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The TERPSICHORE three dimensional linear ideal magnetohydrodynamic
stability code has been extended to the full MHD equations. The new code
is used to calculate the physical growth rates of non-local low-n modes for | = 2
torsatron configurations. A comprehensive investigation of the relation between
the Mercier modes and the low-n modes has been performed. The unstable lo-
calized low-n modes are found to be correlated with the Mercier criterion. Finite
growth rates of the low-n modes correspond to finite values of the Mercier crite-
rion parameter. Near the Mercier marginal stability boundary, the low-n modes
tend to be weakly unstable with very small growth rates. However, the stabil-
ity of global-type low-n modes is found to be decorrelated from that of Mercier
modes. The low-n modes with global radial structures can be more stable or
more unstable than Mercier modes.



I. INTRODUCTION

With the resurgence of interest in stellarator confinement systems, extensive the-
oretical work has been done on ideal magnetohydrodynamic (MHD) stability of
three dimensional (3D) stellarator plasmas!~3. One of the main focuses of the work
is to investigate the relation between low-n modes and Mercier modes?~%, where n
is the toroidal mode number. These ideal MHD modes impose a stability limit on
the plasma beta value, where beta is the ratio between the plasma energy and the
magnetic field energy. It is natural to ask which type of the mode gives a more
stringent stability limit.

Mercier modes are localized to any magnetic rational surface within the plasma.
Their stability can be determined by the Mercier criterion® for a given magnetic
surface. It is also known that low-n ideal MHED modes are often fairly localized
around the rational surfaces in stellarators. One may ask whether low-n modes
are unstable when the Mercier criterion indicates instability, or vice versa. For
example, when the ¢ = 0.5 magnetic surface is unstable to Mercier modes, is the
(n,m) = (1,2) mode unstable, too ? Here ¢ is the rotational transform of the
magnetic field line and n/m is the toroidal /poloidal mode number.

In earlier work, Gruber et al.? and Merkel et al.5 compared unstable regions and
beta limits for low-n modes and Mercier modes for helically symmetric equilib-
ria, using their helically symmetric version of the ERATO stability codel®, namely
HERA!. It was found that when low-n modes were unstable, the Mercier modes
were also unstable at the corresponding magnetic rational surfaces. Sugama et al.®
studied the nature of Mercier modes and low-n modes more precisely, but for a one
dimensional model. They found that the growth rate of low-n modes approached
the analytic growth rate of Suydam modes (or Mercier modes) as the mode num-
ber increases, with the mode helicity fixed. Tt was also found that the growth rate
curves of both Mercier modes and low-n modes as functions of the plasma beta were
very flat near the critical beta value. More recently, Dominguez et al.” extended
these comparisons to 3D [ = 2 torsatron equilibria. They found that the low-n
modes corresponding to resonant surfaces unstable to Mercier modes were also un-
stable in most cases studied and that the Mercier criterion imposes a slightly lower
critical beta. In their calculations, the Mercier criterion was evaluated in fully
- 3D equilibria, but the low-n modes were computed using the stellarator expansion
method??-13, which reduces the problem to two dimension by averaging over the
fast helical variations of the magnetic fields. Nakamura et al. (8] applied a more
consistent method using the same stellarator expansion code, STEP, to calculate
both the equilibrium and the stability of low-n modes and Mercier modes. A more
definite correlation between the low-n modes and Mercier modes was found. The
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low-n modes were predicted to be unstable whenever Dy < —0.2, where Dy is the
Mercier parameter, whose shear-squared term is normalized as 1 /4.

Most of the previous work was not fully three dimensional. The stellarator expan-
sion method was used in studying the low-n modes, which is only valid in the limit
of large aspect ratio, large number of field periods and planar magnetic axis. It is
of interest to see whether a fully 3D calculation could modify some of the results.
Recently, efficient 3D ideal MHD stability codes for non-local modes have become
available!s-12. A few examples of fully 3D studies of low-n modes and Mercier modes
have been given'®~?°. However, a comprehensive study of the relation between low-n
modes and Mercier modes is still lacking for fully 3D calculations.

In this work, we extend previous work to a fully 3D calculation and systemat-
ically compare the MHD stability of low-n modes with those of Mercier modes
for a sequence of ! = 2 equilibria. The equilibria used were calculated with the
VMEC 3D code?*-22. The Mercier criterion is evaluated in Boozer coordinates®.
To facilitate our calculation of low-n modes, we extend the original version of the
TERPSICHORE 3D ideal MHD stability codel®7-18 to the full MHD equations. In
the previous versions of the TERPSICHORE code, the incompressibility condition
V . ¢ = 0 was imposed, and a model kinetic energy term was adopted. Another
3D ideal MHD code'®!?, namely CAS3D, also used the same model. This model
reduces the MHD equations to only two components of the perturbed plasma dis-
placement vector. The stability marginal points are unchanged, but the physical
growth rates cannot be calculated. This limitation is eliminated in our new ver-
sion of the TERPSICHORE code. Because we concentrate on the relation between
the Mercier modes and internal low-n modes in this paper, we exclude free bound-
ary modes from the analysis, which can impose more restrictive stability limits for
global-type modes?®?4.

The paper is organized as follows. In section II, we sketch the extension of the
original version of TERPSICHORE code to the full MHD model and give benchmark
results. In section I1I, we present applications of our code to fully 3D geometry and
present the numerical methods. Section IV is devoted to the studies of low-n modes
and Mercier modes. Finally in section V we give conclusions.

II. THE TERPSICHORE LINEARIZED FULLY IDEAL MHD CODE

A. Description of the code

The new TERPSICHORE code solves the linearized ideal MHD equations in
variational form for 3D stellarator configurations. The linearized MHD equation



can be expressed in the variational form:
W, + 6W, — WEW, =0 (1)

where §W, is the perturbed potential energy of the plasma, éW, is the perturbed
magnetic energy in the vacuum region that surrounds the plasma, —w?éWj, is the
perturbed kinetic energy of the plasma, and w is the frequency of the perturbation.
These terms can be written as

sW,=2 [ [ [#a]c*+Tp| V€1 =D 1€ sT] 2)
6Wv=%///d3wlv’xA|2 3)
swi=3 [ [ [#aol€T (9)

with the vector

XV
C=Vx(§xB)+‘—:-—%;Tj(£-Vs) (5)

and the coefficient

2(j x Vs)-(B-V)Vs

D= [Vs ! (6)

where p is the plasma mass density, £ is the perturbed plasma displacement vector,
T is the adiabatic index, p is the plasma pressure, s is the magnetic flux variable, B
is the equilibrium magnetic field, j is the equilibrium plasma current density and A
is the potential of the perturbed magnetic field in the vacuum region. The equilib-
rium is obtained with the VMEC 3D code and is mapped to Boozer coordinates, for
which the magnetic field lines are straight and the Jacobian of the coordinate trans-
formation /g is proportional to 1 /B2. The displacement vector £ is decomposed in
the following way:

B x Vs
£=vaevox Vo+n iV um ()
where ¢° = £+ Vs is the normal component, n and p are two components in the
magnetic flux surfaces, and 6/¢ is the poloidal/toroidal angle variable. These three

components are expanded in a truncated Fourier series

£(s,0,¢)= E &i(s)sin(mif — mi¢ + A) (8)
1

n(s,8,8) =2 m(s)cos(mib — ¢ + A) (9)
]

s, 0,8)= 2 (o) oot =i + ) (10)

4



where subscript ! denotes the Ith Fourier component and A is an arbitrary phase
factor. The boundary conditions at the magnetic axis s = 0 are regularized by
the transformation &(s) — s%&(s). Piecewise linear finite elements are used to
represent £(s), and piecewise constant elements are used to represent 7;(s) and
pi(s). After the integration in 6, ¢ and s is carried out, the energy principle reduces
to the matrix equation

Ax = w?Bx (11)

where A is the potential energy matrix, B is the kinetic energy matrix, x is the
eigenfunction, and w? is the eigenvalue. In the eigenvalue problem, negative eigen-
values correspond to unstable modes. The matrices A and B have block diagonal
structures. This matrix equation is solved with an iterative scheme'®.

B. Benchmark of the code

We first compare the stability results of our code with those of other known results
for 2D analytic Solov’ev equilibria?®. This tokamak equilibrium is described by the
poloidal flux function

¥(R,2) =

lI11 [R2z2 (R2 — Rg)2 (12)

ZR| B T 4

where ¥, is the total poloidal flux within the plasma, R and Z are the cylindrical
coodinates, R, is the radius of the magnetic axis, a is a measure of the minor
radius and E is the elongation of the plasma flux surfaces. The equilibrium is
fully defined by three parameters: the aspect ratio Ro/a, elongation E and the
safety factor on the axis ¢(0). Here we consider the equilibria with Ro/a = 3.
Table I lists the normalized eigenvalues v/w obtained with our code and two other
codes, ERATO'® and MARS?, for three Solov’ev equilibria, where 7% = —w? and
the normalizing Alfven frequency wy is defined as wgq = Va/Ro, with V4 being
the Alfven phase velocity, and n is the toroidal mode number. Our results were
obtained by extrapolating to zero radial mesh size and by using a sufficient number
of Fourier modes. Fixed boundary conditions were used. We note that our results
agree very well with those of the ERATO and MARS codes.

We now consider a straight I = 2, M = 5 stellarator with helical aspect ratio Ay =
onry /L = 1.51'%%7 where ry is the mean radius of the plasma boundary and L is the
length of the equilibrium period. This equilibrium is nontrival for benchmarking
of our code since there is mode coupling between different toroidal mode numbers
in Boozer coordinates, just as in fully 3D equilibria. The stability results of an
n = 1, m = 2 mode have already been computed®” with the BETA nonlinear
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3D code, the HERA code and the STEP code. Figure 1 shows the normalized
eigenvalue —w?/w} as a function of the rotational transform on the magnetic axis
1o from various codes for a case with volume-averaged beta 8 = 3%. We observe
that our results agree relatively well with the others. The small discrepancy in
the eigenvalues may be attributed to the different ways of specifying the equilibria
used in these computations. In our calculation, the equilibria were computed with
the VMEC code with a pressure profile p(s) = p(0)(1 — s) and a density profile
p(s) = p(0)y/T =, and the adiabatic index was taken to be I' = 5/3. The radial
flux variable s was chosen proportional to the toroidal flux ®. The radial resolution
and the number of Fourier modes were sufficient to obtain converged eigenvalues.

III. APPLICATION TO FULLY 3D STELLARATOR EQUILIBRIA

A. Equilibrium

We consider | = 2 torsatron configurations with zero net toroidal current. Each
equilibrium is specified by the number of field periods N,, the plasma boundary, the
pressure profile and the volume-averaged beta . We define our plasma boundary
in cylindrical coodinates (R, Z) with a truncated Fourier series

R(97 ¢) = Zm,nR'm,n cos(mG - an¢) (13)
Z(0,¢) = Cmnlmmn sin(mf — nN,¢) (14)

We note that the zero beta equilibrium is solely determined by the plasma boundary
for fixed N,. The equilibrium can be varied by changing these boundary Fourier co-
efficients. Physically, the coefficient Roo is a measure of the radius of the magnetic
axis, R, o is a measure of the plasma mean radius, R;; and Z;; control the strength
of the main helical field, and R,; and Z, can control the position of the magnetic
axis. We define our equilibrium sequence, using the following set of Fourier coef-
ficients: Rog, R1a = —Z13 and Rgy = —Z,,, with Ry = 0.22 and Z; = 0.25
being fixed. Other coefficients are chosen to be zero. Table II lists the set of Fourier
coeficients for the equilibria to be studied. The pressure profile is prescribed to
be p(s) = p(0)(1 — 3s? + 2s%) with vanishing gradient at s = 0 and s = 1, except
when otherwise mentioned. The radial variable is chosen to be proportional to the
toroidal flux.

The VMEC code was used to obtain every equilibrium used in our calculations.
We chose a set of Fourier modes with 0 < m < 5 and —3N, < n < 3N, and used
up to 96 radial grid points. We found this resolution to be sufficient to obtain
converged equilibria.



B. The tunable integration method

Tt is well known that the piecewise finite element method leads to quadratic con-
vergence for the eigenvalue of a second order differential equation. Indeed, our code
observes this known scaling. The original version of the TERPSICHORE code used
the so-called finite hybrid element method (FHM) [10], where the radial integration
was carried out with a midpoint rule. FHM is very well tailored to ideal MHD
stability problems and has fast radial convergence. But this method destabilizes
the stable shear Alfven continuum, whose eigenvalues often mask the small physical
eigenvalues. This destabilization can be solved in a cumbersome way by adding a
large number of grid points or by accumulating grid points around each of the reso-
nant surfaces present. We solve this problem with the Tunable Integration Method
(TIM)?, which has been implemented and tested in our code. TIM only differs
from FHM in the way the numerical radial integration is performed. It uses the
following integration scheme:

[ H6)s = (s = 30 [0~ L) + S0 + s} 09)
where I(s) represents the integrand in the energy principle, the subscript s; denotes
the value of s at the ith grid, and « is a parameter to be varied from 0 to 1.
Note that a = 0 (midpoint rule) corresponds to the FHM, a = 1/3 (Simpson’s
rule) corresponds to the strict finite element method and o = 1 (trapezoidal rule)
corresponds to the finite difference method. The basic ideal of TIM is to control
the total discretization error by varying the numerical integration error through the
continuous parameter a.

Figure 2 shows the eigenvalue w?/w? versus the square of the radial mesh size
for different values of the parameter «, for equilibrium A with B = 1.58%. The
calculation was done with uniform radial grid points. It is clear that convergence is
quadratic for every value of the parameter a. Note that the eigenvalue with o = 0
(i.e. FHM) converges from below (the unstable side), and the one with & = 1/3
converges from above (stable side). A smaller value of a = 0.1 produces the best
convergence from above. It should be noted that all the eigenvalues converge to
the same value. We now show an example of destabilization of the continuum
modes by the FHM (corresponding to « = 0) . We consider the equilibrium A with
8 = 1.02%, for which the n=3 mode is weakly unstable. Figure 3. shows (a) the first
most unstable mode and (b)the second most unstable mode. Since the mode was
localized around the ¢ = 3/4 rational surface, half of the total 48 grid points were
accumulated around that surface. We see that the first mode has a singular structure
in the eigenfunction around the rational surface ¢ = 1, signifying a continuum mode
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destabilized by the FHM. The second mode has a regular mode structure peaked
at the . = 3/4 surface and is physical, with its eigenvalue —w?/w} = 1.12 x 10-4
masked by the first unphysical eigenvalue —w?/w} = 3.05 x 107*. However, when
TIM is applied with a = 0.05, the most unstable mode is found to be physically the
same as the second most unstable mode found with the FHM, but with an eigenvalue
—w?Jw? = 7.63x107°. This means that the numerically unstable continuum mode is
restabilized by our new method. We conclude that the Tunable Integration Method
is useful for obtaining fast convergence without numerical destabilization of the
singular continuum modes.

C. Convergence in the number of Fourier modes

Having considered the convergence in the radial direction, we now discuss the
convergence in the poloidal and the toroidal domains. Since Fourier decomposition
is used in the angle variables, we discuss the convergence in the number of Fourier
modes. Before going into details, we first discuss the mode selection. In 3D ge-
ometry, the toroidal mode number is no longer a good “quantum number”, unlike
in the case of axisymmetric tokamak equilibrium. Therefore, modes with different
toroidal numbers n are coupled to each other. Nonetheless, the stellarator geometry
still has some degree of symmetry, i.e. going around in the toroidal direction, the
configuration repeats itself N, times. As a consequence, the modes with toroidal
number n are only coupled to modes with n, n £+ Np, n £ 2N, and n + 3N, etc.
There are a total of N,/2 families ((V, — 1)/2 families) of modes for configurations
with even (odd) number of field periods, excluding the modes that describe the
equilibrium state. Each family has to be computed in order to have a complete
picture of the MHD stability behavior. Furthermore, there is usually more than
one unstable eigenmode with the same or different dominating Fourier component
(n,m) within each family. For our purpose, we will only consider four families of
the mode with 1 < n < 4 as the dominating toroidal number. Once the main n is
chosen, there is still a question of mode selection, i.e. how to select the poloidal
modes for each n. We have found that, for I = 2 torsatrons, the dominating poloidal
harmonic of an unstable eigenmode is approximately m = 2k for the toroidal side-
bands A + kN, where k is an integer and (n,m) is the main component. Thus,
we distribute poloidal modes evenly around these dominating 7 =+ 2k. This way of
mode selection was found to be nearly optimal.

We now discuss the behavior of the convergence in the number of Fourier modes.
We consider the n=3 family for our standard equilibrium S. Figure 4(a) shows the
rotational transform profile «(s) at 8 = 2.36%. Since the rational surface ¢ = 3/4 is
in the magnetic hill region for the corresponding vacuum state, we expect then =3



family of the eigenmodes to be unstable, with (3,4) as the dominating Fourier
component. Indeed, it was found to be unstable, with its eigenmode structure
localized around the ¢ = 3/4 rational surface as shown in Fig. 4(b). Figure 5(a)
shows the eigenvalue —w?/w% as a function of 1/N, where N is the number of
Fourier modes used. Recall that the convergence depends on ways of selecting
Fourier modes for a given N. Our selection for N = 24 is =1 < m < 10 for
n=3,05m§5forn=—9and45mSQforn: 15. From 24 modes to
36 modes, we increased N by adding 2 modes to each n, and from 36 modes to 54
modes by adding 3 modes to each of the toroidal sidebands n £ 2N,. The result
was obtained with 48 uniform radial grid points and with the integration parameter
« = 0 for two different values of the adiabatic index I'. We observe in Fig. 5(a)
that the convergence with T' = 5/3 is slower than with I' = 0. In particular, the
eigenmode is stable for 24 modes. A more dramatic example is shown in Fig. 5(b)
for equilibrium C. The unstable eigenmode is very global with strong poloidal mode
coupling, as shown in Fig. 6(a), in contrast with the less global mode of Fig. 4(b).
The corresponding rotational transform profile of the equilibrium is shown in Fig.
6(b). For I' = 0, the eigenvalue is nearly converged, but for I’ = 5/3 there is no sign
of convergence up to 66 modes. The reasons for the different convergence behavior
are twofold. First, the mode spectrum is broadened by the coupling of shear Alfven
waves and sound waves due to non-zero I'. Second, the V. { term in the energy
principle cannot be made as small as it should be owing to the insufficient number
of modes resulting from mode coupling. Stated more explicitly, the compression
term cannot be made zero for a finite number of Fourier modes. As a consequence,
unstable modes may be stabilized numerically, as shown in Fig. 5(a) and (b). In
order to show the size of the error in the compression term, we have calculated
the correction of the eigenvalue due to the compression term by dropping the u
component in the kinetic energy term. The V. ¢ should then be zero since now
only this term contains the component y. Numerically this term is not exactly
zero for a finite number of Fourier modes. Figure 7 shows the correction of the
eigenvalue as a function of 1/N for the equilibrium of Fig. 5 with I' = 5/3. We
see that the correction decreases by two orders of magnitude when N increases
from 24 to 60. Therefore, it is extremely important to have a sufficient number
of Fourier modes in order to obtain convergence in 3D MHD stability calculations
for stellarator plasmas. For this reason, we choose I' = 0 for all our subsequent
calculations to save computational time, since then fewer Fourier modes are needed
for convergence. We note the growth rates obtained with I' = 0 are somewhat larger
than with I" = 5/3.



D. The Mercier criterion in Boozer coodinates

The Mercier criterion is a sufficient condition for modes localized around a ratio-
nal flux surface. We use a convenient form derived by Bauer et al.?®. In Boozer
coodinates, this form of the criterion reduces to

Dy >0 (16)

for stability, where

| (W'@')ZDM=[‘P;‘I"—<‘{§S'I2B )| - viB )
1 (/di-B)
e (a7

where the flux average is (- - -) = [ [(- - -)dfd¢/4x?, ¥ and & is the poloidal and
toroidal magnetic flux function respectively, V' is the volume of the plasma enclosed
by the flux surface labelled with s, and prime denotes the derivative of a flux surface
quantity with respect to s. Note that we have normalized the Mercier parameter
Dar in such a way that the shear-squared term is 1/4. We have also imposed
the condition of zero net toroidal current and chosen the radial variable s to be
proportional to ®. Finally, the parallel current term can be evaluated through the
quasi-neutrality condition and the MHD equilibrium force balance equation:

B.V(y/5i-B) = —p(B x Vs)- Vg (18)

This form of the Mercier criterion has been implemented in the our code and bench-

X [_p’V”'l‘pﬂ('E'g')'i‘

marked against a form derived from the ballooning mode equation®.

IV. IDEAL MHD STABILITY OF LOW-N MODES AND MERCIER
MODES

A. Numerical results

In this section, we compare the stability of low-n modes with that of Mercier
modes. The Mercier stability is determined at each flux surface according to Eq.
(17). The stability of low-n modes is determined by our new TERPSICHORE
3D stability code. Note that in this section, we have chosen I' = 0 to calculate
the eigenvalue. Consequently, the values of w?/w? are somewhat larger than the
magnitudes that would result from the conventional definition with I' = 5/3. In the
computation of low-n modes, small growth rates of w?/w} ~ 107* were obtained
by extrapolating to zero grid size. Up to 96 radial grid points were used. For
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the poloidal and toroidal resolution, we chose 36 Fourier modes, of which there are
sixteen poloidal modes for the main n, and ten for each of the two toroidal sidebands
n= N,. We found this mode selection to be sufficient for the accurate determination
of the eigenvalues (to within 10% of the converged values) for our purpose. The
results were spot-checked by using 60 Fourier modes.

Figure 8 shows the Mercier stability boundary (dashed line) and unstable range
of low-n modes in (3, s) space for our standard equilibrium S. Inside the dashed
line, the Mercier criterion indicates instability. The unstable ranges of 8 for low-
n modes are indicated by solid lines. The positions in s of the solid lines and the
dotted lines indicate the corresponding rational magnetic surfaces. We approximate
the marginal points of low-n modes by the condition —w?/w% = 10~%. This may
be justified because the numerical resolution is limited and because unstable MHD
modes with smaller growth rates can easily be stabilized by various kinetic effects
neglected in the ideal MHD model. We see in Fig. 8 that when the low-n modes
corresponding to the n = 3 family and n = 4 family are unstable, the Mercier
modes are also unstable at the corresponding rational surfaces ¢ = 3/4 and ¢« = 4/5.
However, there are gaps between the stability limits of the low-n modes and the
Mercier modes. For 0.4% < 8 < 0.8%, the Mercier modes are unstable while the
low-n modes are stable (or marginally unstable with —w?/w?% < 1074).

We now look at the stability results of equilibrium A. The equilibrium has a
smaller aspect ratio compared with the standard equilibrium S and is obtained by
changing the plasma boundary Fourier coefficient Ry from 2.1 to 1.8. Figure 9
shows a pattern similar to that of Fig. 8. As Ry is further decreased to 1.5, the
resulting equilibrium B has an even smaller Mercier unstable region, as shown in
Fig. 10, while the stability of low-n modes becomes somewhat complex. First, the
n = 2 family is unstable for 8 > 2.0% as usual, and there still exists a gap between
the marginal point of the n = 2 mode and that of the Mercier mode. Second, the
n = 3 family corresponding to the ¢ = 3/4 surface is only unstable with a very
small range of 2.4% < 8 < 2.8% (i.e. the n = 3 eigenmode with the dominating
Fourier component (3,4) has a second stable region). Third, the n = 3 mode
becomes unstable again for 8 > 2.86%, but with a different dominating Fourier
component (3,5) corresponding to the ¢ = 3/5 surface. Notice that near g = 2.90%
the (3,5) mode is unstable, but the corresponding ¢ = 3/5 surface is Mercier stable,
i.e. the mode is more unstable than the Mercier mode. This discrepancy may be
explained by the fact that the main (3,5) component has a sizable sideband (3,4),
as shown in Fig. 11. Presumably, the stability of this multi-helicity-type eigenmode
cannot be adequately described by the Mercier criterion, for which the eigenmode
is constrained to be localized around a single resonance surface.
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Figure 12 shows the results for equilibrium C, whose magnetic axis is shifted
outwards compared with the standard equilibrium S. We see that the . = 3/4
and ¢ = 4/5 rational surfaces are Mercier stable, but the n = 3 family is unstable
_ with a dominating (3,4) component, and so is the n = 4 family with (4,5) as the
main Fourier component. The n = 3 and n = 4 modes are both fairly global, as
shown in Fig. 6(a) for the n = 3 mode. From Figs. 6(a) and (b), we note that
these global mode structures concentrate in the region of tokamak-like shear that
is induced at finite § in torsatrons with zero net toroidal current. Rewoldt and
Johnson?? identified this type of global mode and its implications on beta limits
for the Advanced Toroidal Facility (ATF)? using the stellarator expansion method.
The fact that these modes have strong poloidal mode coupling with global mode
structures explains the discrepancies between their stability and that of Mercier
modes. In contrast, Mercier modes are typically very localized with very weak
poloidal mode coupling, as shown in Fig. 3(b).

Figure 13 shows results for equilibrium D with small shear. The n = 2 family
is stable despite the corresponding ¢ = 2/3 surface being Mercier unstable. The
plasma remains stable to both the low-n modes and Mercier modes for 8 > 2.3%
up to the equilibrium limit. For equilibrium E with 18 field periods, the low-n mode
n = 1 family is again unstable as it is for the Mercier mode at the ¢ = 1 surface,
shown in Fig. 14. Likewise the n = 2 family is unstable. There is still a gap between
the lJow-n marginal stability point and the Mercier limit. We have also studied the
MHD stability for equilibrium F with 10 field periods. Both the low-n modes and
the Mercier modes were found to be stable up to the corresponding equilibrium
limit.

We now study the effects of pressure profiles on the stability of low-n modes and
Mercier modes. It is generally agreed that the pressure profile has significant effects.
Shown in Fig. 15 are results for the same equilibrium as that of Fig. 12, but with
a more peaked profile of p(s) = p(0)(1 — s)>. We see that Mercier modes have
only a much smaller unstable region, as compared with that of Fig. 12, and the
n = 4 mode is unstable at higher beta 8 > 2.8%. The eigenmode is very global
and the ¢ = 4/5 resonant surface of its main Fourier component is located far away
from the small Mercier unstable region. Next, we show the results for the standard
ATF equilibrium. For our standard pressure profile, there is a narrow Mercier
unstable region shown in Fig. 16(a). The n = 2 and n = 3 modes corresponding
to the unstable Mercier rational surfaces were found to be stable. Again a global
n = 2 mode is unstable with its main resonant ¢ = 2/4 iota surface outside the
Mercier unstable region. In contrast, Fig. 16(b) shows that Mercier modes are
stabilized for peaked pressure profile with 8 < 4.3%, because the pressure gradient

12



is concentrated in the region where a magnetic well exists in the vacuum state. The
global-type n = 1 mode was found to be most unstable. It should be noted that for
this particular case the n = 1 mode imposes a lower stability beta limit than that
of Mercier modes. This feature was previously found in a free boundary calculation
for a similar ATF equilibrium?.

In summary, two kinds of low-n modes are found. The first kind is very local-
ized around some rational surface with a single Fourier mode strongly dominating.
‘When a low-n mode of this kind is found to be unstable, the Mercier mode is
also unstable at the corresponding rational surface. The critical beta given by the
Mercier criterion is always lower than that of a localized low-n mode. The second
kind of low-n mode has very global mode structures with multiple helicity. The
Mercier criterion cannot adequately describe these types of modes.

B. Discussion

We have shown that gaps exist between the marginal stability boundaries of
Mercier modes and those of low-n modes. Recall that we have defined marginal
stability of low-n modes to correspond to the point that —w?/w} = 107%. It is of
course possible that there exist marginally unstable low-n modes inside these gaps
with very small growth rates, as shown by Sugama et al. [6], for a one dimensional
model. Our fully 3D results indicate the same feature. Figure 17 shows the growth
rate of a n = 3 mode as a function of volume-averaged plasma beta f for the equilib-
rium A. The eigenvalue of a global-type n = 2 mode for the ATF equilibrium is also
shown for comparison. We see that the growth rate for the localized n = 3 mode
is very flat near the critical beta value, whereas the growth rate for the global-type
n = 2 mode is almost a linear function of 3. The same tendency was also observed
for other equilibria considered in this paper. Thus, it is reasonable to assert that
weakly unstable low-n modes exist near the Mercier marginal stability boundary.

Since the growth rates of Mercier-type low-n modes are largely determined by the
values of the Mercier parameter Dy < 0, we plot in Fig. 18 the growth rates of
an n = 3 mode as a function of —D)s evaluated at the rational surface ¢« = 3/4,
for the equilibrium A. Again we see that the growth rate is very small and flat
near the Mercier marginal limit —Djys = 0. The eigenvalue is 10~* for —Djs = 0.3.
Kulsrud®® derived an analytic expression for the growth rates of Mercier modes.
The growth rate varies as —w?/w? o exp (—c/v/=Djy) for small —Dyy, where ¢ is a
constant. From this expression, it is evident that the growth rates of low-n modes
can be extremely small near the Mercier stability limits —Dys = 0. Our fully 3D
results also indicate this tendency.

It is now clear that finite growth rates of localized low-n modes correspond to
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finite values of the Mercier parameter —D)s at the unstable rational surfaces. In
the cases shown in Figs. 13 and 16, where the Mercier modes were unstable but the
corresponding low-n modes were either stable or weakly unstable with —w? W <
10-4, the values of —Dj are found to be relatively small. For the ¢ = 2/3 surface
in Fig. 13, the maximun is —Dp = 0.14, and in Fig. 16(a) it is —Dp = 0.18 for
the ¢ = 2/3 surface and —Djs = 0.33 for the ¢ = 3/5 surface. In order to quantify
the magnitude of — Dy that is required to yield finite growth rates, we plot in Fig.
19 the values of —D) at which the growth rates are —w?/w} = 107* for the low-n
modes studied, as a function of the main poloidal mode number. We see that the
value of —Djs varies from 0.25 to 0.47. Therefore, if one can neglect marginally
unstable modes with very weak growth rates, the stability limit of localized low-n
modes is more accurately modelled with the condition —Djps = 0.35 rather than
—Djs = 0, at least for the torsatron configurations studied here. We note that
this full 3D result is similar to that found by Nakamura et al.® using the stellarator
expansion approximation.

V. SUMMARY AND CONCLUSIONS

We have extended the TERPSICHORE incompressible 3D MHD code to incorpo-
rate full ideal MHD model, in order to calculate physical growth rates. The Tunable
Integration Methode has been implemented and shown to stabilize the numerically
unstable continuum modes induced by the Finite Hybrid Method. The new code
has been benchmarked and used in the computations in this paper.

We have performed a comprehensive fully 3D investigation of ideal MHD stability
of Mercier modes and non-local low-n modes with fixed boundary conditions. The
stability of internal low-n modes were compared with those of Mercier modes for
[ = 2 torsatron configuations. ’

Our results show a definite correlation between the localized low-n modes and
the Mercier modes. When the localized low-n modes are found to be unstable, the
Mercier modes are also unstable at the corresponding rational magnetic surfaces.
On the other hand, when the Mercier criterion indicates instability at some rational
surfaces, the corresponding low-n modes can also be considered unstable. More
precisely, finite values of the Mercier criterion —Djps > 0.35 are correlated with
unstable low-n modes with finite growth rates —w?/w?% > 10~%. Near the Mercier
stability limits or —Dj; < 0.35, the unstable localized low-n modes tend to have
very small growth rates. These marginally unstable modes are likely to be stabilized
by various kinetic effects or the presence of magnetic islands neglected in the ideal

MHD model.
Another type of low-n mode also exists that is very global radially and displays
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strong poloidal mode coupling. These global modes tend to concentrate in the
region of tokamak-like magnetic shear induced by relatively high beta (8 > 2%).
Their stability cannot be described by the Mercier criterion, which applies only
to modes localized around a single rational surface. They may be more stable or
unstable than Mercier modes. For these internal global modes, a free boundary
analysis may yield more restrictive stability limits, as previously demonstrated for
the ATF device?®?4,

We conclude that the stability of both the Mercier mode and low-n modes must
be determined in order to have a complete MHD stability picture of a stellarator
device. The Mercier criterion can only indicate the stability of low-n modes localized
around a single resonant magnetic surface. Three dimensional non-local MHD codes
are indispensable tools for computing the stability of global-type low-n modes in
stellarator configurations.

ACKNOWLEDGEMENT

We are greatly indebted to S. P. Hirshman for providing us the 3-D VMEC equi-
librium code to perform part of this work. We are very grateful for many valuable
discussions with A. Bondeson. This work was supported by the Fonds National
Suisse pour la Recherche Scientifique, by Euratom and by the U. S. Department of
Energy.

15



REFERENCES

1. V. D. Shafranov, Nucl. Fusion 20 (1980) 1075.

2. J. L. Johnson, Comput. Phys. Rep. 4 (1986) 37.

3. B. A. Carreras, G. Grieger, J. H. Harris, J. L. Johnson, J. F. Lyon, O. Motojima,
F. Rau, H. Renner, J. A. Rome, K. Uo, M. Wakatani and H. Wobig, Nucl. Fusion
28 (1988) 1613.

4. R. Gruber, W. Kerner, P. Merkel, J. N. Niihrenberg, W. Schnexder, and F.
Troyon, Comput. Phys. Commun. 24 (1981) 389.

5. P. Merkel, J. N. Nithrenberg, R. Gruber and F. Troyon, Nucl. Fusion 23 (1983)
1061.

6. H. Sugama and M. Wakatani, J. Phys. Soc. Jpn. 58 (1989) 1128.

7. N. Dominguez, J. -N. Leboeuf, B. A. Carreras and V. E. Lynch, Nucl. Fusion
29 (1989) 2079. |

8. Y. Nakamura, K. Ichiguchi, M. Wakatani and J. L. Johnson, J. Phys. Soc. Jpn.
58 (1989) 3157.

9. C. Mercier, Nucl. Fusion, 1 (1960) 47.

10. R. Gruber, F. Troyon, D. Berger, L. C. Bernard, S. Rousset, R. Shreiber, W
Kerner, W. Schneider and K. V. Roberts, Comput. Phys. Commun. 21 (1981) 323.

11. R. Gruber, S. Semenzato, F. Troyon, T. Tsunematsu, W. Kerner, P. Merkel
and W. Schneider, Comput. Phys. Commun. 24 (1981) 363.

12. J. M. Greene and J. L. Johnson, Phys. Fluids 4 (1961) 875.

13. L. M. Kovrizhnykh and S. V. Shchepetov, S. V., Sov. J. Plasma Phys. 6 (1980)
533.

16



14. G. Anania and J. L. Johnson, Phys. Fluids 26 (1983) 3070.

15. D. V. Anderson, W. A. Cooper, U. Schwenn and R. Gruber, in Theory of
Fusion Plasmas, (Proc. Workshop, Bologna 1988) Editrice Compositori 93.

16. C. Schwab, in Theory of Fusion Plasmas, (Proc. Workshop, Bologna 1988)
Editrice Compositori 85.

17. U. Schwenn, D. V. Anderson, W. A. Cooper, R. Gruber and S. Merazzi, in
Controlled Fusion and Plasma Heating, (Proc. 17th Eur. Conf., Amsterdam, 1990)
Vol. 14B, Part II, European Physical Society (1990) 931.

18. W. A. Cooper, G. Y. Fu, R. Gruber, S. Merazzi, U. Schwenn and D. V. An-
derson, in Theory of Fusion Plasmas, (Proc. Workshop, Bologna 1990) Editrice
Compositori 655.

19. C. Schwab, in Theory of Fusion Plasmas, (Proc. Workshop, Bologna 1990)
Editrice Compositori 667.

20. W. A. Cooper, G. Y. Fu, R. Gruber, C. Schwab, U. Schwenn, S. Merazzi and
D. V. Anderson, Proc. 13th Int. Conf. on Plasma Physics and Contr. Nucl. Fusion
Research, Washington (1990) IAEA-CN-53/C-IV-20.

21. S. P. Hirshman and J. C. Whitson, Phys. Fluids 26 (1983) 3553.

22. S. P. Hirshman, W. I. Van Rij and P. Merkel, Comput. Phys. Commun. 43
(1986) 143.

23. A. H. Boogzer, Phys. Fluids 23 (1980) 904.

24. G. Rewoldt and J. L. Johnson, Nucl. Fusion, 24 (1984) 733.

25. L. S. Solov’ev, Zh. Tekh. Fiz. 53 (1967) 626, JETP 26 (1968) 400.

26. A. Bondeson, G. Vlad and H. Liitjens, in Controlled Fusion and Plasma Heat-

ing, (Proc. 17th Eur. Conf., Amsterdam, 1990) Vol. 14B, Part II, European Physical
Society (1990) 906.

17



27. F. Herrnegger, P. Merkel and J. L. Johnson, J. Comput. Phys. 66 (1986) 445.
28. A. Bondeson and G. Y. Fu, Comput. Phys. Commun., 66 (1991) 167.

29. F. Bauer, O. Betancourt and P. Garabedian, M agnetohydrodynamic
Equilibrium and Stability of Stellarators, Springer-Verlag, New York (1984).

30. J. F. Lyon, B. A. Carreras, K. K. Chipley, M. J. Cole, J. H. Harris, T. C.
Jernigan, R. L. Johnson, V. E. Lynch, B. E. Nelson, J. A. Rome, J. Sheflield and
P. B. Thompson, Fusion Technol. 10 (1986) 179. ‘

31. R. M. Kulsrud, Phys. Fluids 6 (1963) 904.

18



TABLE 1. Normalized growth rates y/w4 from the ERATO, MARS and TERPSI-

CHORE codes for Solov’ev equilibria

n 4(0) E ERATO MARS TERPSICHORE
2 0.3 2 1.26 1.26 1.25

2 0.7 2 0.284 0.284 0.284

3 0.75 1 0.0541 0.0533 0.0538

TABLE II. Plasma boundary Fourier coefficients and number of field periods for our

equilibrium sequence

Equilibrium | Ropo Ria Ra1 N,
S 2.1 —0.07 -0.01 12
A 1.8 -0.07 -0.01 12
B 1.5 -0.07 -0.01 12
C 2.1 —0.07 —-0.02 12
D 2.1 —0.06 —-0.02 12
FE 2.1 —0.07 —-0.02 18
F 2.1 -0.07 —-0.02 10
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FIGURE CAPTIONS

Figure 1. Growth ratesforann =1, m = 2 instability in a straight | =2, M =5
helical system obtained with the BETA (dashed line), HERA (broken line), STEP
(solid line) and TERPSICHORE (solid dots) codes as a function of the rotational

transform at the magnetic axis.

Figure 2. Eigenvalues of an n=3 unstable mode as a function of the radial mesh
size squared h? for three values of the integration parameter a, for the equilibrium
A at 8 = 1.58%.

Figure 3. The radial displacement functions &(s) of (a) the most unstable n=3 mode
and (b) the second most unstable n=3 mode for equilibrium A at = 1.02%. Differ-
ent Fourier components are marked by (n,m), where n/m is the toroidal/poloidal
mode number.

Figure 4. (a) Profile of the rotational transform «(s) and (b) the radial displacement
functions of an unstable n=3 mode for the equilibrium A at 8 = 2.36%.

Figure 5. Eigenvalues of unstable n=3 modes obtained with (a) the equilibrium A
at 8 = 2.36% and (b) the equilibrium C at 8 = 3.48% as functions of 1/N for two
values of the adiabatic index ' = 0 and " = 5/3, where N is the number of Fourier
modes.

Figure 6. (a) The radial displacement functions of an unstable n = 3 mode obtained
with 36 Fourier modes for the equilibrium C at 8 = 3.48% and (b) the correspond-
ing rotational transform profile of the equilibrium.

Figure 7. Correction to the eigenvalue w?/w?% due to non-zero compressional term
as a function of 1/N for the same n=3 unstable mode as in Fig. 5.

Figure 8. Mercier stability boundary (dashed line) and the unstable range of low-n
modes (solid line) for equilibrium S. The Mercier modes are unstable inside the
dashed line. The position of each solid line or dotted line indicates the correspond-
ing rational flux surface at which ¢ = n/m, where n and m represent the dominating
toroidal and poloidal mode numbers of the low-n instability respectively.
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Figure 9. Same as in Fig. 8, but for equilibrium A.
Figure 10. Same as in Fig. 8, but for equilibrium B.

Figure 11. Radial displacement functions of an unstable n=3 mode for equilibrium
B at 8 =2.75%.

Figure 12. Same as in Fig. 8, but for equilibrium C.
Figure 13. Same as in Fig. 8, but for equilibrium D.
Figure 14. Same as in Fig. 8, but for equilibrium E.

Figure 15. Same as in Fig. 8, but for equilibrium C with peaked pressure profile
p(s) = p(0)(1 — s)*.

Figure 16. Same as in Fig. 8, but (a) for the ATF standard equilibrium with bell-
shaped profile and (b) for ATF standard equilibrium with peaked pressure profile.

Figure 17. Eigenvalues of the unstable n=3 mode and n=2 mode obtained with
equilibrium A as functions of 8 — 3., where 8. denotes the critical beta value of

marginal stability for each unstable mode.

Figure 18. Eigenvalues of the unstable n=3 mode of equilibrium A versus the
Mercier criterion parameter —D)s evaluated at the ¢ = 3/4 rational flux surface.

Figure 19. Values of —Djys versus the dominating poloidal mode number m of
various low-n instabilities at a fixed growth rate corresponding to —w?/w% = 107%.
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