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Abstract. Ion cyclotron modes excited in a low density, cylindrical plasma cavity using
an external inductive antenna are investigated theoretically. These modes, which have a
long parallel wavelength, exhibit a strong electrostatic character and are only weakly
coupled to the antenna fields. It is shown that, despite the low frequency considered,
electron dynamics play a dominant role via the effects of both Landau damping and
electron inertia. The characteristics of the wavefields associated with these modes,

relevant to an experimental investigation, are described.
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1. Introduction

The theoretical investigation of ion cyclotron wave propagation in a magnetized plasma
has received extensive attention. Early work [1] was motivated by experiments that
studied the absorption of ion cyclotron waves when propagated into a magnetic beach
region (see the companion paper [2] for references to experimental investigations). The
theory that neglected electron inertia (that is, assumed me = 0) was found to provide good
agreement with experimental results for the high range of plasma density (ne > 2x10'2
cm'3). However, for lower densities, electron inertia was shown [3], [4] to have a
dominant influence on the ion cyclotron wave propagation. The observed heating of the
ions in this early series of | experiments was attributed to resonant ion cyclotron damping,
and that of the electrons to both electron Landau damping and ion-electron collisions [5].
However, no attempt was made to develop a theory that included all of these dissipation
effects. Thus, direct quantitative comparison of the measured ion cyclotron wavefields

with theoretical predictions was not possible.

Many other theoretical investigations of the coupling of an inductive antenna to a
magnetized plasma column have also been reported. Some studies [6] - [8] treated
plasmas with more than one ion species, however, only collisional damping of the plasma

was considered.

In the present paper, a theoretical investigation of the excitation of ion cyclotron waves,
using an inductive antenna, in a magnetized plasma of low density (ne < 1012 cm™) is
presented. In particular, a plasma containing more than one ion species is considered,
with the excitation frequency in the vicinity of the corresponding ion cyclotron
frequencies. For the conditions considered, the parallel wavelength of the ion cyclotron

waves is very long (of the order of metres), except in the close vicinity of the cyclotron




frequencies. Since the wavelength is comparable to the length of the plasma column
considered, axial standing waves are formed. Thus the present study treats cavity modes
in the near field of the antenna, as opposed to the propagating waves investigated in the
above-mentioned experiments. Even though these modes are essentially electrostatic in
nature (k approximately parallel to E), due to the small electromagnetic component

present they are weakly coupled to the antenna fields.

In Section 2, the theory for the electromagnetic excitation of ion cyclotron modes in a
cylindrical cavity partially filled with a uniform plasma is outlined. Included in the theory
are the effects of not only electron inertia, but also electron Landau damping and bulk
electron drift. The ions are assumed to be cold, and suffer only collisional damping. With
the experimental observation of these modes - described in the companion paper [2] - in
mind, the resuits of calculations for a two ion species neon plasma are presented in

Section 3.

2. Theory

We shall consider ion cyclotron modes in a cylindrical plasma cavity of length L and
radius p imbedded in a uniform axial magnetic field Bg. The plasma is surrounded by a
vacuum region and by a perfectly conducting cylindrical shell of radius q. The cavity is
bounded in the axial direction by conducting end walls. The modes are excited by an
antenna consisting of an azimuthal current sheet of radius s located in the vacuum region.
A cylindrical, axially-conducting Faraday shield of radius u is located between the
antenna and the plasma. A schematic diagram of the partially plasma filled cavity is

shown in figure 1.



We shall consider axisymmetric (m=0) modes having a temporal dependence ~ exp(iwt).

After Fourier analysis in time, Maxwell's equations combine to give for the electric

wavefield

Vx(VxE):‘é’—ZK-E : )

where K is the dielectric tensor.
Since the plasma is confined to the region - L /2 < z <L /2, solutions of equation (1)

for the electric field components may be expressed in terms of finite Fourier series. We

write

)

These forms have been chosen to satisfy the boundary conditions at the end conducting

walls, namely,

Er(z=xL/2) = Eg(z=xL/2) = 0 . (3)

Similarly, we write for the magnetic wavefield components

O oo
Big = —%—br’e + ) bro cosl‘ig-z ,
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We now proceed by solving equation (1) in each of the regions shown in figure 1.



(1) In the plasma regionI:

We shall consider a uniform plasma comprised of more than one ion species. Each of the
ion species is considered to be cold (T;j =0), and thus we neglect the effect of ion
cyclotron damping. However, collisional damping of each ion species with the stationary
background (corresponding, for example, to collisions with neutral atoms) is accounted

for by introducing an effective collision frequency vj. It is assumed that the collision

frequency is the same for all the ion species.

The electron species is assumed to to be warm, with an isotropic temperature distribution
(Te1 = Te = Te ). However, the electron Lamor radius pce is assumed to be sufficiently
small such that k; pee « 1. Thus, while electron Landau damping will be treated in the
present analysis, electron cyclotron damping shall be neglected. Collisional damping of

the electron species is also neglected.

Using the notation of Stix [1], the dielectric tensor for the plasma may be written as

S -iD O
K = iD S 0 ’ (5)
0 0 P
where
S =1- s ,
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D = 2 _&Esmcs
s 0)(0)2'(0%) ’ (©)
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2. 2
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In the above expressions, W¢s and Wps are respectively the cyclotron frequency and
plasma frequency of species s. The plasma dispersion function is denoted by Z({), its

argument being

Lo = -2 AL
K (2 kp T) 12
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Ve being the drift velocity of the electron species.

The electron contributions to the above dielectric tensor are obtained by expanding the

warm plasma dielectric tensor [9] to zero order in k; pce. Using the large argument
approximation for the plasma dispersion function, the electron contribution to S and D

then reduces to the above cold plasma form.

The effect of ion collisional damping is included in the above dielectric tensor by

introducing an effective complex mass m;* given by
* Vi

. = A1 =13,
m1 m1(+1w

thus rendering the ion cyclotron frequencies m¢j complex [8], [10].

Substituting equation (5) into (1) using the expressions (2) then yields

k//%l-+(5-k%,)e}‘ iDel = 0 )
a‘—l;(—ll,——&d?(reg)) + (S-k%/)eg + iDe} = 0 , (8
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where (5’ D, ?) = Q;(S, D,P) N and k// = %
C

Considering solutions of equations (7) - (9) of the form

= 2 A DfkyT)
J
o = X eiAlhifky1) . (10)
J
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j
yields the following dispersion relation

S-kPA S-Kkf-kyD) k- P

+ kA ki (S-kP-ky®) - DPky?-P) = 0 . (11)

This quadratic equation in k J_j2 therefore yields, for each value of kj, two perpendicular

wavenumbers given by

2. _ b E(?-4ac"? , (12)
2a

where a = S, b= (-9HGE+D+ D, ¢ = P[k}-9* - 7°]

Substituting expression (2) into equation (8) and (9) also gives



(13)

(i) Inthe vacuumregionk (k=1I-1V):

The fields in each of the vacuum regions are obtained by setting K = I in equation (1),

thus, S=P=w?/c? and D = 0. We consider solutions for the Fourier amplitudes of

the electric wavefields of the form

ef = Ckli(kor) + DgKi(kor)

eg Fp Li(kor) + GE Ky(kor) (14)

e = %{c{; Io(kot) + D Ko(kor)}

which satisfy the vacuum condition V - E = 0. The vacuum wavenumber is given by

5 2
kg =k7/'m§‘
c

The 14 coefficients of the wavefield amplitudes,

A", AN, G DY, R oand GUB, k =11, ITI, IV

are determined by the boundary conditions at the four surfaces, r = p, u, s, q. At the
plasma-vacuum interface, it is assumed that there are no surface currents or charges,
consistent with the inclusion of electron inertia in the plasma model. The Faraday shield
is assumed to eliminate completely any axial electric field which may be coupled to the
plasma from the antenna, while not affecting the azimuthal electric field. The antenna is

treated as a current sheet flowing in the azimuthal direction only and having no azimuthal



dependence. The imposed current per unit length J*, can be expressed in terms of the

following Fourier series:

J*z) = ) sinBlz (15)
n=1

The cylindrical shell at r = q is assumed to be perfectly conducting in both the azimuthal

and axial directions.

With the above considerations, the appropriate boundary conditions can then be written

as follows:

At r=p: Eg, E;, Bg and B, are continuous,
r=u: Eg, E; and B, are continuous, and E; = 0,
r=s: Eg, E; and Bg are continuous, and [Bzlr=s = MoJ*,
r=q: Eg = E; = 0.

Substituting the expressions for the wa{'eﬁelds into the above boundary conditions yields

a set of fourteen equations for the required coefficients of the wavefield amplitudes.

Both collisional and collisionless damping processes in the plasma result in power being
coupled from the antenna to the plasma. The complex power input to the plasma-antenna

system, averaged over a period of oscillation, is given by

P=%IJ+-EdV , (16)
v



where the integral is taken over the volume of the antenna. For an antenna consisting of a

coil wound with v (z) turns per unit length, J* (z) = Iy v (z), where I is the antenna
current amplitude. If the plasma loading of the antenna is modelled by a complex

impedance in series with the impedance of the antenna, we may write the power input as

P=1B(Re+Rp-ioetly):

The resistive and reactive components of the power input to the plasma are then,

respectively,

PR = %%Rp , Ppr=13eL, . (17)

N

Substituting equations (2) and (15) into equation (16) then yields for the power input to
the plasma

©0

P=Pr+Pr= Y Py = Z{E—%Ljﬁeg(s): . (18)
=1 n=1

3. Numerical examples

Using the theory outlined in Section 2, calculations have been undertaken to determine
the wavefields and power coupled to the plasma associated with the excitation of ion
cyclotron modes. Here, we shall present results for cases of relevance to an experimental
investigation reported in the companion paper [2]. A neon plasma is considered,
comprised of two ion species Ne?? and Ne?? in approximately their natural relative
abundance (B; = 0.9 and B, = 0.1, respectively, where Bj = n; / ne). The parameters used

to obtain the results presented here are, unless otherwise specified, as given in Table 1.

10



By~ 2(-8) ., &, ~s5-4 0)

192

under the condition that

o2y

Since I 1" » S for the cases of interest in the present study, |k,;| » |k ,| .
Therefore, under the above conditions, k1 plays a dominant role in determining the

radial structure of the wavefields [8].

It can be observed that the condition (21) is clearly not satisfied for S = 0. For a plasma
comprised of two ion species, this occurs when the wave frequency is in the close
vicinity of the ion-ion hybrid frequency given by

o, + ()
0)% = @ O Bl c2 |32 cl ) (22)

B1 1 + P2 0c2

Calculations have been undertaken of the perpendicular wavenumbers associated with the
fourth axial mode of the plasma cavity (for which, kj = 2.33 m™!). In figure 2 is shown,
for four values of electron temperature, the dependence of the real and imaginary parts of
k1 on frequency for ® = w¢j. This figure shows that for the range of conditions
considered, electron kinetic effects play a dominant role in determining k, 1, even for
very low electron temperatures. It can also be noted that in the vicinity of the frequency
f = fn = 211.4 kHz, the wave modes suffer strong damping, as indicated by the large

negative value of the imaginary part of k1.

Since k) is the dominant perpendicular wavenumber, it can be shown that modes are

excited in the plasma cavity if

12



kJ.lP = a[ , (23)

where a; is the [ th zero of the J 1 Bessel function. The subscript [ thus denotes the radial
mode number. Note that, from equation (20), k;; is dependent on P and hence on

electron kinetic effects, whereas k5 is independent of .

3.2 Power input to plasma

The power transferred from the antenna to the plasma has been calculated, using equation
(18), for the same set of parameters as above. The frequency dependence of the power
input into the first 100 axial modes is shown in figure 3. These results show that if
electron kinetic effects are neglected, several narrow resonances are observed for the
small value of collision frequency considered (vi/® = 0.02). These resonances can be
identified as associated with different axial and radial modes, each satisfying equation
(23). The two principle (n = 4, £ = 1) modes are located just below each of the ion

cyclotron frequencies.

Figure 3 shows that electron Landau damping associated with even low electron
temperatures substantially modifies the power input to the plasma. The frequency
dependence of the power loading now exhibits a broad maximum, which is split into two
peaks due to the strong damping that occurs for ® = wy. The peak power input to the
plasma is considerably reduced compared to that calculated neglecting electron kinetic
effects. Note that the lowest frequency peak appears at a frequency in the close vicinity of
¢y, and is therefore presumably severely influenced by the presence of ion cyclotron
damping. In practice, the separation of the resonance maximum into two peaks may

therefore not be observable.

13



The maximum of the power loading observed in the presence of finite electron
temperature appears at a frequency ® > ®¢;. The position of the maximum is strongly
influenced by electron temperature, shifting to higher frequency as the electron
temperature increases. Except for very low electron temperatures, the maximum loading
occurs at a frequency sufficiently remote from the ion cyclotron frequencies to be

unaffected by ion cyclotron damping.

In figure 4(a) is presented both the Fourier amplitudes of the first 100 axial modes of the
antenna current. Figure 4(b) shows the power deposited into the various axial modes
assuming electron kinetic effects are negligible. The excitation frequency was chosen to
correspond to that which yields the maximum power input to the n = 4 mode (i.e.,
f = 219.8 kHz). It is seen that essentially all the power (= 98 %) is deposited into the
n = 4 mode. The corresponding mode decomposition for a plasma with Te = 5 eV, for
f = 253.4 kHz, is presented in figure 4(c). Due to the stronger damping of the principal
axial mode, only = 76 % of the total power is deposited into this mode. Thus, the
contribution of the higher order axial modes plays an important role in determining the

wavefields in the plasma.

3.3 Wavefields

The radial and axial dependence of the three electric wavefield components, for the same
parameters as used for figure 4, are shown in figure 5. For both of the cases shown in
this figure, the Eg component is essentially the vacuum field of the antenna; there is
negligible modification due to the presence of the plasma. For the case Te = 0, figure 5(a)
shows that the E; and E; components, which are zero in the absence of the plasma,
exhibit a structure similar to the (n = 4, [ = 1) eigenmode. This is consistent with the

above observation that, for the frequency considered, this mode is selectively excited in

14



the plasma. For Te = 5 €V, the axial mode selectivity of the antenna is much poorer. This
is most marked in the axial dependence of the E; wavefield, which is strongly peaked at
the end of each antenna module. Due to the strong Landau damping associated with finite
electron temperature, the axial electric field does not propagate a significant distance away

from the antenna module.

For the parameters of the present investigation, the perpendicular wavenumber is much
greater than the parallel wavenumber, thus k = k, r. Figure 5 shows that the electric
wavefield vector is also essentially oriented in the radial direction. Thus, K is
approximately parallel to E, and hence the ion cyclotron modes considered in the present

study have a strong electrostatic character.

In a manner similar to the Eg wavefield, the radial and axial components of the magnetic
wavefield are calculated to be essentially the vacuum field. Figure 6 shows that for the
parameters considered, the Bg wavefield resembles the Bessel function J;(k 1), where
k) 1 corresponds to the lowest radial mode given by equation (23); its shape appears to be

insensitive to the effects of finite electron temperature.

Figures 5 and 6 shows that the presence of electron Landau damping results in a
substantial decrease in the amplitude of the field components associated with wave
excitation. A more detailed examination of its influence on the field amplitudes is
presented in figure 7. This figure shows, for four values of electron temperature, the

frequency dependence of the amplitude and phase of the Bg component calculated at the

mid-radius of the plasma, midway between two antenna modules.
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3.4 Effect of electron drift

The theory developed in Section 2 treats cavity modes that can be considered as
combinations of positive and negative propagating waves. For the case of no electron
drift (Vde = 0), the amplitude of the axial wave number is the same in both directions.
However, the introduction of electron drift results in an asymmetry due to the inclusion
of the electron kinetic effects. Thus the present formalism can not be applied in a
straightforward fashion. Nevertheless, it can be shown that the effect of electron drift can
be approximated by averaging the difference between the results calculated for cavity
modes with Vge > 0 and Vge < 0, under the condition that the amplitude of the cavity

wavefields for these two modes is approximately equal.

Introducing a finite value of Ve into the calculations yields two effects, the resonant
frequency of the cavity modes are shifted, and the wavefield amplitudes modified. In
figure 8 is plotted the frequency at which maximum power loading of the n = 4 mode
occurs, as a function of drift velocity, for the parameters considered in Table 1. It can be
observed for Vge < O there is a shift in the resonant frequency to lower values. For
Vde > 0, a shift of approximately equal magnitude towards higher frequencies is
calculated. It is also calculated that over the range of drift velocities considered in figure
8, the maximum power input to the plasma is essentially unchanged. (This is a
consequence of the fact that, for the parameters considered, the resonant frequency
®r >> Ik Vge l.) Therefore, the average of the Vge > 0 and V4e < O calculations is
approximately the same as the Vge = 0 result. It is thus concluded that, for the parameters

considered, the effect of electron drift on the resonant frequency is not significant.

16



4. Conclusions

Ion cyclotron modes excited in a low density, cylindrical plasma cavity have been
described. For the conditions considered, it has been shown that these modes have a long
parallel wavelength, and are essentially electrostatic in nature. It has been shown that
these modes are strongly influenced by electron dynamics. Even for low electron
temperatures, the dominant dissipative mechanism was found to be electron Landau
damping. Strong peaks in the power loading as a function of frequency have been
calculated if electron kinetic effects are neglected. However, in the presence of electron
Landau damping, the power loading has been shown to exhibit only a broad resonance in

the vicinity of the ion cyclotron frequencies, even for low electron temperatures.
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electron density ne = 10" cm?
axial magnetic field By =3 kG
electron drift velocity Vige=0
ion cyclotron frequencies ¢ =230.4 kHz
¢z =209.4 kHz
effective collision frequency vi=5kHz
plasma length L =540 cm
plasma radius p=25cm
Faraday shield radius u=5cm
antenna radius s=6cm
conducting shell radius q=20cm

Table 1. Plasma and antenna parameters used in the calculations




Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Schematic diagram of the partially plasma filled cavity.

Frequency dependence of (a) the real part, and (b) the imaginary part of the
perpendicular wavenumber k ;1 of the n = 4 mode and the four values of

electron temperature indicated.

Frequency dependence of (a) the real part, and (b) the imaginary part of the
power input into the plasma for the four values of electron temperature

indicated.

Fourier amplitudes of the first 100 axial modes of (a) the antenna current, and

the power deposited into the plasma for (b) Te =0, and (¢) Te =S €eV.

Radial and axial dependence of the three components of the electric wavefield,
for (a) Te =0, and (b) Te =5 €V.

Radial and axial dependence of the in-phase component of the azimuthal

component of the magnetic wavefield, for (a) Te =0, and (b) Te=5¢€V.

Frequency dependence of (a) the in-phase component, and (b) the out-of-

phase component of the azimuthal magnetic wavefield Bg, calculated at the
mid-radius of the plasma midway between two antenna modules, for the four

values of electron temperature indicated.

Dependence of the resonant frequency of the n = 4 mode on the bulk electron

drift velocity.
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