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Abstract

Numerical calculations are presented to show the influence of finite pressure on the
vertical stability of shaped tokamaks. High ef, improves the vertical stability of dee-
shaped tokamaks but is destabilizing for an inverse dee. For highly elongated cross
sections, the pressure effect is well described by a linear dependence of the maximum
value of stable internal inductance on €f,, with a coefficient that depends on the geometry
and increases with triangularity. Stability diagrams are shown in terms of [; .;; versus
¢, for TCV- and DIII-D-like cross sections. The effects of pressure are significant even
in the absence of a surrounding wall. Current profile effects depend critically on the
wall configuration: low values of [; increase the driving force of the instability, but are

stabilizing if the wall is sufficiently close.



1. Introduction

Modern tokamaks are generally designed so as to take advantage of the increased
current capability of an elongated cross section and the resulting improvement of the
beta limit [1,2] and confinement time [3]. A well-known drawback of elongation is vertical
instability [4,5], and for sufficiently high elongation, this requires the use of conducting
walls close to the plasma assisted by active feedback stabilization on the L/R time-scale
of the resistive wall. Work on the DIII-D tokamak has established that vertical instability
is the factor which limits the achievable elongation [2,6]. For the TCV experiment [7] in
Lausanne, designed for a maximum elongation of x = 3, the vertical stability is a main
issue, and we have therefore investigated numerically the operational limits due to the
vertical instability and how these depend on, e.g., the shape of the plasma cross section

and the equilibrium profiles.

It is well known [8] that vertical stability of strongly elongated tokamaks is favored
by a low internal inductance /;, because this increases the coupling of the plasma current
to the external conductors. Thus vertical stability requires an internal inductance less
than some threshold /; .i;, which decreases with increasing elongation and wall distance.
Here, we mean by /; ..;; the value of [; for which an equilibrium surrounded by a realistic
resistive wall has a growth rate 4., below which the vertical position can be controlled

by a practical feedback system.

Our principal result is that I; ..;; is strongly influenced by pressure in combination with
triangular shaping of the cross section. We find numerically that [; .;; is an approximately
linear function of €f,, independent of details of the current profile and aspect ratio, but
sensitively dependent on the geometry of the cross section and the wall distance. For
the usual dee shape, pressure is stabilizing, i.e., l; cris increases with €,, whereas in an -
inverse dee, pressure is destabilizing. The increased upper limit in internal inductance for

a normal dee is a favorable effect, not only because it makes it possible to reach a higher



elongation, but also because the beta limit (2,9] and confinement time [10] improve with
the internal inductance at fixed elongation. Reference [2] shows convincing evidence that
the optimum condition for reaching high beta is at the intersection of the n = 0 and

n = 1 stability boundaries.

2. Stability Diagrams for TCV and DIII-D Cross Sections

Figure 1 shows the limit in internal inductance licrit as a function of ef, for three
different classes of current profiles in a “TCV cross section” at aspect ratio 4 = 1/¢ =
Ro/a = 3.7 (curves 1 — 3). The following definitions are used for the poloidal beta,
By = (4/pol}Ro) [, pd®z, and internal inductance, I; = (2/u83Ro) [, Bid3z. The plasma-

vacuum boundary is specified as
Rj/a=A+cos(6+ 6sinf + Asin26) , Z/a=ksind (1)

and the geometry referred to as “TCV cross section” has elongation x = 3, triangularity
6 = 0.5 and squareness A = 0.2. Equilibria have been computed with the CHEASE code
[11] and stability with the NOVA-W code [12], which is capable of computing growth
rates of n = 0 modes with a resistive wall, as well as with an ideal wall or no wall.
Figure 1 refers to resistive wall instabilities (cases stable with an ideal wall), and it is
assumed that the mode can be stabilized by feedback if the resistive wall growth time is
longer than 7% of the L/R time of the wall (more precisely, for its “m = 1” eigenmode).

The conducting wall has been chosen to represent the TCV vacuum vessel [7].

Several conclusions can be drawn from Fig. 1. First, the limit in /; is the same function
of B, for the three different classes of current profiles. The three current profiles differ
significantly, and Fig. 2 shows the profiles 1 and 3 for the surface averaged toroidal current
density I* at the point I; = [; ;s at low and high pressure (¢8p = 0 and 0.5 respectively).
(The pressure profiles have been chosen as uniformly scaled versions of those that give the

ballooning limit with a given I* profile.) Secondly, curve 4 refers to an equilibrium with



larger aspect ratio, A = 7. The large aspect ratio result coincides almost exactly with
those for A = 3.7 when plotted in terms of /; and e8,. Thus, for a fixed, elongated cross
section (but varying the current profile and the aspect ratio), n = 0 stability requires
li < licrit(€Bp) and for €8, not too large, I; .,;; is almost linear in €Bp; Licrit = lig + ceBp,

where ¢ may depend on the geometry.

Figure 3 shows the corresponding result for a DIII-D-like cross section, & = 2.5,
6 =106, A =0 and A = 3. Here, the resistive wall was chosen to be conformal to
the plasma boundary, and two different minor radii have been considered for the wall;
d = 1.3a and d = 1.4a. The result is similar to that for TCV in that the critical internal
inductance increases with €f,, however, the dependence is much stronger for the DIII-D
cross section. For the DIII-D-like case with d = 1.3a, we have licrit = lip + cefp, with

¢~ 1.8 , which is much larger than for the TCV cross section, where ¢ = 0.34.

The stability threshold of course depends on the assumptions concerning the critical
growth rate ;. If the critical growth rate is changed, the main effect is on the value of
li crit With only a small effect on the value of the slope ¢. For example, if “erit for the TCV
case, Fig. 1, is increased by 50% (this relaxes the demands on the feedback system), then
the value of ;o increases from 0.494 to 0.519, while the slope c increases by about 8%.
For the DIII-D-like case, if 4. is increased by 50% the value of [; o increases considerably

from 0.521 to 0.667, but the value of the slope c increases by only 3%.

Note that Fig. 3 does not apply literally to DIII-D conditions, e.g., with respect to
the assumed value of 4erit + Twen. Furthermore, our definitions of B, and [; differ from

those used in e.g. Ref. [2] by a shape dependent factor. For the DIII-D shape our values

are smaller by a factor ~ 1.5.



3. Brief Review of Theoretical Results

Several results relevant to the diagrams in Figs. 1 and 3 have been obtained previously
by analytic [4,5,13,14,16], semi-analytic [17,18] or numerical [19,20] methods. Quite sur-
prisingly, most of the work on shape, pressure, and inductance effects on vertical stability
dates from the seventies, despite the subsequent development of powerful numerical codes

and the fact that experiments are now in regimes where such effects are of importance.

Zakharov [4] showed that vertical elongation, x > 1, destabilizes vertical shifts but
that a weakly elongated equilibrium can be stabilized by finite aspect ratio effects without
the use of a conducting shell. Vertical displacements are stable if the decay index n of

the external vertical field satisfies n = —(Ry/B*)(0B/OR)p=p, > 0.

Zakharov’s [4,5] expression for n implies that a plasma with a flat current profile is

k—-1< (%)2 (g—logis-gg—%). (2)

Laval et al. [13] showed that an elongated plasma can be stabilized by a conducting wall.

stable when

For a flat current profile, their stability condition (in the near circular approximation)

reads

k-1 <2(§)2, 3)
where d is the wall radius. Comparison of the conditions (2) and (3) shows that for elon-
gations, aspect ratios and wall distances typical of modern tokamaks, wall stabilization
is far more important than finite aspect ratio effects [21], and the discharges would be

strongly unstable without a wall.

Effects of more complex shaping, including finite aspect ratio and pressure effects, were
investigated semi-analytically for a surface current distribution by Rebhan and Salat [18].
For vertically elongated equilibria, they found that an inverse dee (§ < 0) is destabilized
by pressure, but a standard dee (§ > 0) can be stabilized by pressure (see Fig. 4a of

Ref. [18]). A stabilizing effect of finite pressure in combination with positive triangularity
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on the vertical stability of elongated equilibria is also indicated by results [19] obtained
with the ERATO stability code. This effect is the basic reason for the increased licrit
at high €f, in the operational diagrams, Figs. 1 and 3. The main new result shown in
these diagrams is the appreciable size of the pressure effect on vertical stability in terms
of operational parameters, I; and €,, for more realistic current distributions than the

surface current model of Ref. [18].

It has been shown [14,15] that resistive wall growth rates (for equilibria that are
unstable without any wall but stable with an ideally conducting wall) can be expressed
in terms of the ideal-MHD potential energies of the vertical shift mode in the absence of a
wall, §W,,, and with an ideally conducting wall in the position of the resistive wall, W,
as Yres = —(b/Tw)6Woo/6W,. Here, 7, is the L/R time of the wall and b is a numerical
factor that depends on the current distribution in the wall. This expression gives valuable
analytical insight. However, for numerical calculations it is more straightforward to
introduce an actual resistive wall and solve the full eigenvalue problem as is done by
NOVA-W. This automatically takes into account the effects of non-rigid shifts [22] and
avoids the calculation of §W; for a stable oscillatory mode which can be hidden by a

continuous spectrum.

In the following two sections, we show vertical stability results for ideal and resistive
walls obtained with the NOVA-W code with the aim of placing the results for TCV and

DIII-D cross sections into a broader framework.

4. Pressure Effects

The operational diagrams in Figs. 1 and 3 show a much stronger stabilizing effect of
¢Bp in the DIII-D-like cross section (k = 2.5, § = 0.6, A = 0) than for TCV shape (rk = 3.0,
6 = 0.5, A = 0.2). It appears that the most important reason for this difference is the more

triangular shape of DIII-D (note that a positive A decreases the effective triangularity [9]).



The strong dependence of the pressure effect on triangularity is illustrated by Fig. 4. This
figure shows resistive wall growth rates for elongated cross sections (k = 2.5, A = 3) at
low and high pressure (8, = 0.06 and 0.6, respectively) and three different triangularities
6 = —0.6 (inverse dee), 0.0 (ellipse), and +0.6 (standard dee). The wall is a conformal
copy of the plasma surface with minor radius d = 1.3a and has the same resistivity and
thickness as the TCV vacuum vessel used for Fig. 1. Figure 4 shows that the pressure
is strongly destabilizing for the inverse dee, somewhat stabilizing for the ellipse, and
clearly stabilizing for the standard dee. The inverse dee is strongly destabilized, and

with 3, = 0.6 the mode is near marginal stability with an ideally conducting wall, see
Eq. (3).

Figure 5 shows the square of the ideal-wall growth rate (a measure of the ideal- MHD
driving energy) vs. the reciprocal wall radius sqﬁared for the different triangularities and
pressures. The three points shown for each of the six curves correspond to the wall at
infinity, at d = 1.6a, and at the critical ideal wall distance to stabilize the axisymmetric
mode. The dee shape is clearly the most stable among all cases (see also Fig. 4), and for
this configuration finite pressure is significantly stabilizing in the absence of a wall, and

remains so when wall stabilization is accounted for.

By contrast, for the inverse dee pressure is clearly destabilizing both with and without
a wall. The critical wall distance for the inverse dee is quite close to d = 1.3a, and
therefore the resistive wall growth rate (with the wall at that position) is quite high in
Fig. 4 for that case. For the pure ellipse, the free space growth rate is virtually the same
for the low and high pressure cases, but high pressure shows a stabilizing influence in the
presence of a wall, and the growth rate falls below that for the inverse dee as the wall is

moved inward.

We can see from plots of the equilibrium flux surfaces that, for the dee shape, increased
pressure reduces the central elongation. This can be interpreted as the result of squeezing

in the vertical direction by the combination of triangular shape and the Shafranov shift.



The same effect leads to an increased elongation at high 8, in an inverse dee.

Therefore we see that the primary effect of pressure on the dee shape is to lower the
free space driving energy, while it increases the free space energy for the inverse dee.
Thus the favorable effect of pressure shown in the operational diagrams, Figs. 1 and 3,
is mainly due to lowering the free space driving energy and not to the wall coupling. For

the ellipse, the free space growth rates are virtually unaffected by pressure, but there is

an increase in the wall stabilization for the high pressure case.

5. Current Profile Effects

It is well known that the peaking of the current profile can have significant effects
on the vertical stability. The good agreement between the curves for different classes of
current profiles in Fig. 1 shows that the relevant parameter characterizing the current
distribution is the internal inductance. Flat current profiles with low internal inductance
lead to stronger coupling between the plasma and the external conductors. (Stated
differently, the poloidal field, and hence the flux perturbation due to a rigid displacement,
become larger in the external region when the internal inductance is low.) However, we
find that, in the absence of a conducting shell, the growth rate generally increases with
decreasing inductance (see also Ref. [20]). This is shown in Fig. 6, where the ideal wall
growth rate is plotted as a function of the wall radius for two DIII-D-shaped equilibria

with different internal inductance [; = 0.6 and 0.8, respectively.

Peaking of the current profile is evidently stabilizing when the wall is distant but
destabilizing when the wall is sufficiently close. At a wall distance of roughly d = 1.4a,
the two curves in Fig. 6 cross, and the growth rate is independent of the inductance.
This point is close to the critical wall distance. Therefore, the internal inductance may
have a rather small effect on the ideally marginal wall position, but it may have a much

stronger effect on the resistive growth rates [14]. In fact, with the wall at d = 1.3a,



the two cases in Fig. 6 have nearly a factor of 2 difference in the resistive growth rate.
Figure 3 shows that the 8, required to stabilize equilibria with these two inductances
increases from 0.13 at /; &~ 0.6 to 0.46 at [, =~ 0.8. The reduction of the free space growth
rate with increasing inductance appears to be due mainly to a reduction of the ellipticity
of the central flux surfaces. It should be noted that there are many competing effects, for
example a similar reduction of the central triangularity, which reduces the finite pressure
stabilization. In addition, peaking of the current profile effectively increases the aspect
ratio, so that the toroidal stabilization is reduced. However, as discussed in Sec. 3, the

toroidal stabilization is not very significant for highly elongated cross sections.

5.1. Passive Stabilization by Discrete Conductors

While the effect of broadening the current profile increases the destabilizing force
on the equilibrium, it also increases the stabilizing effect of a completely surrounding
conducting wall. The balance between these competing effects would clearly be changed
if the passive stabilization is provided primarily by discrete sets of nearby conductors
instead of a surrounding wall. We consider a configuration in which the vacuum vessel is
far from the plasma, and the plasma is passively stabilized by a close set of conductors
on the outboard side and another set on the inboard side. The equilibrium has & = 1.9,
6 =0.7,and A = 4.54. Figure 7 shows that in this configuration the growth rate increases
with decreasing ;. This effect has been observed previously by Pearlstein [23] and Jardin
[24].

As a comparison we do the calculation with a resistive wall conformal to the plasma
shape at d = 1.3a with the total wall resistance normalized to that of the passive con-
ductors of this configuration. We see from Fig. 7 that with the closed-wall configuration

the growth rate decreases monotonically with decreasing ;.

Figure 8 shows the plasma boundary, the discrete sets of conductors, the distant



vacuum vessel wall, and the fictitious wall used in Fig. 7 (the latter is shown as a dotted
contour). Figure 8 also shows the contours of perturbed flux for the high I; case (a)
and the low [; case (b) in this configuration. These plots show that the coupling of
the perturbed flux to the conductors is not very good in the low I; case. Therefore the
increase in the destabilizing force due to the broader current profile dominates, and the

growth rate increases with decreasing I;.

We conclude that for highly elongated tokamaks, there are two main effects of the
internal inductance on vertical stability. First of all, wall stabilization is improved for
low internal inductance because of increased magnetic coupling. Second, current peaking
reduces the shaping of the internal flux surfaces which reduces the instability growth
rate in the absence of a wall. For highly elongated, feedback stabilized discharges with a
closed wall, the effect on wall coupling is the more important, and stability improves at
low inductance. However, the competition of these two effects is more subtle when there
is not a completely surrounding wall, and depends on the details of the current profile

and the placement of the nearby conductors.

6. Conclusion

We have found that high e, significantly improves the vertical stability of elongated,
dee-shaped tokamaks. Our results for the TCV cross section indicate that the effect can
be described in terms of an almost linear dependence of the critical internal inductance
on €8y, licrit = l;p + cef,. Comparison between different cross sections shows that the
coefficient ¢ increases with the triangularity, and the dependence of [; .,;; on €0, is quite
pronounced for a DIII-D cross section. This effect is beneficial for reaching high beta
because it increases the maximum stable elongation or, alternatively, allows the current

profile to be more peaked which increases the beta limit due to the n = 1 external kink

mode [2,9].
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Figures

Fig. 1. Vertical stability diagram in terms of ; and ef3, for the TCV configuration. Curves
1-3 show the results for the standard TCV configuration for 3 different types of current
profiles. Curve 4 shows results for the TCV plasma and wall shape expanded to an

aspect ratio of Ry/a = 7.0 for the first current profile.

Fig. 2. Current profiles corresponding to curves 1 and 3 of Fig. 1. Both profile types are
shown at low and high beta: (a) curve 1, 8, = 0.06; (b) curve 1, 8, = 0.6; (c) curve 3,
B, = 0.06; (d) curve 3, 5, = 0.6.

Fig. 3. Vertical stability diagram in terms of /; and €8, for the DIII-D-like equilibrium.
The two curves are for two different wall positions. The walls are conformal to the
plasma shape at a midplane distance of d = 1.3a and d = 1.4a. Also shown, for

comparison, is curve 1 from Fig. 1 for the TCV configuration.

Fig. 4. Growth rates (in s71) vs. triangularity for a resistive wall conformal to the plasma
shape at a midplane distance of d = 1.3a for three shapes: the inverse dee, ellipse,
and regular dee (§ = —0.6, 0.0, 0.6, respectively) at high beta (8, = 0.6) and low beta
(8, = 0.06).

Fig. 5. Plot of 42 vs. a?/d? with an ideally conducting wall. Shown are the results for
the three shapes (inverse dee, ellipse, regular dee) at high 8, (solid symbols) and low
By, (open symbols).

Fig. 6. Plot of 42 vs. a/d? with an ideally conducting wall for DIII-D-like equilibria with

no pressure and /; = 0.6 (dashed curve) and I; = 0.8 (solid curve).

Fig. 7. Growth rates (in s~1) vs. [; for a configuration that is stabilized by discrete con-
ductors with the vacuum vessel far from the plasma. For comparison are shown

growth rates with a completely surrounding wall (conformal to the plasma surface at

d = 1.3a).
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Fig. 8. The plasma boundary, the discrete conductor sets, and perturbed flux contours
are shown for the high /; and low [; cases in the configuration with discrete conductors.
The vacuum vessel is quite distant from the plasma. Also shown as a dashed contour

is the fictitious wall used for comparison in Fig. 7.
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Figure 6
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Figure 7
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Figure 8 (a)
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