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Abstract

We study the local ideal three-dimensional (3D) magnetohydrodynamic (MHD)
stability for the Wendelstein 7-X (W 7-X) configuration. We confirm a volume
average beta limit of 5% with a nearly optimal pressure profile using two methods
to calculate the parallel current density : the magnetic method that uses magnetic
information of the configuration (in particular, the condition of charge conservation
V -j = 0 is explicitly used in the resolution) and the geometric method that uses
the geometry of the configuration itself.

We show that the ballooning stability does not depend on the method of the
parallel current calculation. In contrast, the value of Mercier criterion depends sen-
sitively on which method is used. Not only is the geometric method not sensitive
to resonant surfaces (in particular, the ¢, = 1/6), but there is a systematic error
in the Mercier criterion for nonresonant surfaces when not enough modes are used
to calculate the equilibria numerically with a spectral method. However, this sys-
tematic error does not change the average beta limit of W 7-X because ballooning
stability is more stringent than Mercier stability for this configuration.

1 Introduction

The stellarator W 7-X [1] is a configuration of the Helias kind [2] (HELIcal
Advanced Stellarator) in which the toroidal plasma equilibrium has some optimized
properties. Gardner and Blackwell have shown that in the H1 Heliac configuration,
which is close to W 7-X because it has low magnetic shear, the way to calculate
the parallel current influences the value of the Mercier criterion [3]. It is therefore
important to know if it is also the case for the W 7-X and if this problem applies
to ballooning stability as well.



Section 2 contains a description of codes used to calculate the equilibrium and
to perform the local stability analysis. A description of the two calculation meth-
ods for the parallel current is given in section 3. Section 4 shows marginal beta
values for local stability with a nearly optimal pressure profile (see figure 1). This
profile becomes marginally stable to localised ideal MHD modes nearly uniformly
throughout the plasma. We show that the ballooning stability does not depend on
the calculation method in section 5. Problems connected with the Mercier criterion
and, in particular, the systematic error in the parallel current when the geometric
method is used are treated in section 6. Finally, section 7 contains the conclusions.

2 Numerical codes

The calculation of equilibria has been performed with the VMEC code [4]. The
convergence parameter (ftol) has been fixed to 10~!1. The number of surfaces,
poloidal mesh and toroidal mesh have been fixed to 100, 30 and 20, respectively,
except for the convergence study of V - j in section 6, where the highest poloidal
mode number m; and the poloidal mesh were varied. The number of surfaces of
the precursor runs in VMEC has been fixed to 41. The total number of modes used
for the equilibrium calculation was 61 (0 < m,; < 5, =5 < n;/L < 5, where n; is
the toroidal mode number and L is the period number of the device).

The equilibrium reconstruction in Boozer coordinates and the Mercier criterion
have been obtained with the mapping routines of the TERPSICHORE code [5].
One needs 186 mode pairs in which the amplitudes are significant for the equili-
brium reconstruction in Boozer coordinates [6]. For the ballooning stability anal-
ysis, the spectrum of modes required must be increased to 681, with the poloidal
mode number m approaching 60. These values are large enough to guarantee the
reliability of the results.

3 The two calculation methods for the pa-
rallel current |

Boozer coordinates [7] are used because they allow a very precise representation
of the BV operator and the parallel current density (j - B/B?). In this coordinate
system, the magnetic field in the contravariant representation is given by

B=VoxVV¥ + VP x Vb, (1)
and in the covariant representation by
B = B,Vs+ J(s)VO - I(s)V¢ (2)

where ¥(s) is the poloidal flux function, ®(s) is the toroidal flux function, I(s) is
the poloidal current flux function, J(s) is the toroidal current flux function and B,
is the radial covariant component of B. ’

The dot product of the two representations for the magnetic field yields

JGB? = W'(s)J(s) — ®'(s)I(s) (3)



where /g is the Jacobian of the transformation and a prime means a derivative
with respect to s.

The parallel current density constitutes an important driving mechanism for
MHD instabilities in 3D configurations [8]. Therefore, the question of how it is
computed is a critical issue in the determination of beta limits imposed by MHD.
The relation between the parallel current density and B, is given by

() [ 2)me (- 2)0].

There are two methods to calculate B,: the magnetic method, where we invoke the
radial component of the MHD force balance relation, given by

VIp'(s) + ¥'(s)J'(s) - &' (s)I'(s) = \/gB - VB, (5)

and the geometric method, given by

B, = ‘«1? (0:07'(5) + 9,53'(s)) (6)

where go9 and g4 are the metric tensor components. Once B, is determined, we
calculate (j- B/B?2) according to Eq. 4. It is straightforward to demonstrate that
the evaluation of the flux-surface varying component of the parallel current density
with the magnetic method of Egs. 4 and 5 is equivalent to its determination through
the application of charge conservation, V- j = 0, and MHD force balance.

4 The marginal beta values for stability

A previous estimate of the maximal average beta value guaranteeing ballooning
and Mercier stability for the whole plasma in the W 7-X configuration has already
been obtained in Reference [9]. Figure 2 shows the marginal values of beta as a
function of the flux surfaces. One sees that the ballooning stability is more re-
strictive than the Mercier criterion. The figure shows a localized instability around
the resonant surface ¢, = 2/11 (1, means iota per period). This instability, like
all instabilities at rational surfaces except the ¢, = 1/6, exists in the plasma for
values of beta much smaller than 5%. Nithrenberg showed that these instabilities
are localised enough [2], that when the pressure gradient is made to vanish at the
resonant surface, one can be sure that this surface is stable with respect to the
Mercier criterion. Therefore, flattening the pressure profile very locally can assure
stability at these rational surfaces.

As shown in section 6, the Mercier criterion calculated with the geometric
method always predicts stability. Therefore, the Mercier criterion has been cal-
culated with the magnetic method to obtain the marginal beta values as a function
of the radial variable that labels the flux surfaces.

Finally, we found that the highest beta value guaranteeing local stability in the
whole plasma is given by 8 = 5.07%.



5 The ballooning stability

To obtain the 3D ballooning equation, one minimises the energy principle using
the covering space concept [11]. Transforming in Boozer coordinates, one obtains

%{[CP +C(0-0)+Co (0 - ek)z]%} + (1= N]dp+ds (8- 0)x=0 (7)

where the coefficients are given by [12]

§S B3

V() [J(5)By  gus
Ce=2 g5 [ﬁB? \/E]’ (9)
Cq — [ql(.\s/);'é(ZS)]Z |V3|2 , (10)

(s ! J(s)¥"(s) - I(s8)P"(s 0 B,

IOR FONECUCEICLID IV PRI EA T
(11)
4, =-L2vae-v (52) (12

where we identify 6 as the radial wave number [10] and ¢(s) is the inverse of the
total rotational transform iota. :

Figure 3 shows a typical result of the eigenvalue with respect to the surface for
a given value of beta. If the eigenvalue is positive, then the surface is unstable.
For the ballooning calculations, we impose the condition that the eigenstructures
along the magnetic field lines should vanish within 30 poloidal transits around
the plasma. Therefore, the coefficients d, and d, do not fully sense the singular
nature of the parallel current density in the vicinity of mode rational surfaces. Al-
though the coefficients Cp and C, explicitly contain the function B, which becomes
singular at mode rational surfaces (using the magnetic method), this does not af-
fect the ballooning results. To illustrate this, we plot the field line bending term,
Cp+ Cs (8 — 8k) + Cy (8 — k)%, on the closest field line approaching the tp =1/6
resonance (at s = 0.1465) in Fig. 4a and on another field line at some distance
from the resonance (at s = 0.1768) in Fig. 4b, with 6, = 0. The basic structure
and the magnitude of the field line bending term is unaltered by the behaviour of
B,. The corresponding ballooning eigenstructures are presented in Figs. 5a and
5b, respectively.

6 The Mercier criterion -

The Mercier criterion can be derived from the asymptotic analysis (in the limit
Yy = 0 — 8, — o0) [13] of the ballooning mode equation. Retaining the ballooning



eigenvalue as part of the analysis, the Mercier criterion can be expressed in the
form {12}

D, (Di+ Dy)Y/?

A=1+4 5D, 2D, <0 (13)
for stability, with
Dy = (ho){dp) — (he)(dg) + (hedy), (14)
Da = (k) (o) = (hydy)? (15)
where we have defined the average
L 2n/L
(=g [ ds [ d0i(s,0.9) (16)
The relevant coefficients are
1 VIB?
hy = — = , 17
T T @RV 0
B
dy=-4) (57 ). (18)

One can see that the Mercier criterion depends directly on the parallel current
density via Eq. 18. A typical result of our study is shown in Figure 6 where we
represent the value of the Mercier criterion (expressed as —A) with respect to iota.
One can see first that the geometric method is not sensitive to resonant surfaces. To
understand this, we consider the Fourier components of the parallel current density

as calculated by the magnetic method. Using the condition of charge conservation,
V.j= 0, wefind

(52).... = lewmer-som] [Fee e Vo 09

for all the components except the m = 0, n = 0 contribution. The geometric
method gives (except m = 0, n = 0)

(%?)jnnm - [wSﬁﬁ - g"]((ss))f(s)] (Bs)m,n (20)

with B, calculated according to Eq. 6. There is an explicit singularity with the
magnetic method at every rational surface which is not the case for the geometric
method.

The second observation that we have made is that there is a difference between
the two methods for nonresonant surfaces too. Gardner and Blackwell mentioned
also this problem in their paper [3]. We believe that the reason for this difference
is that the truncation of the Fourier spectrum in the equilibrium calculation causes
the geometric method to violate the condition V-j = 0. The magnetic method uses
this condition explicitly to determine the parallel current density, but the geometric
method does not. One can write V . j in Fourier space as

WY D = f}(a) [mI(s) = ()] (T n

_ [m¥(s) — nd'(s)] (JBf) = 0. (21)



One can see that this condition is always verified for the magnetic method, by
substituting Eqs. 3 and 19 into Eq. 21. Using the geometric method, we obtain
;. magn . geom
(VY -5 = [m¥'(s) - nd'(s)] [(J—BP-) - (%7) ] =0, (22)
m,n m,n

It is worthwhile to note that the factor [mW¥’(s) — n®’(s)] annihilates the error in
the calculation of V . j at the resonant surface in Eq. 22. Consequently, Eq. 22
constitutes a useful measure of the error in the computation of V . j at a distance
from the resonant layer. Figure 7 shows that the condition given by Eq. 22 is not
respected.

We have performed a convergence study of ,/gV - j with respect to the maximum
poloidal mode number m,  used in the computation of the equilibria with VMEC. It
is very difficult to get m, higher than 16, because the equilibrium begins to converge
poorly near the magnetic axis. However, Figure 8 shows that the convergence seems
to vary between 1/ mi/3 and 1 / ml/%. This slow rate of convergence implies that the
geometric method for determining the parallel current density is ineffective for the
accurate determination of the Mercier criterion. Therefore, we can say that there
is a systematic error in the parallel current density calculated with the geometric
method, when the spectrum of modes used to calculate the equilibrium is truncated
at a low number.

7 Conclusions

We confirm the volume average § limit of 5% predicted for the W 7-X device.
Ballooning stability in W 7-X does not depend on how (j-B/B#) is calculated
because these modes are localized along the field lines. Therefore the ballooning
modes are not sensitive to the singular behaviour of the parallel current density
in the vicinity of rational surfaces. The Mercier modes, being extended struc-
tures along the field lines, depend sensitively on the method of determination of
(j-B/B?). The discrepancy between the two methods extends beyond low order
rational surfaces because the truncation of the Fourier spectrum in the computa-
tion of the equilibrium state causes the condition V -j = 0 to be violated for cases
in which the geometric method is applied to calculate (j-B/B?).
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The figures captions

Figure 1 : The normalised pressure profile. This nearly optimal profile be-
comes marginally stable to localised ideal MHD modes almost uniformly
throughout the plasma.

Figure 2 : The maximal average beta value guaranteeing local stability for
the W 7-X configuration. The solid line represents the beta limit for the bal-
looning stability calculated with the magnetic method and the dotted line the
beta limit for the ballooning stability when the geometric method is used. The
short dashed line represents the beta limit for the Mercier stability criterion
connected with the ¢, = 1/6 rational surface and the large dashed line rep-
resents an example of a local instability due to a rational surface other than
tp = 1/6 (here ¢, = 2/11). The maximal beta value allowing local stability
for the whole plasma is given by 8 = 5.07%.

Figure 3 : An example of a typical result for ballooning stability. The solid
(dotted) line represents the ballooning eigenvalue calculated with the mag-
netic (geometric) method for 8 = 6.46%. A surface is stable if the eigenvalue
is negative. One can see that the two methods of calculation of the parallel
current density give the same result for the main part of the plasma.

Figure 4a : The field line bending term Cp + Cs (6 — 8x) + C, (8 — 6;)? as a
function of the values of § along a magnetic field line a = ¢ — ¢(s)d = 0 on
the surface s = 0.1465 near the ¢, = 1/6 resonance.

Figure 4b : The field line bending term Cp, + C, (8 — 8x) + C, (8 — 8)? as a
function of the values of § along a magnetic field line @ = ¢ — ¢(s)§ = 0 on
the surface s = 0.1768.

Figure 5a : The ballooning eigenfunction versus the values of 4 along a mag-
netic line (a = ¢ — ¢(s)0 = 0) at s = 0.1465.

Figure 5b :The ballooning eigenfunction versus the values of # along a mag-
netic line (a = ¢ — ¢(s)8 = 0) at s = 0.1768.

Figure 6 : An example of the value of the Mercier criterion (expressed as
—A) calculated with the magnetic (solid line) or the geometric (dotted line)
method. The value of beta is 7.94% here. A surface is stable if the Mercier
criterion is positive. The geometric method is not sensitive to the ratio-
nal surfaces. In contrast, one can see instabilities due to the ¢, = 1/6 and
tp, = 2/11 rational surfaces for the Mercier criterion calculated with the mag-
netic method. The two methods do not give the same results for nonrational
surfaces either.

Figure 7: The m = 6, n = 1 Fourier space component of ,/gV - j calculated
with the geometric method. The solid, dotted, short dashed and long dashed
lines correspond to the maximum poloidal mode number used in the compu-
tation of the equilibria with VMEC, m, = 6, m; = 8, m, = 12 and m, = 16,
respectively. The number of surfaces is 50 here. The figure shows that the
condition of charge conservation is violated when the geometric method is
used. The ragged structure of the m, = 16 curve is symptomatic of incipient
convergence difficulties in the computation of the equilibrium state.



o Figure 8 : Convergence study of the m = 6, n = 1 Fourier space component
of \/gV -j calculated with the geometric method. The solid line represents
the surface s = 0.96, the dotted line the surface s = 0.8 and the dashed line
the surface s = 0.7. The convergence seems to vary between l/m},./ 3 and
1/ ml/?. Tt is difficult to get results for a value of m, higher than 16 because
the equilibrium begins to converge poorly near the magnetic axis.
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