu ® Hp; C 'H. A typical choice of finite elements ex(z) is
shown in Fig. 3: these are the linear tent-functions which are non-zero between y*-1) and
k+1) (except for e; and ey which have supports extending from ™) = 0 to @, and
PpM=1) to p(M) — o respectlvely)

Replacing &, by f(.'p) in (106), we find the set of Mx (L — L + 1) Galerkin equations

W(u,E0)) = 4 (u, —[0uDs + QMR + K&y) + 4 (Pu, 3 — gPE,), (110)

{ip)

which leads after substituting (108) into (110) and setting u = e{’), to the system of linear
equations

M
W(e, et 25" = § (e, ~10yDs + QNiir + X&)

Me

k=1

i
H

+ 1 (Pel), % — GPE,) (111)

for the coeflicients E( D, Equations (111) admit a unique solution, provided the integral on

the right-hand side converges.
The estimate D’'™) for the matching data D’ is obtained by replacing ¢ by their respective

finite-element expansions £(M), giving

(M —(k' ")« —(k
D J‘h'i’ Z ( W( ) 1(}) I)
kg LU
+ 1 (610, —104Ds + QN%ip + K&
+3 (Pﬁ}q, Xip — QPEip) : (112)

X. FINITE ELEMENT CONVERGENCE AND MESH GENERATION

Choosing u € Hy ® My, in the weak form (106) and subtracting (110) from it, it is
seen,
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that the error ¢, = f(;p) — E((:.%) is orthogonal, with respect to the energy inner-product, to
any function belonging to Huy®Hy ;- The error resulting from approximating the matching

data D’ by D'(M)
M F (M) F(M
D' joip = D'l = W(€iigy, i) — WL, ERD)

= W(ejq, €ip) (114)

is thus proportional to the square of the energy norm, a characteristic property of a varia-
tional principle. Equation (114) also shows that the numerical scheme underestimates the
matching matrix if W is positive definite.

We shall estimate in the following the convergence rate r,

W(e,e) = O(M?™) (115)

of the finite-element discretization, as the number of radial elements M — oo. It is well
known (see e.g. [24]) that a linear mesh node distribution gives r = —1 for the linear tent
functions and r = —3 for cubic Hermite elements provided there is no (radial) singularity.
Being confronted with regular singular surfaces at the magnetic axis ¥ = 0 and at the
rational surfaces ;, 2 = 1,2--- N, we expect a diminished convergence rate unless the mesh
nodes ¥*) k =1,2... M, are appropriately packed about the ;. This is achieved by means
of a mesh-node generating function

k

Fiyp® = Py 0 o 2
¥ ) ; i (116)
of the rational index 0 < t(*) < 1, which behaves as
F(tW) = o, + const|t® — ¢ (117)

in the vicinity of ¥; (to =0 < t; < ty- - <ty < 1), as shown in Fig. 4.

Returning to (115), we find that ¢ must vanish somewhere between each mesh nodes in
order that (113) hold for u = ey). That is € can be bounded in each interval /(*) < ¢ < )
by

< V1 ¢(lc+1) _ ’l/)(k) 2

where
& = max 95£(1,0) 5 P <y <yp*H) 0 <o < 2r (119)

is the maximum value within the slice (), (*+1)). Assuming for the moment no singularity
so that || < oo, we then recover the result
W(e, €) = (¢, DsGDyé’) + - - -
= const (£1,,)2h%, + O(KS), (120)

mazx
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where hper = maxk=12..p_1(P*+) — »p®)) « 1/M and = MaXke12. M1 £/, that a
linear mesh gives a convergence rate of r = —1 and often provides the highest accuracy
since hnae 0 M1 is minimal.

In the presence of singularities, we restrict for simplicity the analysis to the zone t; <
t <t; + w; < tiy1 where the nodes are packed. In the limit of

{\g — o0
l/tM : flt: i (121)
Ppk+1) _ ()  dop
we thus have dy o (t — t;)*~1dt from (117). The singularity of (17) is simulated by
< DyG Do)l >ox (p — o)™ (122)

vanishing (#; > 0) as ¢ — 4y, for some poloidal modes I. About the rational surfaces
t=1,2,--- N we take | = m; and §; = 2, whereas fy = 1 for [ # 0 at the magnetic axis
Yo = 0. Similarly, we have

€ o< (1 — ;)™ exp(ilh) (123)

as generic behaviour as ¥ — ¢ ag = 1/2 (I #0) and o; = —L + p; fori =1,2,---N
respectively. Introducing (122) and (123) in the expression for W, using (118) and keeping
the leading terms in 1/M, we get

W (e, €) < const /d@[)(fﬂlax)?(t — £,)20e=1(dt)? (t — g )P

2 o 2 rtitw
= const T — ) (2 — 1) /t * dt 2yl —DH30i=1)4ihi (124)

M2 t;

The matching data error therefore converges as M~2 provided integral (124) converges, that
is

2

Loy (125)

This gives the following minimal mesh scaling:

Yo > 2/l for 1 #0
Y =1 forl=0 (126)

at » =0, and

¥ 2 1w for pi#1/2, 3/2
Y = 1 for Hi = 1/2, 3/2 (127)

about #;, 2 =1, 2,--- N. Note that it is sufficient to take a linear mesh in the pressureless
case as a; = 0. It is straightforward to verify that taking ! to be non-resonant (e.g. 1 # m;
so that 8; = 0 and oy = § + ), yields minimal +; which are identical to (126) and (127).
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As it is always desirable from an accuracy viewpoint to adopt, whenever possible, a linear
mesh we restrict the use of a graded mesh to the immediate vicinities of the singular surfaces
;. To construct the mesh, we therefore divide each section (¥i,%i41) in zones; the first zone
has a nonuniform node dlstrlbutlon

2 TN
F(t) =¥ + E‘Qﬁ (t__i) L <t <t + wy, (128)

i i

which merges smoothly to the second zone where the node distribution function

_ i (v — 1
F(t)zb t—w—2zw—](-j—]——)- t,-+w,-§t§t,-+1—w,~+1 (129)
Yo j+1 Y

is linear. There is a third, graded zone

bwiyr (tip — )™
F(t) = ¢iy1 — 5 - tiv1 —wip1 <ty + wipy (130)
i+1 +1

unless 2 = N + 1 and ¥n41 = 1f,.
In Eqs.(128)-(130), w;, i = 0, 1,- - - N, represent the graded-zone width on the ¢ axis (see
Fig. 4). It is easy to verify that such a mesh has a smooth node distribution as dF/dt is

continuous, with slope

_ N oim_1V) !
b= 1/)a{l _ Wl = 1) _py izl 1)} (131)
Yo =1 Vi
in the linear zone and

Note that b > 0 requires in addition

N
— (i —1
M+sz_(L_l<1 (133)
Yo i=1 Y

which imposes some constraint on the maximum value of the w;. In order that the dis-
tance between t; and the nearest adjacent node vary smoothly with M, avoiding therefore
oscillatory convergence, we introduce the number of nodes

M,' = iﬂt[t,'M] (134)
up to the rational surface ¢; (Mo = 0), with int[-] denoting “the closest integer smaller or
equal,” and set

t(k) = t; +m(ti+l —ti) ; 1= 172N . (135)
N+ i (l—tn) 5 i=N+1
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XI. NUMERICAL TEST CASES

The PEST-3 code should be regarded as an extension of the ideal stability code PEST-2
based on the scalar form W(¢,£) of the energy functional [13]. Therefore, PEST-3 may
also be used for ideal stability computations. The numerical advantages of this approach
lie in reduced computing time and memory storage [15]. Compared to other ideal codes
such as ERATO [25] and PEST-1, the PEST-2 approach is most appropriate to implement
the matching data calculation due to the analytical elimination of the strongly singular
Vv i x B-¢ displacement [23].

The ideal equilibrium MHD equations are solved numerically using the cubic-Hermite
finite element code CHEASE [26] after specifying p/(3) and the surface averaged toroidal
current density

<< Jvd>>

"=y (10
where
<< - >>= 02” doJ- (137)
is 27 times the flux surface average and
Vi(y) = 02" 0T (138)

is the surface of a magnetic tube divided by 2x. We also use the code DMAP to remap
equilibrium quantities onto a (1, 0) mesh. DMAP generates its own radial mesh which can
be either linear in %, linear in /3 (more accurate near ¥ = 0) or else imports the CHEASE
mesh, which may be packed in 3 about any g surface. We found the latter option to have
a positive impact on the computation accuracy of the Frobenius coefficients in §§IV-V. To
allow flexibility in the choice of the mesh in 8, we also specify the Jacobian dependence
J o X*/|v ) by choosing 7 and j. The combination i = 1 and j = 1 yields the Equal-Arc
coordinate system which has the virtue of possessing the most uniform distribution of nodes
in @ [15] and should therefore be preferred.

The outer matching data are determined by studying the convergence in M~? and using
linear regression to extrapolate the data to M — 0o. We have taken the range of poloidal
modes [ = —8,—5--- 4+ 8 for the circular cross section plasmas considered in § XIB and
§ XIC, to be symmetric (|L| = L) so as to satisfy accurately (G~!)~! = G of (11). This is
important as G appears in the source term (104) and in its inverse form in the Frobenius
expansion [e.g. in (46)], in order for £ and ¥ to satisfy the approximation condition (105).

A. Resistive layer models
Although the inherent flexibility of the asymptotic matching method may be utilized to

study a large range of non-ideal modes, we restrict ourselves to resistive modes for the sake
of validating the outer matching data calculation. We assume the inner layer dynamics to
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be governed by the GGJ equations. The inner matching data A(7y) and A(y), which depend
on the set

R ASS B;{j_,‘;*f"z 22 (V” - ————<<gql;§ﬂ>>) , (139)

F = Teig (¢ << BY/|V Y| >><< 1/BVp[2 >>
—9" <<1/|VY[? >>? + << BY/|V Y[ >><< 1/B? >>), (140)
H= % <<< /v o2 >> _=< lfil;;/}l;>>> V’) , (141)
R (14
_ %72 (143)

of quantities defined in Eqs.(13) and (14) of GGJ are computed at each s, the local ideal
and resistive indices reading as

Dy

E+F+H-;
D 4 } . (144)

E+F+ H?

In the finite 3 ordering D ~ %2, an analytic expression exists and is given by Eq.(87)
in GGJ. For the plasmas considered in §§XIB and XIC, H can be neglected so that this

expression reduces to

R 2247 D(3) L 7Dg;
A(O;) = 4 I Rt 145
(@) 2 iL;“‘I‘(%)Q' 0 (145)

in each layer i = 1,2... N, where
Qi =7/Q: (146)

is the normalized growth rate,

4r2nnla’? B2 1/3
Q; = ( Tantgt << >> ) , (147)

V2pM << B2/|v |2 >>
is the typical resistive growth rate ~ n1/3,

<< B¥/|V 9|2 >>

T (<< VY2 B? >> +4° [<< 1/B* >> —-V"?/ << B? >>}) (148)

M=
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a factor which is equal to one in the cylindrical limit.

The growth rates v are obtained by substituting the submatrix A’ into the tearing
dispersion relation (87) and searching for the dominant root in the complex growth rate
plane using the DISP code, with

(149)

I = pMn? << B2 >>2y”n 1
"7 \4rn2¢2 << B[V y[2 >>2
as the inner layer width ~ 7'/3. The growth rate so obtained is then compared with the

v computed by the full resistive MARS code. The influence of the inverse aspect ratio
€ = a/ Ry on stability is studied, keeping the Lundquist number

a230
VPR

constant. [In (150), @ is the minor radius, Ry the major radius, B, the magnetic field on
axis and p the density which we take constant and equal to one.]

S (150)

i}

B. B =0 resistive kink

We start with the pressureless, n = 1 internal [fixed boundary conditions &(s) = 0]
kink mode in a circular cross-section plasma with equilibrium profiles described by Fig.1
in Bondeson, Vlad, and Liitjens [6] (henceforth referred to as BVL). The surface averaged
current density I* is expressed as a quadratic polynomial in V¥ between 1 = 0 and ¢ =
0.25%,, with non-zero slope at origin and zero slope at the “knee” 0.25%, after which I* falls
rapidly to vanish at 1 = 1,, the flattened profile of I* ensuring that ¢’ remains modest at
the rational surface ¢; = 0.161, where ¢ = 1.

Following our prescriptions (126) and (127), we take uniformly distributed mesh nodes
Y% =1,72=1,2--- N about the rational surfaces and 5 = 2 about 3 = 0. The response
function 5(1-) driven by a tearing parity £ located at the q = 1 surface is shown in Fig. 5 for
an inverse aspect ratio € = 0.3. The quantity A/, is given by the jump (89) of the response
at the ¢ = 1 surface, which is difficult to estimate here due to inaccuracies associated
with rapid variations of equilibrium quantities, an instance where the computation of the
matching data using the GGF scheme is the sole alternative (see Fig. 6). The inaccuracy of
the response about the ¢ = 1 surface is also perceptible among non-resonant modes, which
should be continuous in values and discontinuous in derivative. The off diagonal element
A}, can, however, be estimated from the jump of < 2|€,_ > at the ¢ = 2 surface to be
approximately 0.18. This is in rough agreement with the value of 0.23 found by using the
GGF method and extrapolating to M — oc.

Figure 6 illustrates the convergence of the dominant (a) and subdominant (b) eigenvalues
of the A’ matrix for a prescribed solution covering &, = 80% of the distance between rational
surfaces, with M = 160, 180, 200, 220, 240, 260, 280 and 299. The dominant eigenvalue \;
possesses a smooth convergence behaviour, allowing for precise extrapolation to infinite M to
yield the unstable value of 43.2, which is found to be essentially identical to Al (M — 00).
The convergence of the second eigenvalue A, slightly suffers, by exhibiting some wiggling
behaviour, due to the proximity of the ¢ = 2 surface from 1, (v2 ~ 0.93¢,) so that only up
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to 20 nodes are present in the section (i2,1,). The extrapolated value A, ~ —0.0581 being
negative and approximately equal to A),, we deduce that the dominant mode is m = 1,
n = 1 kink, with negligible coupling from the stable ¢ = 2 surface. As one approaches the
ideal marginal stability point by decreasing e, the slope of the convergence in M~? becomes
steeper. This effect is shown in Fig. 6 (c) for € = 0.2. Nevertheless, the convergence
behaviour can be flattened by reducing the magnitude of the prescribed energy in (99).
This is achieved by limiting the extension of the shape functions H; of F ig. 2, at the cost of
a slight deterioration of the convergence behaviour which becomes noticeable for §, = 20%.

The resistive kink mode is known to be ideally marginal stable (A" — 00) in the limit
of the inverse aspect ratio ¢ — 0. As ¢ increases, A, decreases to become negative (stable)
at moderate € ~ 0.35. Figure 7 shows good agreement between the stability limit € ~ 0.35
computed by PEST-3 and MARS (Fig.2 in BVL). Comparing the growth rates for § = 106 by
matching A’ to the inner data (145) (and setting D = 0), we notice however a discrepancy
arising at larger 4’s. This is mainly attributed to the approximate form of (145) which, in
particular, does not account for the presence of a pole at ); = 1:

27rF(§‘-A+ 1Q:) O (151)
2 fili(1 - QI3+ 1@ ™

(written here in its # = 0 form). This expression is due to Rosenau [27]. In the small 4
limit where the correction of (151) to (145) are negligible, we find the PEST-3 and MARS
growth rates to coincide.

The m = 2 mode becomes unstable by applying free boundary conditions at a distance
b = 1.2 times the minor radius a, thus changing the picture from Fig. 7 (b) to Fig. 8 (b)
[Fig. 3 (a) in BVL], the ¢ = 1 mode remaining largely unaffected. In the intermediate range,
0.3 <€ <04, them =2 and m = 1 modes couple through the off-diagonal terms of Alseg

at € =0.3:

Ai(@.‘) =

, [ 4323 02298
A= (0.2298 —0.05865)’ (152)

which yields two positive eigenvalues 43.6 and 0.00405 corresponding to the two unstable
branches. At e ~ 0.35, the eigenvalues of A’ are shown in Fig. 8 (a) to collide (mode
conversion), A; changing character from internal kink to become an ¢ = 2 mode and wvice
versa for A,, as ¢ increases.

C. Resistive stability at finite §

We next consider pressure effects on the stability of the fixed boundary plasma of § XIB.
The equilibrium has the same profile for I* as for the 8 = 0 case but the pressure is finite.
The poloidal 8

8, = —75;{; " avore (153)

at the ¢ = 1 surface, is held fixed 83,(1;) = 0.05, as the the inverse aspect ratio ¢ varies.
Here, I3 is the toroidal current flowing through a 1 = const surface.
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There are two rational surfaces for ¢ < 0.45 and three rational surfaces for € = 0.5. The
q = 1 surface is characterized by p < 1 so that the response (small) solution is unbounded
there. This case is therefore numerically more demanding than the zero B case, it requires
a mesh node packing with exponent 2 < v, ~ 1/u; < 2.3 in Egs. (128)-(130). Only
one resonant and non-resonant Frobenius order are required in the expansion of £y and 4
according to (69).

The pressure gradient effects are weak (0.5 < g < 0.508) at the outer ¢ = 2 and g=3
rational surfaces. The nodes must nevertheless be packed; to do so we set Yo =13 = 2
constant across the e range. Two Frobenius orders are needed to represent the prescribed
solutions there. To minimize the weight of the prescribed energy in (99), and therefore
also the slope of the data convergence in M~2, the large contribution from the first order
Frobenius coefficient is subtracted by using transformation (101) and setting s;_ = — <
mil¢® >, i = 2,3. The convergence of the two eigenvalues of the matrix of small to big
coefficents A’ is shown in Fig. 9 for € = 0.35. The inner matching data A(v) and A(y) are
determined numerically using the code DELTAR [20].

Similarly to the zero 3 case, the instability is essentially a tearing mode driven by A}, > 0
at low inverse aspect ratio e. The tearing mode is stabilized at ¢ ~ 0.45 where the mode
changes character to become resistive interchange. Figure 10 (a) exhibits the decrease of
2u1 f1 L3#1 A}, and the simultaneous emergence of a resistive interchange instability Dp; > 0
as € increases. The resistive interchange growth rate can easily be estimated by requiring the
term in parenthesis in (145) to vanish: vy & Q, (7 Dg /4)?/3 for Dgry > 0and 24, f; Lf“‘A'n A
0 to give v & 5.67 x 10~° at ¢ = 0.5, in agreement with the corresponding value in Fig. 10
(b). The various contributions in the dispersion relations (84)-(85) are analyzed in Fig. 10
(b) [the MARS growth rates are taken from Fig.6 (a) in BVL]. We find the coupling of ¢ = 1
to ¢ = 2 and q = 3 rational surfaces to be weakly destabilizing. As for the zero f case in
§ XIB, neglecting the pole in the analytic approximation ( 145) of A(7) is also destabilizing,
particularly for large growth y > 5x 10~%. The most important effect, however, is due to the
lifting of the “constant ¥” approximation, which is accomplished here by taking into account
the full dispersion relation involving tearing and interchange parity modes [i.e. taking (84)
rather than (87)].

XII. CONCLUSIONS

We have discussed in this paper, the development of the MHD stability code PEST to
allow computation of tearing and resistive interchange modes by determining the matching
data in the outer region. The code has proven to have robust convergence properties:
quadratic convergence holds provided the mesh is packed about the rational surfaces (in the
finite B case). We have also given indications how to control the convergence slope when
the response and the prescribed energies have approximately same but opposite magnitudes
so that large cancellations occur, by varying the size of the prescribed solution supports. In
general we take the supports to cover a large fraction of the distance between neighbouring
rational surfaces (e.g. 80%) as this provides the smoothest convergence. Steep convergence
may also arise when g slightly exceeds 1, we then advise to subtract the “polluting” small

2
solution component from the prescribed solution.
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It is, to our knowledge, the first time that the validity of the asymptotic matching
method, and in particular the GGJ inner layer model, could be tested directly against a
code making no assumption as to the growth rate scaling, the resistive layer width etc.
Agreement between the growth rates computed by MARS and PEST-3 are satisfactory
to very satisfactory, suggesting that the matching data computation is accurate and gives
accurate resistive growth rates when S > 106,

As for the numerical advantages of the PEST approach in terms of memory storage and
execution time, we find the following comparison figure to apply on a CRAY-YMP computer:

M Words CPU seconds
PEST — 3. 1.5 (2.1) 9(13) (154)
MARS : 7.5 36

for a typical fixed boundary plasma possessing two rational surfaces, using M = 150 radial
elements and ten Fourier modes (respectively 20 Fourier modes), to which it should be
added that the PEST data concern the outer matching data computation only. Furthermore,
contrary to the present PEST version, MARS does not assume up-down symmetric plasmas.
The data in parenthesises thus anticipate the memory and time requirements of an up-down
asymmetric version of PEST for this case.

PEST’s reduced numerical needs make the extension of the formulation to three-
dimensional plasmas attractive. This can be achieved by modifying existing three-
dimensional, ideal stability codes which use Fourier decomposition in the poloidal and
toroidal directions. The resulting distribution of rational surfaces (which formally become
dense as the number of Fourier mode goes to infinity) may however in some cases pose a
problem, especially when the support of the prescribed elements shrinks excessively.

At present, the formulation has been implemented for y < 1 (=1 < D; <0). It can be
envisaged to extend the limit to p exceeding one, although this ultimately addresses issues
about the smoothness of the equilibrium quantities. On the other hand, stabilization by
favourable curvature (Dp < 0) would become so effective that resistive modes are practically
eliminated at large S. The limitation g < 1 is therefore not as restrictive as it may first
appear: all the interesting physics is expected to take place in the regime of low 3 and small
Dp, where resistive MHD modes are relevant.
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APPENDIX A: PARITY OF THE GENERALIZED FUNCTIONS X

Although z* admits in general the even and odd parities, we will see that only one parity
survives for particular values of o. To do so we turn to the one-dimensional version of (17),

ad;xz-;;y(x) —gy(z) =0 (A1)
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with z = 9 — t; and assume g to be, for simplicity, constant. We use the Fourier-Laplace
method

o) = [ 5= explika)u(F), (A2)

a natural way to introduce generalized functions, and seek solutions of (A1)

e ky (k) = gy(k) = 0 (A3)

in the k space, where the contour I in (A2) is chosen so as to have vanishing integrand at
the end points. The solutions of (A3) have the same form as in space: that is

yi(k) = k¢ (A4)

withoay = 3+ /2 +g=-1+u

Consider first the case where « is non-integer so that y(k) has a branch line in k space.
Different contours are chosen according to whether z is positive or negative. For z > 0,
the branch line lies on the Imk > 0 axis. The contour I is broken up into three integrals
circumscribing the branch line: a line along the Rek < 0 side of the imaginary axis (-0 +
100, —0), an asymptotically small circle (-0, +0) rotating counterclockwise about k = 0 and
a line along the Rek > 0 side of the imaginary axis (+0, 40 + t00), as shown in Fig. 11.
Since the small circle does not contribute for a = ay, we find in this case that

—0  dk , _ +0+ico dk ,
yi(z) = / — exp(ikz)k*t + exp(z27ra+)/ — exp(tkz)k™*
—O4ico 2T +0 2
= exp(—iray /2)z7 17 T (=ay) ;2> 0 (A5)

yields the big solution in z space (times an arbitrary phase factor) since we have a(®) =
—1 — a;. Similar expressions to (A5) can be found for z < 0 by taking the branch line
and I to lie in the lower, Imk < 0 half-plane. However, it is readily seen that (A5) has
a pole at ay = 0, 1, 2--. so that k*+ cannot generate the big solution if ay is integer,
instead [(dk/27)exp(ikz)k® = (—i)*6(™)(z) engenders the nth derivative of the & function,
a solution which does not belong to the outer region. The reason for this is that k* are
not the only solutions of (A3) in the generalized function sense, we find that for the special
values of g = n(n +1) =0,2,6 etc. (x =1/2,1,3/2 etc.) we have

—imk™sgnk
The second solution only contributes in (A2) when n = 0, where it gives rise to the constant
shift of the small solution. The big solution derives from inserting —imk"sgnk in (A2) and
integrating along the real axis, which yields

Ldr e dk

(b) — (_ . hathd . _ .
y(z) = (—1) prell exp(tkz) (—insgnk)

= ¢ nlz™" 1, (A7)
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To extract the k- solution we proceed cautiously as the integral (A2) diverges at k =0
if @_ < —1. Assuming a_ to be within the strip —n — 1 < a_ < —n, we integrate n times
(A2) by parts

[(a_ +1) dk  \ n d® ,
_ — (_ n — Lo—tn k
y-(z) = (1) [lao +n+1)Jr 27rk dkr exp(ikz)

= exp(—ira_/2)z7 7 [T(-a_) ; 2 >0 (A8)

to recover the small solution in z space. In the limit of a. — —n we find that
[(dk/2r) exp(ikz )k~ yields §(z) for n = 0 and the residue "z (n — 1)! for n > 1,
the latter depending on the sign of z through the choice of contour I so that the left- and
right-sided small solutions are independent for all a_.

We therefore find that the small solution always involves both the even and odd parities
but the big solution has definite parity when p = 1/2,1,3/2---: i.e. 272" is even and
z7?""1is odd. This result is in agreement with Gel’fand and Shilov [17] who introduce a
“regularization” for the singular functions z® when a < —3%. This regularization however
presents a pole at &« = —1,—2-.. and is therefore not properly defined for these values. A
judicious choice of parity, however, can cancel the pole and it is found that :1:;2"’ (n=1,2.-)
1s well defined for p = + and similarly z;21 for p= —.

A similar Fourier space analysis of a zero-3 , asymmetric inner layer model confirms the
suppression of the even big solution at y = 1,and has led Dewar and Persson [8] to introduce
an inverse formulation in which the small solutions are regarded as driving the big solutions.
Then the cases p = 1/2, 1, 3/2, --- do not have to be treated as totally distinct cases as
they do not give rise to divergent responses. The inverse formulation would probably also
be beneficial for treating the small aspect ratio limit of the internal kink mode and other
cases close to ideal stability.
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FIG. 1. Flux coordinate system (1,6, (). The plasma has a minor radius a. It is surrounded
by a vacuum chamber and a conducting wall at distance b from the magnetic axis.



Hi(‘lf)

Vi1 v Vit1 v

FIG. 2. The bell-shaped functions H; which are approximately flat about ¢; and whose support
does not overlap the neighbouring rational surfaces.



FIG. 3. Nonuniform distribution of radial basis functions e; about a rational surface 9;, whose
position is indicated by the vertical arrow. Each element e extends from node ¥»(*=1) to node
¢(5+1) There are M; finite elements in (0, ;). The two adjacent elements k = M; and k = M; +1
are equidistant from ;.



FIG. 4. A mesh generating function which is continuous in value and derivative.
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FIG. 5. (a) Response function < llf(l_) > for the zero pressure, fixed boundary plasma with
inverse aspect ratio € = 0.3. The fundamental solution & _, which exhibits the resistive kink
behaviour, is shown in dashed line. Note the £ ~ /1 behaviour on axis. (b) Non-resonant | # my
Fourier components of f(l_). The presence of a ¢ = 2 rational surface near the plasma edge is
responsible for the quantum jump of < 2[5(1_) > at ¥ =~ 0.034.
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FIG. 6. Convergence of the dominant (a) eigenvalue A; and the subdominant (b) eigenvalue X,
of A’ versus the inverse square of the number of radial mesh nodes M = 160, 180, 200 - - - 280, 299,
for the pressureless, fixed boundary case at inverse aspect ratio ¢ = 0.3. The extrapolated values
to M — oo are Ay — 43.2 and A; — —0.0581. (c) Effect of the normalized prescribed solution
support 6, = 80%,60%,40% and 20% on the convergence properties for € = 0.2.
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FIG. 7. Fixed boundary plasma at zero pressure and § = 105. (a) Dominant and recessive

cigenvalues versus inverse aspect ratio e. (b) Comparison of computed growth rates y versus
inverse aspect ratio ¢, using the code PEST-3 (solid lines) and the code MARS (dashed line). Two
analytic expressions for the inner A are adopted: with (closed symbols) or without the pole (open

symbols) at @ = 1.
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FIG. 8. (a) Details of the mode conversion about ¢ = 0.35. The mode with eigenvalue Ay
changes character from internal ¢ = 1 to external g = 2 and vice versa for \,. b) Comparison

of computed growth rates versus inverse aspect ratio e, using the PEST-3 (solid line) and MARS
(dashed line) codes for the free-boundary, pressureless plasma at S = 108.
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FIG. 10. Fixed boundary plasma at finite pressure and S = 107. (a) Non-dimensional outer
matching data 24, f L3** AY, (left ordinate axis) and resistive interchange index Dg versus inverse
aspect ratio €. (b) Comparison of computed growth rates v versus inverse aspect ratio ¢, using the
code PEST-3 coupled to the DELTAR code (solid lines), the code PEST-3 coupled to inner analytic
A (dotted line) and the code MARS (dashed line). The discrepancies arising from matching D’ to
D (circles), A’ to A (squares) and Ay to Ay/2u, fi L3 (triangles) are illustrated.



