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Abstract

A model based on the linearized Vlasov-Maxwell equations, taking
into account the non-local interactions of particles due to their finite:
- Larmor radii, has-been" developed. :Assuming.an.inhomogeneous 1-D slab:.
-+ plasma, Maxwellian equilibrium distribution functions and ky=0, it leads
to a system of one first-order and two second-order. integro-differential .
equations for Ex-and.Ey, E, respectively. These equations are valid. for.
arbitrary value of k;ps, where k; is the perpendicular wavenumber and pgs-
« the -Larmor radius -of .species ¢. Therefore, the code SEMAL [4], solving
‘these equations, is well appropriate for studying the effects of alpha
particles on the ion cyclotron range of frequency (ICRF) heating. These
effects are shown to be much less significant for heating at the second.
- harmonic of deuterium than expected from.local models. Other heating.
scenarii of deuterium as well as the influence of k;, T, non-Maxwellian
- distribution functions-and ngy/ne are-also-investigated. - The results indicate.
under which conditions the power absorption by alpha particles start to.

- —-dominate and,-therefore, degrade the heating efficiency. .. ...



1. INTRODUCTION

In present days large tokamaks, ICRF heating has proved to be a very
efficient heating scenario and it may be one of the main heating method
for future thermonuclear fusion experiments. An important- question is
the influence of high-energetic alpha ‘particles on the heating efficiency.
Hellsten et al [1] were first to draw the attention to the problem of strong
alpha particle absorption during various ICRH scenarii. Using a local
model valid up to second order in kjpg, they showed that, for second-
harmonic of deuterium scenarii, all the power can be absorbed by the
~alphasnear the edge for concentrations ngy/ne larger than 1%. But as k| pg
was larger than one, -the model was not valid for the alphas and another.

model is needed to have better quantitative results. Kay et al. [2].

investigated this effect using a simplified .mode-conversion equation valid~ - -

“around ion-cyclotron resonances and taking the contribution of alphas as a..
- small perturbation to-the basic wave. In this way they could evaluate the .
contribution of alphas to all orders in k| py and:compare the power--
+absorbed by the alphas (Py) and deuterium (Pp) at the second harmonic.
They found that the alpha particles absorbed much more power than
deuterium for k)Rp < 4 and about the same amount for kyRp = 4. However,
this model is not yet sufficient for simulating a complete heating scenario.
In particular, one needs to know if the wave is completely absorbed by the
alphas in the outer part of the plasma, that is in between resonances,

before it reaches the resonance layer. of deuterium. .

In order to answer this question, the equations need to be solved
throughout the whole plasma. Two methods have been used : ray-tracing

[3] and global wave [4]. The extension of ray-tracing codes is



straightforward as one only needs to solve the dispersion relation valid to
-all orders in k, ps. Using such a code, Van Eester et al. [3] found, for NET-
ITER plasma parameters, that P, is-of -the.same order as Pp for
- ng/ne = 1% and larger for larger concentratiens. This confirms that Py
was overestimated by the local model used in'[1]. However, in the -heating
scenario considered by Hellsten et al. [1],” the fourth harmonic of tritium
lies near the edge (x = 1m) as can be seen in Fig. 1. Therefore, one needs
the global wave solution of the linearized Maxwell-Vlasov equations to
obtain reliable quantitative results. The extension of local global-wave
models to non-local ones leads to solving a system of second-order
““integro-differential equations. It needs ‘a rather large amount of
- computing time, which is why we have  developed our model in a 1-D slab.»
geometry. It was first solved using the' electrostatic’ approximation [5] and-
then extended to:the full-electromagnetic ‘wave problem [4]. The-code
SEMAL is now appropriate for studying Bernstein waves, higher-harmonic:
heating and/or alpha particles effects. In Section II we shall briefly derive..
- the equations for the three components of the. electric field and.the-.
formula for the power absorption. Then, we shall present our results in
two subsections : III.1 - comparison with the results obtained with a local
model by Hellsten et al. [1]; III.2 - influence of k;, Ty, ng/ne and non-

Maxwellian distribution functions. Finally, a summary of our results and of

' the main constraints on the heating scenarii will be presented in Section

IV.



2. PHYSICAL MODEL

2.1 Integro-differential equations for E

The linear wave-particle. interaction in hot plasmas can be described
by the linearized Vlasov-Maxwell system of equations. As mentioned
before, we shall restrict ourselves to 1-D slab plasma, but allow for
arbitrary inhomogeneous density and temperature profiles, and for a
slowly varying magnetic field. The aim of this new model is to keep the

equations valid to all orders in Larmor radii while solving for the electric

-~ field in ‘the whole plasma at once, together with the boundary conditions.

- The plasma is assumed to be surrounded by vacuum in which there is,.on.
the right-hand side of the plasma, an infinitely thin: sheet antenna current.
in the (y, z) plane. The:equilibrium magnetic field Bg is along the z-
direction and the inhomogeneity along x. We shall neglect ky in the
- dielectric response of the plasma and assume Maxwellian equilibrium
distribution functions. .

This global wave model leads to solving second-order integro-
differential equations. Thus, the solution at one point is influenced by the
whole plasma, which is why this model is called non-local. In practice, as
will be seen below, only the points distant up to four or five Larmor radii
contribute. The other advantage of this model is that it can apply to
frequencies larger than the second harmonic of the cyclotron frequency.
A code SEAL, solving these equations in the electrostatic approximation

to all orders in Larmor radii has already been developed and was able to

- simulate" quite well an experiment involving Bernstein waves-[5] The



procedure for treating the electromagnetic case is the same as in [5] and

~+ has been presented in [4]. Therefore, we shall only briefly discuss it here.

First we linearize the Vlasov and Maxwell equations and Fourier

- ~transform them. Then we solve for the-perturbed ‘distribution function

1161 )(L;_, v, ), which involves a -convolution between the inhomogeneous
equilibrium distribution function f‘: ) and the electric field. Note that by
Fourier transforming f( : ), the perpendicular precession of the particles is
uncoupled from the motion of guiding centers and only the density and

temperature profiles of the guiding centers are needed.

‘Then, the current contribution in Maxwell's equations is calculated

1
- using t‘d)(g, v, ). In order to be able to.invert the Fourier transform of the- -

Maxwellian equilibrium distribution function of the form :

" 2 2
0 0 ., n (x vVi4vV _- "o
fg) (VJ. ’v// ’kl) = f(O') (V_L ’v// ’kx ) = ]5/2 f dx %——"_)— exp { - —H‘} e lkxx"*r”""«.
2n VTcs(X ) VTcs(x )

where vic = 2Tg/mg, and ng and Te are the density and temperature of
the guiding centers respectively. We shall use throughout this paper the
variable x" for the inhomogeneity. Note also that we have checked with
our local model that ky has very little influence in ICRF heating, especially
at higher harmonics. We have also used the following integral

representation of the Bessel function I, :



n

2 2
I (kxp2) = e¥xPs 88 co5(ng) do .

1
n

In this way, we are able to-integrate exactly over kx-and v, and we obtain
the following system of equations for the three components of the electric

field [4] :
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where ®c¢o = qeBo/mg and &ne = (0 - nweg) /kzvrs are the cyclotron
frequency and the argument of the Fried-Conte dispersion function Z, [6],
respectively, and.pzd =v§0/2m(2:0. Equation (1) is a system of one first-order
and. two second-order: integro-‘diff‘erential -equations for Ex and Ey, E;
respectively. It is solved in the code SEMAL using a finite element
method and Gaussian quadratures for the integrals. Due to the asymmetry-
 between Ex and Ey, E;, we have used piece-wise constant basis functions

~for Ex and linear for Ey, E,, in order to avoid pollution problems [7].

One can see from Eq. (1) that the non-local interaction is limited in
space by the terms :
"2
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The maximum width of interactions is about 5-7 Larmor radii, that is
‘about 35-50cm for alpha particles with Ty = 3.5MeV and Bg = 2.71T. This
shows why a non-local model is needed for the alpha particles.

2.2 Power absorption

The code SEMAL also computes the power deposition profile for
each species. The local power absorption formula is obtained following the
same procedure as in the electrostatic case [5]. With the help of a change
of variables to the Lagrangian coordinates, we are able to eliminate the
contribution of the particles streaming into and out the volume element
considered. In this way, we obtain a positive definite local power.
absorption formula, assuming ky = O,M.valid to all orders in Larmor radii
and for arbitrary inhomogeneous density and temperature profiles and a,

slowly varying magnetic field :
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This formula corrects the one published in [4], where a non-resonant
term was erroneously added to this formula. Note that it is not any more

IE;+| or |E.l which contribute, but a rather complicated combination of



" Ex, Ey and E,. However, the integrand of the 6' integration can be

rewritten as:follows:

(o - nmcc) cos e.Ez
113
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—12—[cosr'(n-1)6' E, - cos (n+1)6'vE_] + 1 cos:nb'
- Thus, we see that it is nevertheless.E;. and.E- which contribute to E |... We.
have checked that Eq. (2) reduces to the formula in [5] for the
electrostatic approximation. We have also verified that we obtain the same
power absorption for the electrons using Eq.(2) or an expanded formula

[8], as kpe<<].
3. RESULTS

3.1 Comparison with the local model (Figures 2 and 3 of [1])

- o In thisssubsection, we:shall compare the results of SEMAL with those,

of the code ISMENE for the cases presented in [1], Figs 2 and 3. The
code ISMENE solves Eq. *(1) expanded up to second order in Larmor
radii, while taking into account the gradients of the equilibrium quantities
[9]. Therefore, it is an even more complete local model than the one used
~+in [1]. Nevertheless, it.is limited to-second harmonic as .I,(x) is of the..

order of O(x") and therefore harmonics-n>3 are neglected in this-model. ..

We have taken the same standard plasma parameters as in [1]
Xpr=1.25m, Bp=2.71T, Rp=2.96m, B(x)=BgoRg/(Ro+x), kz=5m-1, ky=0,
np=nt=0.5-1020m-3, ne=1020m-3, Tp=TT=Te=5keV. The profiles are

- proportional to (1 - 0.95(x/xpr)2)Y, with y=1 for the density and y=2 for the



temperature. Throughout this paper we shall fix ne=1020m-3 and calculate
~the.ion concentrations such as to satisfy the neutrality condition while
keeping np = nt. The alpha density profile is also parabolic, but the

temperature is homogeneous if not otherwise stated.

The full hot-plasma dispersion relation, valid to all orders in Larmor
radii, is shown in Fig. 1 for the standard parameters with nyg/ne = 1%.
Note that harmonics up to n=20 where needed to resolve correctly the
Bernstein wave near the resonances. Two cyclotron resonances occur
inside the plasma, at x=0 and x=1m. At x=0, we have W=20cp=20cq=3McT,
“and at x=1m, w=40.1. The wavelength of the fast wave is about 10 cm
‘throughout the plasma-and between 1mm and lcm for the Bernstein,.
wave. Note that the Bernstein wave can be excited directly from the
plasma edge and it connects to the branch below 4w.r. Note also that. . .
above second-harmonic of deuterium, the fast and-Bernstein wave
branches connect.

- The effect of alpha particle concentrations from ny/ne=0.to 1% is..
shown in Fig. 2 for the local and non-local models with w=2wcp at the

center. The total integrated power absorption profile, defined as

X
PL®=)P .= Z[ dx'Pp, (x),
(o)

C

where Prs(x) is the power absorption of species o, is plotted versus x. We
see that there is a great discrepancy between the two models. For
ng/ne=1%, the local model predicts that 100% is -absorbed by the alphas
and none by the deuterium, while the non-local model gives 44% and

31% respectively. This difference can be explained by examining the local



power absorption formula. For small kipi, PL(x) (Eq. (2)) is proportional
tolka_pi: but inversely for large kipcz,. Therefore, the power absorbed by the
~alphas is overestimated by the local model, as already mentioned in [1],
and is sufficiently high to absorb the wave completely before it reaches
- the cyclotron resonance at the center (Fig. 2a). On the other hand, with
the non-local model, Fig. 2b, the wave reaches the center and much more
power is absorbed by the deuterium. This is clearly seen in Fig. 3, where
we compare the real part of Ex obtained in both models with ng/ne=1%.
With the local model, ISMENE, the wave is completely absorbed already at
x=50 cm, whereas with the non-local model, it reaches the cyclotron
resonance (x=0). However, another effect can compensate this, which is
absorption at harmonics lying -outside the plasma..For example, in-the
case considered, /w.p=2.7 at the plasma edge. Therefore no power can
- be absorbed by the deuterium at the third .-harmonic, whereas the alphas:-
absorb as much -power at the third harmonic (21.5% of total) as at the..
second harmonic (22.5%), due to their broad resonance layer. Note also
that the Bernstein wave, excited at the plasma edge, appears on Ex, but.it.

does not deposit much energy except a little to electrons.

The limit to the second harmonic is in fact one of the main
drawbacks of the local model for such scenarii. This is shown in Fig. 4,
where different scenarii at 0=2mcH, 20:3He, 20cp and 2o¢r, are compared.
They all have an alpha concentration of 1% and in the first two cases,
hydrogen or 3He has been added with nyg/ne = n3ge/ne = 20%. With
ISMENE, the scenario tuned to the second harmonic of H is found to be
much better than the others, whereas it is the opposite with SEMAL. This
difference is essentially due to higher harmonic heating. Indeed, as 2w¢H

= 40¢q, then resonances at the fourth to sixth harmonic of we occur in



the plasma and absorb most of the energy. These resonances are

- »neglected in-the loeal -model.-Moreover, if the.frequency is higher, the

distance between two successive resonancesis shorter and the number of
- cyclotron resonances between the center.and the edge of the plasma.is
increased. As an example, we show in Fig. 5 the power absorption density
of the alphas for the case with hydrogen. We see that strong off-center
power absorption occurs at the 5th (39%) and 6th (13%) harmonic
compared with central absorption at the n=4 (11%). In this case,

Po/Piot=63% and Py/Pis1=35%.

3.2 Influence of T, k;, ny/ne and the type of distribution function

We shall discuss in this subsection the effects of Ty, kg, Ng/ne and
- the type of:distribution ‘function ‘always-starting from-the standard-.gase -

- shown before of a D-T plasma with ny/ne=1% and .0=20.p at -the center. .

 ~The influence of Ty is shown in Fig. 6. In Fig. 6b, we have taken the..
same bi-quadratic profile for Ty as for the other species. We see that the
power absorbed by the alphas is not at all proportional to Ty, confirming
the fact that the width of the cyclotron resonance is not the main factor,
for kz not too small. In both cases, there is a small interval where Py is
larger than Pp, which is around 1MeV-for the homogeneous profile and
0.3MeV for an inhomogeneous one. .These intervals correspond to
parameters such that kjpg is of the order of 1 in the outer part of the
plasma. In order to understand this feature, let us go back to the power
absorption formula. If we assume a plane wave for E| and neglect Ez, as
IEzl << IE] | in all our cases, Pr(x) is proportional to the following

expression, changing x" to y = kx(x"-x)/cos6:
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where Jp is the Bessel function. The second term determines the width
of the resonance layer and the last terms give the contribution of the.
fields modified by a form factor. Note that it is indeed the product kxpg
which enters into this formula. Due to the Bessel function, this form
factor is proportional to (kxpg)? for small kxpg, inversely proportional to
‘kxpo for large kxpg and has a maximum in between. In Fig.7, we have
plotted the contribution of Ex to the form factor, as it is the dominant

component of the field, which reads:

P | :
g(kx Pe) = dy ; e 1/§kx~Po I‘ExO [Jn-l + Jn+1]|

4 4
2kxpc
2
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Fig.7 shows that the form factor g has a maximum for kxps around n/2,
which confirms the result obtained previously (Fig.6). For n=2, we have
also plotted the expanded formula g=(kxps)? (large dots). We clealy see

that for kxps21, it much overestimates.the.integral form.

This has another important consequence. It means that the amount

of power absorbed between x and x+dx depends directly on the effective
2

value of p _ around x. Therefore, if we. -want to approximate a non-

Maxwellian distribution function with a Maxwellian, both should have the



2 2 2 2
same effective p , defined as p; = <v,>(x) / 20_,, where the perpendicular

co’

~..velocity squared is .averaged over the equilibrium distribution function

considered:

(vf_)(x) = fdvvi f'g))(x,v).

Note that for a Maxwellian, <vi>(x) = ic(x). In order to illustrate this, we
have compared the results obtained with a bi-Maxwellian, that is with two
alpha species, and with a single Maxwellian. For the bi-Maxwellian, we
have taken: Ty; = 0.4 MeV, Tg2 = 1.2 MeV and ngj/ne = ngo/ne = 0.5%;
and for the single Maxwellian: Ty = 0.8 MeV and ny/ne = 1%. These values
have been chosen such that the total alpha density-and the effective value
of pi are the same. The results obtained with SEMAL show that both alpha
- power absorption profiles are very similar, as well as the total absorbed -
power. This shows that we can approximate any distribution function
using a Maxwellian with Vi X = <vi>(x). In particular, the alphas are
expected to have a slowing-down distribution function of the form [10]:
s(:l)w = > 3 31 3 Ytvo - V),
4n ln(l + Gﬁ) ) vV +v,

C

1/3 /Te\1/2
with ve = (3 ety 112 (Te

mgImny mMe

and where y(vg - v) is the step-function and vp=1.3-107m/s is the birth

velocity of the alphas. Using the standard parameters and this slowing-
2

down distribution function, we obtain <v >glow = 3.8:1013m2/s2, which

corresponds to a Maxwellian with Ty = 0.8 MeV. We see that this



equivalent Maxwellian temperature is much smaller than the 3.5MeV of
" ‘the birth temperature. This has also been-found by Koch[10]. He has
compared the imaginary part of Kyxx, the first term of the dielectric
tensor, obtained with a Maxwellian and the slowing-down distribution
function. In Fig.8, we show the equivalent Maxwellian temperature
defined by T, = ma<vi>sloW/2 versus Te. We see that the "effective"
temperature of the alphas varies between 0.3 and 1.4 MeV for Te between
0.01 and 100 keV.

The effect of k, on the power absorbed by the different species is
shown on Fig. 9 for the standard case (Ty=3.5MeV, nyg/ne=1%, D-T). We
see that Py/Piot varies only between 20 and 40%, for k, not too small, but:
the distribution of the power between electrons, deuterium and tritium
changes much more. This is the same with Ty inhomogeneous. -Note-thate
for large k;, electron absorption is important. For small k,, Pp is smaller .
than Py, at the second harmonic, as mentioned in [2]. For k;>2m-1
(kzRp>6), the main -effect of k; is to determine the amount of alpha powes.

absorption near the edge at the highest harmonic.

The concentration ng/ne is, of course, the main parameter which
determines the degradation of heating due to alphas particles. This is
clearly seen in Fig. 10. For a concentration higher than 2%, more than
50% of the power is absorbed by the alphas for the standard case
considered. This dramatic effect is mainly due to the enhancement of
alpha power absorption at the third harmonic near the edge such that
most of the power is absorbed before it reaches the center. Once again, it
is not only due to a higher absorption at the second harmonic of alphas

compared with the one at the second harmonic of deuterium. As an



example, for ny/ne=6%, Po/Ptot=75% at the third harmonic, but only
+-15.5% at the second.-Moreover, note that in the-outer.60cm, already 72%
and 5.5% is absorbed by the alphas at the ‘third and second harmonic
respectively, that is 77.5% of the total power. - _—

4. SUMMARY AND CONCLUSIONS

We have developed a code SEMAL, which solves the linearized
Vlasov-Maxwell equations in a 1-D slab inhomogeneous plasma, without
any approximation as to the size of the Larmor radii compared with the
wavelengths. Furthermore, it is not limited to the second harmonic of the
cyclotron frequency. In all the cases considered we have summed-the
contributions of the harmonic numbers n=-20 through n=+20, but. the -
- code is not limited to these values. We -have also derived a formula.for.the. -
local power absorption. This formula is positive-definite and is also valid
to all orders in the Larmor radii and for arbitrary inhomogeneous profiles.
‘Our model assumes Maxwellian equilibrium distribution functions, ky=Q.inw.-
the dielectric response of the plasma, and a slowly varying magnetic field.
It leads to solving a system of one first-order and two second-order
integro-differential equations for Ex and Ey, E, respectively. The model is
non-local in the sense that, due to the integral part of the equations,

fields of the whole plasma contribute to the field at one point.

This non-local model is therefore well appropriate for studying the
effects of fusion alpha particles on ICRF heating as they have very large
Larmor radii. Nevertheless, we have not considered the .1/v3 dependence
of the alpha distribution function in order to be able to invert the Fourier

2
transform of the equations. However, we have shown that the effective p o



is one of the main parameters which influences the power absorbed by

- the -particles. Therefore, -the approximation .of..the slowing-down

distribution function by a Maxwellian having the same average
perpendicular velocity, <vi>, should reproduce the-main effect on ICRF
heating. We have shown that this equivalent Maxwellian temperature;
Ta=ma<v_2L>/2, varies between 0.3 and 1.4MeV for a wide range of
different slowing-down distribution functions. This was also found by
comparing the dielectric tensor obtained with a slowing-down and a

Maxwellian distribution function [9].

We have shown in subsection III.1 that the power absorbed by alphas
‘at some harmonic is ‘much less important, compared with the power.
absorbed by deuterium at the same harmonic, than what one would expect.
~from the local- model, for kjpg>1. This explains why the local -madel.
considerably overestimates the alpha power absorption. Even for .a small .
alpha concentration (ny/ne<1%) the difference is significant because,:
with-the local model, the wave cannot-reach the cyclotron -resonance..ate.

the center as it is completely damped by the alphas before.

Another important feature which has to be taken into account is
higher-harmonic heating. Indeed, even if the scenario considered is
tuned to the second harmonic of wep;-the frequency at the edge of the
plasma will be close to the next harmonic. As the alphas' cyclotron
resonance layer is very broad, they will absorb a lot of energy near the
edge at this higher harmonic. Note that this effect will be even more
important in larger devices or for heating scenarii at higher frequencies,

as has be seen in Sec.lll.1. We have also shown that for an alpha



concentration larger than 2%, for the standard scenario considered, most

- ~of the pewer was-absorbed by the alphas near the.edge. . . .

We have also found, by varying T, as well as-the profile of T,, that the
absorbed power is enhanced if kpq is of the order of 1 for the second
harmonic. A simple study of the structure of P (x).shows that it is
proportional to a form factor which is maximum at k, p, = n/2. However,
this constraint cannot easily be avoided as the profile of T, will probably
be fixed by the experiment and transport conditions. Therefore one would
have to move the cyclotron resonance in a region such that k,py<n/4 or
even better k;py>3n/2, while still heating the bulk plasma. Nevertheless,
one may at least avoid that kjpg~n/2.near the .edge, if alpha power.

absorption occurs there.

This study indicates that an important parameter is the effective .

Larmor radius, which is directly related to the perpendicular velocity
2

squared, <v >, -averaged -over -the-equilibrium .distribution .function..
considered. Therefore, a Maxwellian distribution function with
2 2 2 _ _
VT, =<V >slow: where <v, >gsjow is averaged over the slowing-down
distribution function, should reproduce well the effect of alphas on ICRF

heating.

We have shown that Py /Piot is not very sensitive to the value of k, for
not too a small alpha concentration. Nevertheless, one can avoid the edge
alpha heating by lowering the value of k;, that is by narrowing the
cyclotron resonance layer. However, in JET, k; has a typical value between
5 and 10 m-1 (toroidal N=15-30) which enhances the alpha heating in the
outer part of the plasma.



The main parameter .is, of course, the alpha particle concentration.
We have seen that, eventhough the alphas-absorb much less power than
expected from local models, they have -a very strong influence for
Ng/ne>2%. This is mainly due-to the edge alpha heating at the third and
also at the second harmonics. However, the -density profile may be more
peaked than that of the other species, as they are created in the center.
This would then decrease the alpha concentration near the edge and

greatly improve the heating scenario.

Finally, the key issues to reduce the effects of alpha particles on
second-harmonic heating are:

1) avoid k) pg = n/2 in the outer part of the plasma,

2) maximize the edge value of 1€, 1 at the closest harmonic n.
Note that the second constraint can be satisfied either by changing k, .or .
the frequency o, if k; is not too large. However the first constraint, which
~1s “the mnost important-one, -is -diffieult -te fulfill . for:.an. effective .alpha.
~temperature around -1MeV. Indeed, if we introduce the simplified
dispersion relation for the fast wave, k ~k=w/ca, To=0.8MeV, 50-50 D-T

plasma with ne=1020m-3, we obtain:

For second-harmonic heating and most of large tokamaks, ®w=2.50¢q in the
outer part of the plasma, which gives for Bg =4T, kipy =~ 1.4. This value is
close to n/2 for both the second and third harmonic and there are not

many parameters free to modify it. Therefore, we expect an efficient alpha



+heating near the edge and thus a strong degradation of deuterium heating,

e menoept-if-the-alpha-density-profile is more peaked.than that. of the other

species, such that the edge alpha concentration is smaller or equal to 1%.
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

FIGURE CAPTIONS
Full hot-plasma dispersion -relation for the standard
parameters with ng/ne=1% . and homogeneous alpha

temperature profile. At x=0, ©=2w.p and at x=1m, w=4wcT.

PL(x), for the standard parameters with ny/ne=0,0.1 and 1%.

a) Local model (ISMENE). b) Non-local model (SEMAL).

Real part:of Ex for the cases shown in Fig.2 with ng/ne=1%.
(dotted line).

PL(x) for 4 scenarii with ng/ne=1%: 0=20cH, 0=20c3He; :

W=20T, ®=20cp. 20% of H or 3He has been added in the first

two scenarii.a) ISMENE; b) . SEMAL.. : o I,

4th, 5th, 6th harmonics' and total power absorption density
P1o(x) of alpha particles for the case with hydrogen, Fig.4b.

T’Lc(xpl), divided by the total power i)L(Xpl), where xp) is the

left hand-side boundary of the plasma, for different central

values of Ty with k,=5m-! and ny/ne=1%. The alpha

temperature profile is constant (a) or bi-quadratic (b).



Figure 7: Form factor g(kxps) for harmonic numbers n=1,2,3,4 and 7.
For n=2, g expanded to second order in kxpgs is plotted (large
dots).

Figure 8: Equivalent Maxwellian temperature, for the slowing-down

distribution function considered, calculated such that

2
<VJ_> slow-

VTa =

Figure 9: The same plot as in Fig. 6, but for different values of k;, with
Tg=3.5MeV and ng/ne=1%. a) homogeneous and b)

inhomogeneous T, profile.

Figure 10: The same plot as in Fig. 6, but for different values of ny/ne,..
with Ty=3.5MeV and ‘k,=5m-1. Only the case with-an
inhomogeneous T, profile is: shown, as the results are.very

similar for the homogeneous case. - i
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