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Abstract

The drift kinetic equation (DKE) is used to establish a formula for power absorption of
small amplitude, low frequency electromagnetic (EM) fields in a hot toroidal axisymmet-
ric plasma. The stationary plasma is first considered. Electrons and ions are described by
local Maxwellian distributions, alpha particles by a local slowing-down distribution. The
fluctuating part of the distribution function for each species is then evaluated from the
linearized DKE in terms of the EM fields using a perturbation method. The parameter
b, = B,/| Bo |, where B, is the poloidal component of the magnetostatic field By, and
the parameter | v3 |/A w, where vy is the magnetic curvature drift, A; the wavelength
perpendicular to ]—5;0 and w the frequency of the EM fields, are considered to be small.
By integrating the resulting distribution function over velocity space, an explicit formula
for the power absorbed by each species is obtained. To obtain an expression suitable for
direct implementation in an ideal-MHD code, the electric field component parallel to the

magnetostatic field is evaluated using the quasi-neutrality equation.



I. Introduction

In this paper we will present a derivation of a formula for the power absorbed by hot
tokamak plasmas for given low frequency electromagnetic (EM) fields. This study follows
the calculation of the dielectric tensor of such plasmas®. This work is complementary,
as we restrict ourselves to low frequency EM fields, which allows us to go beyond the
results obtained for the tensor. For perturbation frequencies much smaller than the
cyclotron frequency and p/L < 1, which compares the characteristic length L of all dy-
namical variables with the Larmor radius p, it is suitable to describe the evolution of the
corresponding species using the drift kinetic equation (DKE) instead of the full Vlasov
equation. Using this model, the distribution function of a stationary toroidal axisym-
metric plasma is first evaluated. The perturbation by the EM fields is then considered.
This solution to the DKE is presented in Sec.Il. The total power, averaged over time, is
evaluated in Sec.III. If the EM fields are provided by an ideal-MHD code, the electric field
component parallel to the magnetostatic field is zero and it must therefore be evaluated.
This is done iteratively in Sec.IV using the quasi-neutrality equation. Conclusions are

drawn in Sec.V.

II. Solution of the DKE

The system we consider is a stationary plasma confined by a magnetostatic field §0. This
plasma is then perturbed by EM fields (E, E) Let us define the ordering applied for the
following derivations in terms of a small parameter A\. The perturbation frequency w is

assumed to be much smaller than the cyclotron frequency Q = ¢By/m, so that

=0(N), (1)

2l €

and

= O(\). (2)
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Furthermore, the electric force is considered small as compared with the magnetic force

|E |
vthlBol

= 0(%), (3)

where v}, = 2T'/m is the thermal velocity squared. Faraday’s law and relations (1), (2)
and (3) also imply
| B |
| Bo |

A distribution function f can be defined in the guiding center “phase space” ( X , VL, Y))).

= O(N). (4)

The corresponding evolution equation is the DKE?:

+
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Df 0 = 0 dvy 0 dv" 6]f_ (5)

stating that the distribution function along a guiding center trajectory is constant. The

flow in “phase space” is given consistently to order O(X) by

df — - — m - U2 — —

—Jt— = Vg=1) e||+vE +q_B ey X [—'LVIIIB-I-U?' e (V e")],

d‘UJ_ vy — 8B

- = 35 |®™ e + vg) - VB+—=-| (6)
dv q vi_ o - -, =

= = B+ 5V 4y € (V E))- og,

where B=Bo + B is the total magnetic field, ?":E /B and vp=E x B /B? the
electric drift. In a complete study, the EM fields would have to be self consistent with
the evolution of the plasma, however for the present work we consider them as given.

Adopting the variables ( X , € 1) where

- 1 2 2 d — vi 7
e_§(v||+v_|_) an #_2_0, ( )
Eqs (5) and (6) are transformed to
Df 0 0 ded wvydvy 0 _
D@t gttt B on) =0 ®)
d€ q - - aB
&=m" Etspar ©)



For a stationary state described by a distribution function f; and a magnetostatic field

Bo, Eq.(8) becomes

6;0 "a_fi)f = 0’ (10)
(i .4
using the notations
— - — — 1 — 2 — —_ — BO
Vo=V €llo+vda , UI= a ejo X [/I,VBQ + ji €llo (V 6"0)] and €o= E (11)

The quantity vy is the drift due to the curvature and variation of amplitude of the

magnetostatic field. Let us write fp in a series expansion with respect to A
fo=F+F® 4 (12)

In zeroth order, Eq.(10) reduces to

- OF
v €ejjo——= =0. (13)
X

From now on, we restrict ourselves to axisymmetric systems. In this case, the magneto-

static field can be written as follows
Bo= V¢ x Vi + rBo, Ve, (14)

(r,, 2) being the cylindrical coordinates. Relation(14) shows that ¢ =const is a magnetic
surface. It is convenient to adopt the space variables (¢, x,¢), where x is defined such

that the local unit vectors

I v/ - Vx I v
en=—=—- , €= —=— and e,= ——
[V 2% ¢

(15)

define an orthonormal system. The EM fields are projected onto the local magnetic

orthonormal coordinate system (e, €, €|j0). Using Eq.(13) and the axial symmetry, one

can write
F = F("/’, 61/‘)' (16)

For electrons and ions we take for F' a local Maxwellian distribution

N (et
= on )" p( 2v3h(¢>)’ an
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N being the local density. The alpha particles are described by a slowing-down distribution3
C(¥)

F = N(’/’)wﬂ(% - v), (18)
my + my 1/3 T, 172

Ve = (3\/;m_ar‘n‘—'mc) (E) ’ (19)

c = 3 (20)

3 ]
47 In [(_v_o) + 1]
U
where H is the Heaviside function and vy = 1.3- 107m/s the birth velocity of the alphas.

To order O()\) Eq.(10) reads
-~ OFM  _, §F

v eljo *——=+ V4 -——= = 0. 21)
I €llo 3 P (
Solving this equation leads to
m=_Yy
F b, o F, (22)

where €jo= b, €, +b,, €.
We now consider the excitation of the stationary plasma by the EM fields (E, é) Let

? be the corresponding fluctuating part of the distribution function
f=ftf. (23)

For small excitations, one can linearize the DKE. This equation valid to order O(}), is

then given by

d - 9\~ (% & deoa
("a—t+ Vg0 —a-—‘;(,) = — (’Ug 'a—;_z-'l' E B‘E) fo, (24)
with the notations
st S Ex E
’Ug = ‘U|| e" + 32 0’ (25)
0
'J{ = m Vgo ' E +I‘_T, (26)
~ o = s B,
B=¢p-+-B and e= By (27)

Equation(24) is again solved with a perturbation method. The operator
vg -V = O(e) (28)
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on the left hand side of Eq.(24) and the parameter
b, = O(e), (29)

are considered as perturbative, ¢ being defined as the small parameter of the perturba-
tion. The spirit of our calculation is to retain only the most dominant element among
comparable terms. In this way, and for realistic values, we can actually neglect the con-
tribution (22) of order O(X) to fo on the right hand side of Eq.(24). As the unperturbed
system is homogeneous in time and the toroidal direction, one can consider perturbations

whose dependence in time and the angle ¢ is of the form

expi [ny — (w +in)t], (30)

where n is the toroidal mode number and in,n > 0, a small imaginary part that is added
to the frequency so as to define causality. By writting f in a series expansion with respect

toe
~ ~(0) ~

=0+ 7 +oe) (31)

and retaining only the terms of order O(¢) in Eq.(24) leads to

o 50 (3 9 de D
ZQO f = (vg 5—5(74' 'Jt' 5;) F, (32)

where () = w + 49 — k,v) and k, = n/r. Let us define the coefficients

ﬂu,u =e—1: -V x e_;: Hv € {na b, ”0}’ (33)

—_

characterizing the geometry. On using Faraday’s law to express B in terms of E, the

relations
€jo *(V €jo)- en= By €0 (V €o)- €= ~Byjns (34)

as well as the following relations valid to order O(\)!

V.,, InQ) = ﬂ”b and Vp InQ) = _'B”"’ (35)



the solution of Eq.(32) is found to be

~(0) —ig (1 .
I {; (Es — i)V, E)) Vo F (36)
Ay e) 75 it 5| 2
+ [ﬂvnEn + ( 5+ ”u) Bi- B —iws B] 3 [
where we have used the notations
~ 1
B = E (VnEb - van + ,BnIIEn + ,Bb"Eb) ’ (37)
BL = (VX zuo) L =Bin en +Bip b, (38)
V, = ¢, V. (39)

Notice that the first term in Eq.(36) actually does not have any resonant denominator
2 and therefore does not contribute to the absorbed power. In our approach we write
Eq.(24) to order O(?) retaining only this term in ;(0) so as to obtain an associated non-
vanishing contribution to the power. Writting Eq.(24) to second order in ¢ thus reduces

to
z

q — b2
mwQEanF) = iby— -V, E,V.F (40)

~) .
0+ (Yt 5 V) (

and the contribution to f in first order becomes

;(1)= q (”i n ”IZI) (ﬂ_j_ V)E,V,F. (41)

—mwﬂ"’ﬂo 7
Let us remark that this method of calculation was partly inspired by a similar method -

used by Rosenbluth and Rutherford in the special case of Alfvén waves 4.

II1. Derivation of the power absorption
A local energy conservation law can be derived from Eq.(5)
3 1 -1 de
52/ Em(vﬁ +v1)fdlPv+ V. / v, -2-m(vﬁ +v3)fdPv = /m-ﬁfdav, (42)

using the incompressibility of the “phase space” flow

v dU_L 6 .(.i_vﬂ
+ dt 8v” dit

v-«7;+-1- g (

v_._Bvl

= 0(X*), (43)
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and the notation d®v = 27wv, dv, dvj. The corresponding global conservation law is given
by

1 5, ,.0f de
where dI' = d®Xd®v. The left hand side of Eq.(44) stands for the variation with respect
to time of the total kinetic energy of the particles. Using the complex notation (30), the

total power exchanged between the particles and the perturbing EM fields averaged over

time reads o
1 de~
Inserting relations (26), (36) and (41) in (45) allows us to express the power in terms of

the electric field. One can decompose the power as follows

ﬁ=ﬁhomo + ﬁinhomo, (46)

1 [v? - wv? ~|°9F
v"E" + '6 ("2£ + 'vﬁ) (,BJ. ¢ E) zﬁ_zé‘ B’ E) (47)

Phromo= Sm / dT

on

= 1 (2 ~
Pinhomo = ——QG/dF TN [UuEu +q (7"' +vﬁ) By - —-25? B] x (48)

1 (v . "
I:-ﬁ' ("5& + vﬁ) (,31_ 'V)Eb + ’U"VpE"] VnF.

Eq.(47) shows that Pphom, is positive definite with respect to E. For this reason, the
integrand of this relation can actually be considered as a local power absorption density
n “phase space”. This is not the case for ﬁ;nhomo, which contains the terms relative to
the gradients of the distribution function. For this reason, instabilities can only arise due

to gradients in density or in temperature of the plasma. The resonant denominator can

be written as

1 1 1 .1 w
QB w-— kou + i Pw — ko) Wlkq,lg (v" - lc_‘,,) ’ (49)
where P stands for the principle value and § for the Dirac function. Globally, only the

resonant particles, that is, whose velocity is such that v is equal to the phase velocity

vp = w/k,, can exchange energy with the EM fields and contribute to the power. The
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principle value in relation (49) can therefore be discarded when evaluating (48). For a

Maxwellian distribution of the form (17), we get

Phomo = +/Teo / Po—2 " QzT;: | exp(—23) x (50)
0 - ~|2
{ 220 —E) + (1+2:2) B.-E +|L-E—iwB } ,

= 3 _____1ﬂ__ —2 ekl 2 T -
Pinkomo = +/T€&Sm / d mVZ,S 63| % Ie>cp( 20){[2z°vzhE" + (1 + 2z0) BL - E —iw B] X
[(1 +222) (B -VE?) + 2z05—thE|"|‘] + [5; . E —iw fé] (BL .V)E;'} :
t

(51)

where zo = w/k,vsn, € is the permittivity of free space , w? = Ng¢?/meo the plasma
frequency squared and V', is equivalent to V, except that it operates only on density
and temperature. For the slowing-down distribution (18) resonant particles can exist

only if |v,| < vg, in that case the power reads

1 1, =
Phomo =7 60/d3$ |k¢| {val3 + 1)3 vPE” + ﬁvz ﬂl -E (52)
2 - I N L~ 2
v%e (,BL E +iw B ) ('UpEII + v_(;, By - E) 012 ﬂ -E —-w B } )
- wiC v2 = o\ (V2 1
Pinkomo = -7 603‘m/daivv' |k¢|9 {IO (vPElT + _QE ﬂl -FE ) (ﬁ(ﬂl 'V)Eb + -’E_VPE")
<p
Il —k . '02 = 1
5 |(Bu B +iw ) (2500 9B+ V08 (59)

— v2 — ek
+;(.31. -V)E, (vaﬁ + ?22 BL-E )] 4w92 (f@J. -V)E, (ﬂ_L E +iw B )}

where

In = /| " de. (54)

vpl v3 4 v3

These integrals, although somewhat lengthy, can easily be evaluated using the notations

z3 =a+z°, a = a3, (55)



and the following relations

/m"d:c _ "2 . /w"“”d:c
23 - (n — 2) 23 ’

dz a |1 (z + a)? 2r — a
;;- = g{ilnm+\/§arctaﬂ a3 ’ (56)
zde 1 {1 (z +a)? 2z — «
= -z{alnm“/gmm V3 }
/xzd:c 1
= —=Inzs.
23 3

The relations (50)-(53) can be implemented in a numerical code using a given perturbing
electrical field E. This approach is valid as long as the corresponding damping rate

remains small compared to the frequency w, otherwise the EM fields would have to be

evaluated self-consistently.

IV. Elimination of Ej

If the EM fields are provided by an ideal-MHD calculation, the component of E parallel
to the magnetostatic field is zero and must therefore be obtained from a more general

model. To do this, we restrict ourselves to the Alvén wave range of frequencies, so that
Up ™~ C4, (57)

where c4 is the Alfvén velocity, and ¢4 < ¢ one of the validity conditions of the MHD

model. Using the quasi-neutrality condition valid in the frame of the MHD model

~

N,=

b4

-,

~

N, and J'\}; being the perturbed densities of the electrons and the ions, and expressing
these densities in terms of the electrical field allows one to write Ej| in terms of E t. Due
to the fact that the thermal velocity v, of the electrons can be comparable to the phase

velocity v,

Uthe ™~ Ups (59)
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it is reasonable to use the solution (36) of the DKE to evaluate the dominant term of JV,

~ ~ ~ 7e d3’l) v2 —_ — . ,02 ~ aF
N, = / @V fdectron™ —o / % [Qequu + (—;— +”12|) Bu By —iw: B} 2  (60)

2 Oe
. eNe WQC 1 - = Lo~ w 2 -
=& meWQe kcpvt2he (1 h Z) E" N §Z (ﬂl . EJ- i B) + (k¢vthe) (1 h Z) IBL . E:| ’
where
z=27 (-2 and Z(2)= _z__/+°° 1 exp(—z?)dz, Imz > 0. (61)
kyUihe VT oo 2 —2 ’

To evaluate N; one can use a cold fluid model for the ions as the phase velocity v, is much
higher than the thermal velocity v;; of the ions. Due to their relatively large mass, the
ions dominate the motion perpendicular to the magnetostatic field. Solving the equation

of motion in the perpendicular plane
— twm; U:e(E‘J_—I-U X Eo) , (62)

one obtains for low frequencies w < Q;

€

w

Q;

v= 2 By x o ~ic Bl (63)

m;§Y;
Using the equation of continuity for the ion density leads to

-\ Ni - Q; -~ - >
v. (N; v) = —:u o [V- EL -2%— B, - By -0 B] (64)

fim

i
w
after having kept the most dominant terms and used Eq.(35). Inserting Egs.(60) and
(64) in Eq.(58) finally leads to

__kyvd, 1 W = w V0|2 = .~
By =- %, 11-2Z (ZQiV' Ei+ B2 E.L) + 142 Fovrs BL-EL—wB¢,
(65)

where we have used the neutrality of the stationary state. This relation can now be

inserted in Eq (50). For electrons and ions one obtains respectively

2
wp Vth

102k, | exp —zg X (|a8pecies|2 + ',31. -E —iw B

Phomo = ﬁeo/dax

) . (66)
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1 ) —
Qelectron = 1—2 (ziv Eyr + ﬂJ. : EJ-) ) (67)
1 w

Q
T, . - . T\ ~
o = gz (i V- Bt A Bu) i (14 1) B
T w \] 2 =
e
+ 1+Ti+2(k<p'vthi) ] Pu- B o9

Pinhomo can be neglected for these species. This is related to the fact that in the frame

of the present work w > w* for electrons and ions, where

. |VeldN T

is the characteristic frequency of the drift mode, k, being the poloidal wave number.
Let us note that in Eq.(68) the contributions of Ej to the power absorbed by the ions
are proportional to T./T;. As the average kinetic energy of the alpha particles is very
high as compared with the energy of the electrons, the contributions of Ejj to the power

absorbed by the alphas can therefore be neglected. In this way, one can write for the

alpha particles

- — . 2
Phomo = Teo / dsmlkAm {[val?' T +2vifo] BL-E (70)
saitiom (5. ) 1 }
2
_C"t _ w2 €0 3 ' aC {( 4 )
Pinhomo = 9n?‘~/d :EV |k |Q3 IO+'U ﬁ.L (71)

(% +2) (B E-iw B)} (8 VB

Relations (67)-(71) are now ready for implementation in an ideal-MHD code.

V. Conclusions

Explicit relations for the power absorbed by different species have been obtained in terms
of given small amplitude, low frequency EM fields in a hot, toroidal, axisymmetric plasma
using the DKE theory. These results are ready for implementation in a numerical code

and in particular for the study of Alfvén waves using EM fields obtained from ideal-MHD

computations.
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