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Abstfact - We present the practical application of a 1-hidden-layer multi-
layer perception (MLP) to provide a non-linear continuous multi-variable
mapping with 42 inputs and 13 outputs. The problem resolved is one of
extracting information from experimental signals with a bandwidth of
many kilohertz. We have an exact model of the inverse mapping of this
problem, but we have no explicit form of the required forward mapping.
This is the typical situation in data interpretation. The MLP was trained to
provide this mapping by learning on 500 input-output examples. The
success of the off-line solution to this problem using an MLP led us to
examine the robustness of the MLP to different noise sources. We found
that the MLP is more robust than an approximate linear mapping of the

same problem.

12 bits of resolution in the weights are necessary to avoid a significant
loss of precision. The practical implementation of large analog weight
matrices using DAC-multipliers and a simple segmented sigmoid is also
presented. A General Adaptive Recipe (GAR) for improving the
performance of conventional back-propagation was developed. The GAR
uses an adaptive step length and both the bias terms and the initial weight
seeding are determined by the network size. The GAR was found to be

robust and much faster than conventional back-propagation.



I. INTRODUCTION

The tokamak is an experimental device for studying magnetically
confined hot plasmas close to the conditions required for thermonuclear
fusion reactor ignition. One problem confronting research in this field is
the precise definition of the plasma shape at any given instant. This
information is essential for the closed-loop feedback control of the shape
using many high power amplifiers. This extraction of the relevant data for
control purposes must also be carried out fairly fast, with a bandwidth of
up to a few kilohertz. The result must be precise since it ultimately limits
the precision of the feedback control loop.

Figure 1 illustrates a cross-section of the DIII-D tokamak [1]. The
solid closed line represents the shape of a surface of constant magnetic
flux, as do the dashed lines inside it. The full and open circles represent
the positions of magnetic field probes and magnetic flux loops
respectively, which provide the experimental signals to be interpreted.
The various arrows define some simple geometric properties of the
plasma. The mapping we require is from the experimental input signals to
these geometric parameters.

We must therefore develop a useful representation of the mapping
between a measurement data vector M and an extracted parameter vector
G. We shall denote this mapping by G, such that G = G (M). This particular
equilibrium problem is typical of many data interpretation problems, for
which we possess a full physical description of the inverse mapping G-1,
in our case the Grad-Shafranov plasma equilibrium equation. Since we
cannot derive a closed form of the mapping G from this physical model,
we are required to construct an approximation for G, denoted by 8 which

we hope will be valid over the entire range of interest of the vector M.



In the case of almost fixed circular plasmas, an approximate mapping
a is obtained by linearising, and then inverting, the known physical
mapping G-l. As the shape of the plasma varies and the range of
equilibrium parameters increases, the linearised mapping becomes less
and less reliable, especially for extreme values of plasma parameters,
which are of most interest to us.

So far, there have been three main approaches to approximating the
non-linear mapping G, which we briefly discuss for comparison.

The first approach is to develop a description of G using linear ad
hoc trial functions, and has been successfully used on the DIII-D tokamak
[1-3]. A database containing many different tokamak shapes provides
examples of both measurement (M) and parameter (G) data. Trial
functions are proposed, intuitively or by inspection, and the several free
parameters in each of the trial functions are fitted by regression analysis.

The second approach is to reduce the data by Principal Component
Analysis (PCA) and subsequently develop a quadratic expansion for a [4]

giving:
A
GM)=A+B -M*+M*T-C-M* ; M*=PCA'M (1.1)

where PCA is the principal component projection matrix and A, B, and c
together provide a non-linear (quadratic) mapping. We are restricted to a
relatively small dimension of M* in order that the large tensor C be
realistically implementable in hardware. One significant advantage over
the method of ad hoc trial functions is the generality of the expression
(1.1), allowing its straightforward implementation.

The third method presupposes no functional form for G except that it
be piecewise locally linearisable over a significant region in the space of G.

A
The linearised G, now a matrix, must be varied as the space of G is



AN
explored by the plasma evolution. Each local matrix G can either be

deduced by linearising an appropriate subset of an equilibrium database,
or directly from the equilibrium. The former approach fits a hyperplane
through a portion of the function G, minimising the mean square residuals
of the set of examples of G. The latter approach calculates the local
tangential hyperplane. These piecewise linear methods have been
developed for the control of the TCV and Alcator C-MOD tokamak plasmas
5, 6].

In this paper, we present the use of a multi-layer perceptron (MLP)
for approximating the mapping G(M). The quality of the representation is
excellent, and the physics aspects of the problem have been described
elsewhere [7]. In Section II we define the Neural Network which we have
used. During the initial phase of this work we suffered from the slowness
of conventional back-propagation. We therefore discuss our own
improvements to the speed and automated use of back-propagation
embodied in a General Adaptive Recipe (GAR) described in Section III. In
Section IV we present the results obtained with the converged MLP,
reproducing the required mapping for both a small test-case problem and
real DIII-D experimental data. The results were very encouraging and so
we followed this study by posing some practical questions concerning the
use of an MLP for the non-linear mapping of tokamak data. Section V
presents the hardware implementation of a fast 3000 weight hybrid
analog-digital MLP with 12 bit resolution for the matrix weights. The
number of bits of resolution necessary is examined in Section VI. In
Section VII we look at the noise immunity of the MLP solution compared
with a simple linearised mapping, and in Section VIII we study the error
induced by a seven segment piecewise linear sigmoid to be used in
conjunction with the hybrid matrices. Section IX provides a brief

summary of the work.



II. NETWORK CHOSEN

Since the mapping G will be continuous and smooth except at a small
(one or two) number of boundaries, a candidate choice for implementing a
non-linear map of the type required is the feedforward Multi-Layer
Perceptron (MLP) [8]. The MLP can be configured with one (MLP-1) or
more hidden layers to produce different classes of non-linear map. Figure
2 shows an MLP-1 as a guide to the nomenclature in this paper.

Many authors have discussed the classes of functions which MLP-1
and MLP-2 networks can reproduce [9-12]. It seems that there is not yet
a simple rule for determining the necessary configuration other than "use
the simpler MLP-1 if it is good enough". The basic structure of the two
networks is usefully illustrated in Fig. 3, in which we have tried to
reproduce a cylindrical pillar in a 2-D input space. The MLP-2 network
(N1:N2:N3:N4) = (2:4:1:1) produces a clear pillar, whereas the MLP-1
(2:8:1) has a fringe around it which cannot drop off faster than (Radius)-!
outside the pillar as the number of hidden-layer neurons becomes large.
The MLP-1 cannot reproduce a mapping in which there are large
discontinuities in spatial coherence of the output without an impractical
number of neurons in the single hidden layer whereas the MLP-2 can
reproduce such functions with fewer neurons. On the other hand, the
MLP-2 seems to take much longer to converge for a given problem. This
may be largely due to the fact that the structure of the MLP produces

large correlations between the weights in successive layers. For an MLP-1:

%{’2& = f(W23, W12)

0



- 6 -

Poutput
outpu -
owizgwes - TW)

which is already correlated, whereas for an MLP-2

%ﬁ’—‘“ = f(W12, W23, w34

doutput
w23

02
Swizowss = {12 W)

fW12, W23, W34)

providing even more correlation between the successive matrices than
the simpler MLP-1.

The MLP-1 was configured to be fully connected between adjacent
layers, with linear outputs, iflustrated in Fig. 2. Both input and output data
were normalised to the range [-1, 1]. In this case the only design choice
remaining was the size of the hidden layer. A 10-hidden-neuron (N9=10)
MLP-1 gave good results; no improvement was obtained with No=15. As a
result, all the work described was performed with a (42:10:13) MLP-1
network. The fact that No<Nj3 implies that the output data can be linearly
encoded into a reduced number of linearly interdependent variables.

The non-linearity chosen for the hidden layer was the anti-symmetric

sigmoid :
2
Sx) = T+ e% -1 = tanh ()21)

The derivative is as simply calculated as in the case of the more usual

[0, 1] sigmoid 1/2 (1+tanh(X/s)):




The input layer and the hidden layer both have offset bias terms appended
to their data vectors, feeding the next layer, Fig. 2.

Although it is plausible that the network could have been configured
partially connected to give similar results, this was not attempted. Both
the forward pass and back-propagation are computationally efficient off-
line and in real-time if the matrices are complete, even if sparse. It would
only have been useful to partially connect W12 and W23 if a significant
fraction of the elements of these matrices were set to zero. This was not
felt to be the case for our problem. In a real implementation,
segmentation will always be a practical problem unless the blocks of non-

zero weights are compact and few in number.
III. LEARNING

The starting point for our learning is the conventional back-

propagation algorithm, including a momentum term :
dwik+1) = AQ) + ndwl ; Q = <error2> (3.1)

where W is any weight, a is the Gradient Descent step-length and 1 is the
so called momentum term. Q is averaged over both the samples and the
outputs.

Our first experience with this convergence technique was frustrating
due to the inefficiency of the Gradient Descent technique as implemented
in [8]. As most researchers have experienced, we were obliged to play hit-
and-miss with the two learning parameters, step-length and momentum,
re-learning the optimal parameters each time a new problem was started.

The learning was manually interrupted when visibly inefficient, and new



parameters were tried. This was repeated until successful, and was
annoyingly labour intensive.

We considered this procedure to be far too tedious for attacking
many different problems at a time, and we were forced to develop a
General Adaptive Recipe (GAR) which converged faster, and most
importantly, needed no interactive help and no setting-up decisions. We
use the word recipe for this method, since the algorithm used remains
one of gradient descent.

The gradient descent was always performed with a batch update,
calculating Q for all outputs and all examples, and updating according to
Eq. 3.1. Other authors have prescribed updating on the basis of each
example, and there is always the compromise of updating on subsets of
the training examples. We chose the full batch update since it has a
uniquely defined noiseless surface to minimise along. This was essential
for using the adapting and resetting to be described later. The danger
with example-by-example updating or partial batch updating is that we do
not know whether any increase or decrease in Q is global for the whole
data set or not, and the adaptation is then dubious. The partial subset
update appeared beneficial at times, but led to oscillations in Q for many
of the cases tested. We found no robust subset scheduling which needed
no user intervention and we remained with the full example set updating.

In order to develop the General Adaptive Recipe, we investigated the

following topics :

- Initial Seeding Width

- Initial Seeding Distribution
- Bias Terms

- Learning Rate

- Momentum Term



- 2nd Order Damping

- Output Offset Dead-reckoning
- Output Matrix Dead-reckoning
- Other Methods

- Problem Generality

These points will be discussed in turn, using the nomenclature of Fig. 2.
Although many authors have made steps in some of these directions, we
have not found them discussed on a single non-trivial problem, nor have
we seen the same compromise chosen. For these reasons, we partly
overlap with other sources. The GAR is summarized at the end of this

section and the choice of parameters is verified for two problems.

II1.1 Initial Seeding Width and Distribution

Conventionally the weight matrices are seeded with a given width
IW12| and I1W23| and a flat random distribution. The widths should
hopefully not be too critical as the converged solution must be able to
"forget” the seeding distribution. A few points concerning this seeding are
of interest, however. Permuting the hidden layer neurons, and of course
the weights they are attached to, gives us Na! identical solutions, in so far
as the outputs are undisturbed. The anti-symmetric sigmoid (or the
symmetric sigmoid with one more change) allows us to invert the signs of
Wyl2 and W23y for all i,k and for a given j, again leaving the output
undisturbed. This gives 2N2 reflection equivalences for each permutation
equivalence. We therefore have a total of (2N2 x No!) sets of matrices [W12,
W?23] which provide precisely the same given analytical map. For a
medium-sized problem such as ours with 10 - 15 neurons in the hidden

layer, we have 3.6 109 - 4.3 1016 equivalent minima. For a modest 40
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hidden neurons we have 1080 equivalent minima. This very large number
of exchange minima is still relatively small compared with the number of
free parameters, 573 in our case and many thousands in the larger case.
We can, however, imagine that our initial seeding choice could take us
nearer to or further from possible concentrations of these minima.

To begin with, let us consider N; input neurons. Assuming that the
input examples are randomly distributed inside the normalised range [-1,

1] (denoted RI-1, 1]), the hidden layer input distribution will be equal to
HIDDEN_INPUT = R[-1, 1] x R[-1,1] x IW12}

which has a range [-N; I1W12[, N; IW121] and a width |W121+/N]; the ratio
of width/range therefore varies as 1/4/Nj. Large input layers will produce
small relative widths and large ranges at the hidden layer input. Hidden
layer neurons with large inputs are hard on or hard off and will learn very
slowly (if at all). We consider it advisable to start with a seeding such that
the hidden layer inputs are distributed independently of the number of
inputs, and we therefore reduce the range by a factor bf 1/Nji. We also
remove the Nj-dependent peaking in a simple way by using a random
probability function P(W)=IW| obtained by distorting the flat distribution :

W
Wil = /YY1 y=REL 1)

Suitable choices for IW12| and IW23| are found empirically to be
1.0/AN1+1 and 3.0 / \Na+1 respectively. This seeding recipe gives
hidden and output layer initial distributions which are independent of

both N; and No, verified with Monte-Carlo tests.



II1.2 Bias terms

A large bias term will provoke a large back-propagation update to its
dependent weights and a very small bias term will provoke only a very
small change. Both extremes must lead to a loss of convergence speed.
Since the hidden and output layer input distributions are now
independent of the network size, we should be able to choose a suitable
bias term recipe for all network sizes. We choose a value which only
slightly perturbs the input distribution again tested using Monte-Carlo

data. The chosen recipe is

Input layer bias (input to hidden layer) = 0.13 YN1+1
Hidden layer bias (input to output layer) = 0.04 YNg+1

In fact the output layer input bias is not used in the final form of the GAR,
see Section Ill.4. The multiplication by the network size factor cancels

out the chosen weight distribution width.

II1.3 Learning Rate and Momentum Coefficients

The learning rate a determines the change in weights, Eq. 3.1. As
previous authors, we found that high initial values, low intermediate values
and higher final values were needed as the convergence progressed. No
best choice of o can be defined, and we automated an adaptive step-length
control based on the improvement to Q for each iteration. The simple

recipe is as follows:

aletl) = olk) (1 + ayp) if Q reduced (aup > 0)

alk+l) = oK) (14+agown) if @ worsened (adown < O)



The momentum term 7 defines a first order smoothing filter on the
series of weight updates, Eq. 3.1. Simply reducing o in the case of a
worsened value of Q is therefore inadequate. We must also forget the

previous update by resetting the memory:

dWik-1) 55 0

This combination of forgetting and updating has also been developed
by Vogl et al. [13]. However, they differ significantly in their use of the
momentum term. We have found that a large momentum ~1 is essential in
combination with the adaptive step-length. In fact we propose the use of
n=0.999 which provides a low-pass filter of a 1000-iteration bandwidth.
Since we usually obtain a reset at least at this rate, the momentum term is
almost a perfect step-length integrator in practice.

Now that the learning rate is adaptive, we can choose any starting
value for o, and always begin with 1.0. The values of aup and adown were
chosen to be 0.005 and -0.3 respectively.

We have explored the use of different step-lengths for the W12 and
W23 matrix updates. We have never convinced ourselves that any
improvements seen were general, and have no reason to separately

choose a12 and 23,

I11.4 Output offset dead reckoning

When the patterns are presented at the output, each output neuron
will have an average offset error. Back-propagation propagates this average

error back to all weights, whereas it can obviously be fully compensated by
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the output layer bias term alone. We then only update W12 and W23 for the
non-constant output errors. This output offset dead-reckoning correction

can be calculated directly:

<offset>

bias DC

W23hias,j = W23pjas,j -

The value of the bias term on the output layer now becomes of no
significance, as already mentioned. In order to damp this correction we
work with DC<1, choosing DC=0.95. We use no momentum on the output
layer input bias for obvious reasons. This part of the GAR has its greatest

effect during the initial phase of learning.
I11.5 2nd order damping

Just as the momentum term provides a first order weight update

filter, we can add an arbitrary second order filter :

SWOktD) = - o 94 1 sWH) 4 y (W) - sWlk-1)

We can choose y to give us a critical damping, corresponding
to parabolic extrapolation to the minimum using the curvature
WK -§w(k-1)), During testing we found no systematic improvements using
this term vy, although local improvements were frequently found. If vy is
large enough to be useful, the convergence ends up worsening at some

point, resetting the more useful momentum term. We therefore use y=0.

III.6 Output layer dead-reckoning
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Back propagation optimises in the space of [W12, W23], Since the
output neuron is linear, the hidden-layer outputs are simply linearly
mapped onto the output layer by the matrix W23, This linear mapping has
a well defined least-squares solution, namely the pseudo-inverse of the

equation:

W23 | hidden_output = final_output

In this case we only need to minimise the network in a smaller space
[W12], each W12 matrix having a defined optimal W23, The pseudo-inverse
was calculated by Singular Value Decomposition, together with a certain
limit on the condition number of the singular values. We are actually
generalising the output offset dead-reckoning of the previous section.

It was surprising to us, and still somewhat troubling, that the Output
Layer Dead-Reckoning has not proven to be a success, since its simplicity
is attractive. We found in practice that the matrix W23 found by the
pseudo-inverse depended too strongly on how the inverse was
conditioned. It gave results which were extremely encouraging for some
convergences, but even failed on others, simply stagnating.

We decided that robustness was more vital than occasional high
speed and have not managed to tame this method. It is our opinion that
the approach ought to yield an advantage, possibly even by alternating
methods, but who chooses when to alternate ...? We must also remember
that the use of a pseudo-inverse totally destroys the simple parallel nature

of the back-propagation algorithm.

1.7 Other methods
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We have implemented the variation of the step length adaptation
proposed as the "Bold Driver" [14] and found it to be about 100 times
slower than our General Adaptive Recipe, Fig. 4. This is probably due to
their large upward increment, ayp = 0.1 instead of 0.005, and no

momentum term.

II1.8 Generality of the Recipe

The pitfall of a supra-optimisation, looking for the best optimisation
recipe, is to optimise the convergence for one particular problem. We
have tested the General Adaptive Recipe on many problems, of small and
medium size (up to 2000 weights). In six months of use, we have only
modified one parameter, the bias, by a factor of 0.3, leading to only 20%
better convergence. It is our opinion, therefore, that the recipe proposed

is justifiably "General" for this type and scale of problem.

II1.9 Parameter Sensitivity and Robustness

We look for two properties of the recipe and its chosen parameters:

- fast convergence

- no convergence stagnation

Figure 5 shows the convergence plot of a typical problem, with N1=9,
N2=10, N3=3, 500 examples. Figure 5(a) shows the GAR convergence with
6 different randomly generated weight matrices to begin with. 6 cases
converge with similar efficiency. Figure 5(b) shows 10 convergences with
fixed learning parameters (c, n) in the range o = 0 0.01 - 0.6 and 1 = 0.7 -

0.9. The poor parameter choices never converge, and the best choices
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converge reasonably, once they have been identified. The best standard
non-adaptive back-propagation did very well, but its parameters had to be
found by trial and error. The GAR is therefore efficient.

In order to illustrate the supra-optimisation, we performed single
parameter scans on two different problems. Problem A labelled "EXP1"
was an N3=5, No=5, N3=2, 10 examples network and problem B labelled
"DIII" was an N1=42, N2=10, N3=13, 500 examples network. Figure 6 (a,
b) shows the effect of varying n; Fig. 7 (a, b) shows the effect of varying the
hidden layer input bias; Fig. 8 (a, b) shows the effect of varying the
adaptivity ayp. It is encouraging to see that the supra-optimisation is valid

for two very different size problems with 42 and 573 weights respectively.

III.10  General Adaptive Recipe

We summarize the General Adaptive Recipe as follows :

Seeding W12 = 1.0 (N;+1)-1/2 x R[-1, 1] / IR[-1, 1]I1/2
Seeding W23 = 3.0 (No+1)-1/2 x R[-1, 1] / IR[-1, 1]11/2
Hidden-layer Input Bias = 0.13 (N+1)1/2

Positive update ayp = 0.005

Negative update agown = -0.3

Initial Learning Rate o = 1.0

Momentum n = 0.999

On the purely practical side, the GAR has been implemented under
IDL [15] in an interactive graphical environment providing matrix
arithmetic faster than FORTRAN. The GAR procedure is summarized in

Appendix A for reference.



IV. RESULTS

In this section, we present the results for two tokamak equilibrium
problems, firstly an illustrative test-case, and secondly with real
experimental data. We consider the test-case of an unshaped plasma
immersed in a purely vertical field, within a 3:1 rectangular aperture, see
Fig. 9. In the large aspect ratio approximation, the poloidal flux

distribution is known to be given by

Ww(R,Z,A) = LL%I;LR [in (8R/p)-2] -“TO;E [in (p/a) + (A+0.5)(1-a2/p2)] p cos o'

(4.1)

where p, a, ®' are shown in the figure. The free variables are the major
radius (R), vertical position (Z) and poloidal asymmetry factor (A), the
plasma current I, being kept constant.

The detection signals are obtained from a set of flux loops placed
slightly outside the aperture, shown in the figure, and the inputs to the
MLP were the differences in flux with respect to one of the loops. This
test-case has the required property of being non-linear by virtue of Eq.
(4.1), as well as being simple and descriptive of the full problem.

A set of 1000 equilibria was generated, of which 500 were to be
mapped, and the remaining 500 were used for testing the quality of the
approximated mapping. The values of [R, Z, A] were varied randomly and
uniformly between [0.8 - 0.9, -0.48 - 0.48, 0.5 - 4.0] respectively. The
first 500 examples were mapped by both a unique linear relationship
obtained by standard SVD techniques and by an MLP-1 with No = 10. The
quality of the representation was taken to be the mean square residual at

the output, normalised to the full range of each output parameter. This



exercise was carried out for a varying number of flux-loops, obtaining the
results shown in Fig. 10.

The linear representation of y —» [R,Z,A] was good for very large
numbers of flux-loops. However, for smaller numbers of loops, fewer than
15, the representation was inadequate. The MLP-1 mapping maintained
low residuals even when the total number of flux loops was decreased to
as few as 6. An example of the quality of representation, fitted value vs.
actual value, is shown in Fig. 11 for this case with only 6 input signals and
5 flux-differences. The MLP-1 clearly is able to use its inherent non-
linearity to solve the type of non-linear mapping problem represented by
Eq. (4.1).

The next step was to make the problem more difficult by increasing
the range of R to [0.7 - 0.9], so that either the inner or outer wall defined
the effective aperture. This produces a severe bend in the mapping when
the plasma surface touches both walls. Figure 12 shows the flux
differences for 4 of 9 flux loops as the major radius is varied over the full
range, for a vertically centred and fixed A plasma, illustrating the
structure of the mapping required. This problem with a gradient
discontinuity was solved using an (N7 = 9, Ng = 10, N3 = 3) MLP-1
network with a precision of 1.2 % FS. The crosses in Fig. 12 show the
fitted data and the solid line shows the underlying function.

For the second problem a DIII-D tokamak experimental database was
used. Since the equilibria are experimental, both M and G now have
intrinsic noise. During the MLP training, we again used a random set of
500 equilibria as the training set, and the quality of the fit was
subsequently tested on 500 different equilibria.

The input data for training were a combination of 20 magnetic flux
loop differences and 22 poloidal magnetic field probes, giving a total of 42

inputs. The outputs were chosen as 13 geometric variables, listed in Table
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I, some of which are illustrated in Fig. 1. We chose N2=10 hidden layer
neurons, and obtained very good residuals, listed in Table I. Increasing
the size of Ng made no improvement to the residual. Table I also shows
the residuals from a linear mapping as well as the physical range of each
parameter, and the minimum and maximum absolute errors. Using the
MLP-1 mapping we generally obtain an improvement of 30-50 % in the
residuals compared with a general linearisation using all of the 42 input
parameters. The parameter which is least well fitted is the top
triangularity (oj = 5.8% FS). The MLP-1 fitting attempted to minimise this
particular oj, and this was done at the expense of, for example, the
vertical position of the plasma current (6; = 0.9% FS). In the linearised
case, the output variables are fitted independently and weighting them
differently does not change the solution. In the MLP-1 case, we can
reduce < sz > by worsening the fit on one output variable to benefit any
less well fitted variables. For the work described, the oj were simply
weighted inversely to their full-scale range although such a global
mapping might benefit from a selected output parameter weighting, such
as the inverse residual of the linearised fit.

Figure 13 shows the residuals for four of the standard control
parameters: top gap, inner gap, geometric centre and X-point Z-position
and compares the MLP-1 fit with the DIII-D adhoc trial function fit [1].
These results together indicate that the MLP-1 is a good tool for
providing the mapping function a(M) for our particular problem.

Figure 14 presents a method of visualising the use of the sigmoid
function which provides the necessary non-linearity. The hidden layer
inputs and outputs for all the trained examples are plotted for all 20
hidden layer neurons of a converged problem. Some neurons operate near
the origin and are therefore almost linear. Others operate near the

maximum curvature at linputl=1.314. Others cover a range of both
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positive and negative curvature. Some neurons cover a small range of
input, and others a large range. This Sigmoid Distribution Plot was used
when pruning a network to remove the least useful neurons before
relearning. An objective criterion of usefulness was found to be the
standard deviation of the sigmoid curvature over the learning set. This
criterion always corresponded to the interactive visual choice made when

pruning the network by hand.
V. HARDWARE IMPLEMENTATION

Hardware has already been constructed to provide a piecewise linear
approximation for the mapping 8 for the TCV tokamak being built at the
CRPP. This system is a modular matrix multiplier using DAC-multipliers
and is described in detail elsewhere [6, 16]. The system for the TCV
tokamak will have a 128 x 24 matrix and two 24 x 24 matrices, giving a
total of 4224 matrix weights. A library of weights is stored in the matrix
multiplier and any one can be called up within 1.3 msec. The whole
system is controlled using the BITBUS fieldbus. The bandwidth of the
DAC-multipliers is very high, retaining 8 bits of resolution at over 50 kHz.
The corresponding number of FLOPS to obtain this throughput of
continuous digital matrix multiplications is of the order of 900 MFLOPS.
Figure 15 shows a schema of the matrix modularity.

Since the W!2 and W23 matrices can be constructed using this
existing hardware, and an analog sigmoid is easily reproduced, Section
VIII, the system can be reconfigured from a piecewise linear mapping to
an MLP-1 mapping by simply recabling the modules. In this way we will
obtain a fast, fairly large and very precise MLP-1 mapping using available

technology.
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VI. DISCRETISATION

If the matrix multiplications in the MLP forward pass are to be
carried out by some form of hybrid analog-digital system using multiplying
DAC's, pulse coded multiply etc., the weights will have to be stored in a
digital form. The question which then arises is to what extent can the
continuous valued weights can be discretised without loss of output
precision. We need to determine the required digital resolution.

The MLP-1 solution found in Section IV was discretised as follows.
The full range of both W12 and W23 was generously taken as * 5.0, Fig. 16.
The weights were then discretised with the number of bits varying
between 8 and 16. Figure 17 shows that down to 12 bits there is no loss
of precision, that is to say no significant increase in ¢2. As we reduce the
number of bits further, 62 increases, rising to 25 times its continuous
value with only 8 bit resolution in the weights. Figure 16 also illustrates a
similar trend for the linear mapping. The MLP-1 mapping is actually more
robust than the linear mapping when we discretise the weights.

This loss of precision might be partly countered by relearning with
discretised weights. Since we shall have 12 bit resolution available, this
will not be necessary. At present, the only hybrid technique capable of
providing this resolution is the multiplying DAC described in Section V.
Other techniques are imaginable, but are mostly limited to a smaller

number of bits.
VII. NOISE SENSITIVITY
In a real system there are several forms of noise. The inputs may

-contain random noise, such as voltage pickup; this noise will be

independent of the signal:



Signal = Signal + N(o,¢e) x Max |Signall (7.1)

where N(o,€) is a normal distribution with mean 0 and standard deviation
€. The inputs may have randomly distributed calibration errors; this noise

will be proportional to the signal and systematic for each input :

Signal = Signal x (1 + N(o, €)) (7.2)

The weights may also have a random noise due to production
tolerances. The weight noise can also be of the same two types mentioned

above :

Weight = Weight + R(0, €) x Max |Weight| (7.3)
Weight = Weight x (1 + R(O, €)) (7.4)

We independently subjected the solution found in Section IV to these
four noise types, and also compared the noise-sensitivity of the linear
mapping, Figure 18. The linear mapping is more sensitive to all four noise
types, especially the relative noise distributions (a, c). The relative input
noise, Fig. 18(a), into the MLP-1 shows a degradation at 1%,
corresponding to a reasonable estimate of the calibration accuracy of the
inputs. The linear mapping is already very poor with this noise level.

The noisy weights show a similar behaviour, Fig. 18(c, d). The 10-3
error level corresponds roughly to the 12 bit requirement described in

the previous section.

VIII. SEGMENTED SIGMOID
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Many techniques have been proposed for implementing a sigmoid
transfer function. Some of these techniques use matched transistor pairs,
which may have temperature stability problems. We propose to use a
piecewise linearised or segmented sigmoid, with one segment through
the origin and three segments plus a saturation on either side, Fig. 19.
This will be achieved using the simple circuit shown in Fig. 20.

This segmented sigmoid was tested on the problem solved in Section
IV. The mean square residual increased from 1.58 10-3 to 1.8 10-3
without relearning. Relearning could be used to reduce this residual if it

were considered necessary.

IX. SUMMARY

We have considered a real practical problem of the non-linear
mapping between tokamak measurements and derived geometric
parameters. Although the specific problem is somewhat esoteric, it is one
of a large class of similar practical problems, which require a continuous
functional map to be derived from a set of examples derived from a known
model. The MLP-1 clearly provides a convenient solution to this problem
which previously had been approached using a piecewise linear mapping.
Furthermore since the latter mapping required large fast matrix
calculations to be provided by combined analog-digital hardware, the same
hardware could be used, without modification, to generate an MLP-1
mapping. These two considerations led us to look closely at several
practical questions concerning the implementation of an MLP-1. The
results are most encouraging and suggest that the MLP-1 naturally
provides a mapping which is not only more precise and simpler to use
than the piecewise linear mapping, but is also more robust. The presence

of gradient discontinuities does not appear to be a problem.



In order to complete this study, we developed a General Adaptive
Recipe for back-propagation which requires no human interaction when
learning MLP mappings, and is much faster than non-adaptive learning.
We described the robustness in some detail for two of the many problems

we have solved.
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FIGURE CAPTIONS

A schematic of the DIII-D tokamak, showing the measurements

and some of the derived plasma parameters to be mapped to

A schematic description of the 1-hidden-layer Multi Layer
Perceptron (MLP-1) reproducing a pillar

The basic MLP-1 (2:8:1) and MLP-2 (2:4:1:1) output structures

Bold Driver recipe compared with the General Adaptive Recipe
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Typical Convergence plots for our problem : (a) the General

Adaptive Recipe; (b) varying the learning parameters

Single scan of momentum for (a) Problem A and (b) Problem B

Single scan of the hidden layer input bias for (a) Problem A and
(b) Problem B

Single scan of adaptivity ayp for (a) Problem A and (b) Problem B

Sketch of the test-case geometry. Variables are the major radius

(R), vertical position (Z} and asymmetry factor (A)

Quality of representation with (a) linear mapping and (b) MLP-1

mapping, as the number of flux loops is varied

Quality of the mapping for 6 flux loop signals; (a) MLP-1 mapping

and (b) linear mapping

The mapping provided for the test-case with a gradient

discontinuity. We show 4 of the flux-differences as R was varied.

Comparison between the trial function fit (upper) and MLP-1

representation (lower) for 4 control parameters (units are cm)

The Sigmoid Distribution Plot to illustrate the use of the non-

linearity
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Schema of the hybrid analog digital matrix multiplier to

construct W12 or w23

Distribution of matrix weights for (a) the MLP-1 mapping
showing W12 (solid) and W23 (dashed) matrices, and (b) the

linear mapping

Effect of the discretisation of the digital matrix weights.

Effect of different noise sources on the output precision. The
abscissa is the value of € in Eqs 7.1 - 7.4, (a) Eq. 7.2 for input
signal, (b) Eq. 7.1 for input signal, (c) Eq. 7.4 for the matrix

weights, (d) Eq. 7.3 for the matrix weights.

The segmented sigmoid (solid line) and the true sigmoid (dotted

line). The error x 100 is shown as a dashed line

The segmented sigmoid circuit
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APPENDIX A : The General Adaptive Recipe
The Nex examples in the range [-1, +1] comprise a matrix

EXAMPLES_INPUT (N + 1, Nex)

where each example has the hidden-layer input bias as the Nj+1 input.

The input to the hidden layer is the matrix product (#) given by
HIDDEN_INPUT (Ng, Nex) = W12(Ng, N31+1) # EXAMPLES_INPUT
The output of the hidden layer is the compressed input, namely

HIDDEN_OUTPUT (N2, Nex) = S(HIDDEN_INPUT)
and the output layer is

OUTPUT (N3, Nex) = W23 (N3, No) # HIDDEN_OUTPUT +
OUTPUT_OFFSET (N3)

The error is given by
OUTPUT_ERROR (N3, Nex) = OUTPUT - EXAMPLES_OUTPUT
The output error is first corrected for the offset

OUTPUT_OFFSET (N3) = OUTPUT_OFFSET - DC <OUTPUT_ERROR>N.4
OUTPUT_ERROR = OUTPUT_ERROR - DC <OUTPUT_ERROR>Ncx



The mean square error is

SUMSQ = << OUTPUT_ERROR2>N.x>N3

If the value of SUMSQ has not improved, then we back-off the weight

update and reset the learning memory :
W12 = w12 _ gwl2
W23 = W23 - §W23
dW12 = W23 = 0
Finally, the step length is reduced

o =a (1 + adown)

If the value of SUMSQ has improved, we back-propagate the error as

follows :
EW23 _ aSaUMSQ

= OUTPUT_ERROR # (HIDDEN_OUTPUT)T

HIDDEN_GRADIENT (N9, N3)
d HIDDEN_OUTPUT

= "OHIDDEN _INPUT

= %— (1.0 - HIDDEN_OUTPUT?2)

WEIGHTED-ERROR (N2, Nex)
B ISUMSQ
= HIDDEN_OUTPUT

= (W23)T # OUTPUT_ERROR



HIDDEN_INPUT_ERROR (Ng, Nex)
_ ____3sUMsQ
= JHIDDEN_INPUT

_ ISUMSQ
= JHIDDEN_OUTPUT

_ dHIDDEN_OUTPUT
~ JHIDDEN_INPUT

= WEIGHTED_ERROR # HIDDEN_GRADIENT

_ 9SUMSQ

EWI12(Ng, N7 + 1) = w2

= HIDDEN_INPUT_ERROR # EXAMPLES_INPUT

Having obtained the first derivative of SUMSQ with respect to all free

parameters, we perform the Gradient Descent :

dW12 = W12 + ndWorLp12
dW23 = aeW23 + NdWoLp23
W12 = W12 + sW12
W23 = W23 4+ §W23
5WOLD12 = dwli2
SWorp23 = SW23

The step length is then adapted upwards :

a=oa (1 + ayp)
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