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ABSTRACT. The problem of control of the vertical instability is formulated for a
massless filamentary plasma. The massless approximation is justified by an examination of
the role of inertia in the control problem. The system is solved using Laplace transform
techniques. The linear system is studied to determine the stability boundaries. It is found
that the system can be stabilized up to a critical decay index, which is predominantly a
function of the geometry of the passive stabilizing shell. A second, smaller critical index,
which is a function of the geometry of the control coils, determines the limit of stability in
the absence of derivative gain in the control circuit. The system is also studied numerically
in order to incorporate the non-linear effects of power supply dynamics. The power supply
bandwidth requirement is determined by the open-loop growth rate of the instability. The
system is studied for a number of control coil options which are available on the DIII-D
tokamak. It is found that many of the coils will not provide adequate stabilization and that
the use of inboard coils is advantageous in stabilizing the system up to the critical index.
Experiments carried out on DIII-D confirm the appropriateness of the model. Using the
results of the model study, we have stabilized DIII-D plasmas with decay indices up to 98%

of the critical index. Measurement of the plasma vertical position is also discussed.
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1. INTRODUCTION

The motivation of this work was to improve axi-symmetric stability in the DIII-D toka-
mak. However, the results are generally applicable to tokamaks requiring quadrupole fields
to produce elongated plasmas, resulting in unstable field curvature. The orientation of this
work is to avoid the details of loss of stability and to provide instead a formal treatment of
the control problem. DIII-D is an excellent choice of device for a general study because of

the generality of its poloidal field system, shown in Fig. 1.

In this work, when we refer to any particular coil (e.g. “F7”), we are referring to the
anti-symmetric current flowing in the coil pair F7A and F7B, with the sign convention that
positive current in the upper coil has the same sense as the plasma current.

The philosophy of this investigation is to develop the simplest possible mathematical
model of the problem, namely a filamentary plasma model, and pursue an analysis within
the context of this model which incorporates the control algorithms and the power supply
characteristics. We model only the vertical part of the control system, avoiding the interac-
tion with the remainder of the poloidal coil set, except for its imposition of the destabilizing
quadrupole field. Plasma profiles enter through the quantity 8, + (£/2) in the critical in-
dex. We are considering the problem of vertical stability in the presence of a quadrupole
field produced by some unspecified set of external coils. The relationship of elongation to
vertical stability depends on the plasma profiles and the totality of the shaping field. The
appropriateness of this model is determined experimentally, and we report results from ex-
periments on DIII-D which demonstrate that this model provides the information needed

to characterize the vertical control problem.

The difficulty in stabilizing the plasma is characterized by the ratio of the decay index,
n, [1] to the critical index, n., which is determined largely by the vessel geometry. Here
we assume that the vacuum vessel is the dominant passive stabilizing element, as is the
case on DIII-D. By applying the results of the analysis presented here and making the
appropriate modifications in the feedback system, plasmas with n/n, of ~0.98 have been
vertically stabilized.

The characterization of the vessel, and of its interaction with the plasma, is a major

aspect of the analysis. We employ an eigenmode description of the poloidal distribution



of the toroidal vessel currents. This simplification reduces the problem to analytically
manageable dimensions. This eigenmode description of the vessel was used successfully
both to analyze control loops for the ISX-B tokamak [2] and, with the massless filament
approximation used here, in treating the problem of radial control [3]. As in Ref. (3], we
consider a treatment which places major importance on the specification of the dynamic
power supply requirements for fulfilling the control function. The cost of the power systems
is comparable to the cost of the tokamak; thus, an understanding of the consequences of
coil positions and control algorithms needs to be integrated with the initial design of the
tokamak.

The vertical problem is easier to treat than the radial one because the plasma inductance
is not an explicit function of the vertical position, z. Thus, while the radial control problem
is fundamentally non-linear, the vertical control problem is linear and susceptible to an
analytic treatment, only becoming non-linear through, for example, exceeding limits in
power supplies. Since this analysis depends more critically on the vessel description than
the previous work, the eigenmode description is treated in detail in Appendix A. This paper
is organized as follows.

Section 2 contains the basic mathematical description of the plasma-vessel system under
consideration. A review of the basic description of passive stabilization is a starting point
from which we show that the approximation of a massless plasma, or instantaneous force
balance, provides a good analytic prediction of the growth rate for any plasma which might
plausibly be controlled with an active circuit. Having eliminated two roots in the problem
in this manner, we extend the analysis to a system of plasma, passive stabilizer, and active
coil. This system is again solved using Laplace transform techniques in Section 3. We
study the nature of the stability boundaries of the closed-loop system. We find that there
is a second critical index, characteristic of the active coil set, above which there are no
stable solutions without velocity feedback in the control loop. The variation of the stable
operating window with n/n. is discussed and we find that it is possible to stabilize plasmas
with [n|/n. ~ 1. Time-domain solutions, which allow the inclusion of the non-linear effects
of a dynamic power supply model, are also obtained. The physical nature of the problem is

discussed in some detail Eere, with particular attention to the dynamical interaction of the

active control circuit with the passive stabilizer.



In Section 4 we optimize system performance and evaluate power supply requirements.
In the presence of power supply constraints, imposed by both voltage and slew rate, the
circuit equations are no longer linear, and numerical solutions are presented. This leads
rather naturally into a wider study of coil choices and the effects of higher-order eigenmodes
of the vessel current on the results, in Section 5. Here the physics of the couplings of the
plasma-vessel—coil system are explored in greater detail. We find that with certain choices
of outboard coils, the range of decay indices over which stable solutions can be found is
restricted. Further, we find that a judicious choice of control strategy is required in order
to achieve good performance with plausible power supplies.

In Section 6 we report briefly on experimental results which verify the applicability of
this model. Using the concepts discussed in this paper, we have stabilized plasmas with
In|/ne = 0.98. These experiments will be reported in detail in Ref. [4].

In Section 7 we evaluate the need for dynamic compensation in the measurement and
establish the criteria which need to be met by the plasma-vessel-active coil system in order
to neglect such compensation.

Section 8 contains a concluding discussion in which we offer suggestions for the design

and control of future tokamaks.



2. THE PLASMA-VESSEL SYSTEM

We begin with a system consisting of a single-filament plasma within a conducting
vessel. This problem has been treated previously [5], but we wish to introduce the concept
of a critical index and discuss the detailed nature of the open-loop growth rates which are
characteristic of the problem. The plasma is described by the total current Ip,, the poloidal
beta G, the internal inductivity £;, the external inductance L.,¢, and the nominal major
radius Xo. The surrounding passive conductor has a current I, flowing in an antisymmetric
mode (zero net current). The subscript v refers to the stabilizer, and the subscript p refers

to the plasma. Later we introduce the subscript a to refer to the active coil.
First, we must obtain the characteristic growth rates of the vertical instability.

2.1. Basics of passive stabilization

The equations to be solved are the vertical force balance equation for the plasma and
the circuit equation for the vessel [see Fig. 2(a)]:
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7711,32- = -—27I'X0IPB,. (1)
and
dI, dM,p dz
v = Ly—— v " ip = 2
Vi Ldt+R“I+dzdt”0 (2)

Here we have neglected terms in fp, which we shall justify post priori. The vessel inductance
is that of the first eigenmode of an expansion of the vessel current in orthogonal modes.
In the limit of infinite aspect ratio and a circular cross-section vessel, these modes are
sinff,£ = 1,2,3,..., where @ is the poloidal angle. This vessel description is discussed
in detail in Appendix A. For the toroid of arbitrary cross-sectional shape, the modes are
calculated numerically, with the angle 6 defined by sectors of equal arc length, to preserve
the orthogonality, and normalized so the L/R time for each mode is correct. M,y is the
mutual inductance of the first eigenmode to the plasma, and R, is the vessel resistance;
my, is the plasma mass. L, always refers to the self-inductance of the lumped circuit as
represented by the first antisymmetric eigenmode.

The second mode has an L/ R time a factor of 1.9 lower than the first mode. Furthermore,

its coupling to the plasma is very poor, producing only a small radial field. Thus, its role



in the problem lwill always be minimal and it is therefore neglected. We shall return to this
point in a later section. The higher modes decay at still faster rates.

The poloidal dependence of the first three eigenmodes is shown in Fig. 3. Each mode
has a higher degree of spatial structure than the previous one, which is the cause of the
decreasing L/R times. Table I lists the time constants and the parameter 2M¢’;",Xo/ oLy,
which is a measure of the mode’s effectiveness in vertical stabilization, for these modes. Note
that the current distribution of the first mode is highly weighted to the outboard side of the
vessel. The spatial dependence will be quite important to the control problem, and we shall
return to this topic in Section 5. In Fig. 4 we plot the field lines of our filamentary plasma
along with the vessel shape used to generate the eigenmodes. As a result of toroidicity,
the field lines intersect the vessel predominantly on the outboard side. This is the physical
reason why vertical displacement of the plasma couples most strongly to this mode.

The radial field B, at Xy, the filament location, can be expanded in a Taylor series. The

appropriate expansion parameter is the decay index n, defined as

_ Xo0B,
n= —EB—X (3)

An equivalent definition of the decay index, which avoids explicit reference to the plasma

characteristics, is

n=—2rX, <quadrupole field amphtude) "

dipole field amplitude

This expression is more directly applicable to the evaluation of the decay index as a control
parameter, since it can be computed directly from the poloidal coil currents.

The vacuum field, B, has two components: the external field due to the equilibrium
field coils that are producing the unstable curvature [Fig. 2(b)], and the restoring field due
to currents induced in the surrounding conducting vacuum vessel by the plasma motion.

Assuming stationary fields, V x B = 0, and the equilibrium field equation,

0B,
B = B, + e z
_ nB,,z
= B¢
=1, M,  pol,T'nz (5)
T 2rX, Oz 4r X? '
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D= et | 2 - 6
u0X0+2+,3p+2 (6)

and By, is the equilibrium vertical field at Xj.
Combining Eqgs (1) and (3) and using the prime to denote d/dz, we obtain
Mo 2mpXo
If we define v, = R,/L,, then from Eq. (2)

. M! I
Iv+7uIv+ Zp p‘é:O (8)

Now we Laplace transform this pair of equations by letting d/dt — s and define the

characteristic frequency,

zr

Wwi= e (9)

2me0
and the critical index,

_2M[2X,

"= Tl 1o
Then the indicial equation for the characteristic roots of Egs (7) and (8) is
(s* + nw?)(s + 7)) + sw?n, = 0 (11)

In the limiting case of no coupling between the plasma and the vessel (n. = 0) the roots
are 8 = &/—nw; and 8 = —v,. The vessel current decays with the L/R time. For n < 0,
the vertical instability has a characteristic growth rate of several microseconds for typical

tokamak parameters.

By inspection, one can see that a transition occurs at n = —n,. For decay indices
more negative than —n., the growth rate of the vertical instability is of order wy, typically
10% to 108 s~1. This critical index is a measure of the maximum field curvature which can
be countered by currents induced in the stabilizing shell. For values of n < —n,, the vessel’s
impedance is so great that the current induced in the vessel by the plasma motion cannot
produce sufficient radial field at an adequate rate to provide stability.

Since this equation cannot be factored, numerical solutions are presented in Fig. 5,

which shows both the real and imaginary parts. The first root shown (S1) is the one of
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interest to us. The growth rate is positive for all n < 0 and grows rapidly for n ~ —n,.
The growth rate is independent of both the plasma current and mass. This root becomes
stable again for n < —n; however, one of the other pair of roots becomes unstable. These
other roots do depend on both the plasma current and mass and have typical growth rates
which are at least an order of magnitude greater than the first root. Thus we see that for
n > —n. the dominant features are those of the electromagnetic system, and the plasma
can be maintained provided that an active coil produces a radial field which replaces the
vessel field on the appropriate time scale. If the decay index becomes more negative than
this value, the plasma is maintained within the vessel only on the inertial time scale.

In summary, there is only one root of interest for control purposes, which is the most
dangerous one, for |n| < —n.. The roots which result from the inertial terms have slower
growth rates for this condition, but once n reaches its critical value, they have growth rates
which preclude stabilization. Thus, we focus on the real part of the root S; and find an
excellent analytic approximation for it in the massless plasma limit (instantaneous force
balance).

With the exception of the discussion of experimental results, we treat I as a constant,
namely 1.80, leading to n, ~ 1.65. Note, however, that the critical index, which is a measure
of the tolerance of the plasma in the vessel to an applied quadrupole field, is dependent
on the plasma properties through this term. In addition, the elongation achieved for an
applied quadrupole amplitude decreases with increasing £;. Thus, maximum elongation will

be a very strong function of this quantity.

2.2. The approximation of instantaneous force balance

In this limit the only solution is B.(z) = 0. Thus, we set B, = 0 in Eq. (3), solve for z,

and differentiate:

2M;, Xo .
r = ——2 . ], 12
“= welIn (12)
Substituting for z in Eq. (2), and employing the definition of n., we obtain
n.\ :
(1 + ;) I, +4,1,=0 (13)
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The eigenvalue, which we denote as g, is then

1
Yo = ——

(14)

We show this solution in Fig. 6(a). The ratio of this approximation to the first root of
Eq. (11), discussed in Section 2.1, is also shown. It can be seen that the analytic form is
an excellent approximation to the exact solution. As n becomes increasingly negative, the
growth rate gradually increases and thus the frequency response of the active circuit will

need to increase in a corresponding fashion.

2.3. The effect of a current ramp

It is straightforward to show that a current ramp can affect the growth rate of the
axisymmetric mode if the ramp rate is comparable to v,. In Eq. (2) we add the term
M,’,szp. Then, defining 97 = (I,/I,), we find that the analog to Eq. (13) is

N\ ; Te
14—, v+ — I, = 1
(+n) +( +n‘n> 0 (15)
and the growth rate of the instability is

= —(7wn + neyr)

Yo n T

(16)

Thus, fp effects are only of interest for rates of the current ramp which are unlikely to be
achieved during the plasma pulse. An exception is during the startup, where these effects
are stabilizing and, in any event, the decay index is required to be near zero in order to
form a proper null. However, for a fast system of passive stabilization, care should be taken
during the current rampdown to keep 77 < ¥,. A linear rampdown of I, will always lead
ultimately to a loss of vertical stability, but an exponential rampdown will not cause this
problem.

Note that the growth rate is changed for n > —n,, but the ideal limit remains at

n = —n,, since one of the inertial roots will have a positive real part.



3. THE PLASMA-VESSEL-ACTIVE COIL SYSTEM

Having demonstrated that the massless approximation accurately reproduces the dangerous
root, we can now use this simplification and expand the problem to include an active coil,
intended to provide stability on a longer time scale. The use of this approximation will allow
us to work with second-order, rather than fourth-order, differential equations. In this section
we accomplish two tasks: first, we add feedback control and solve the closed-loop equations
in the frequency domain, and second, we solve the open-loop equations in the time domain.
We wish to study the system (Fig. 7) of “the tokamak”, the feedback controlling the vertical
motion, and the power supply which completes the circuit. The closed-loop linear solutions
provide the basis for the feedback design and identify stable operating regions. However,
the inclusion of the power supply makes the problem non-linear in that the demand of the
feedback circuit will not always be within the compliance of the power supply. We solve
this problem by evolving the time domain solutions over time steps which are smaller than
any of the characteristic times in the problem. At the end of each time step, we take the
solution as the initial conditions for the next step, having reevaluated the voltage demand

from the feedback circuit and the power supply response to this demand.

The solutions are algebraically complex, and we have not found any further simplification
which would provide a more elegant result. In particular, all the possible couplings between
plasma, vessel, and active coil are of the same order and none may be neglected. Thus, we
choose a notation which compacts the solution as much as possible.

Generalizing Eqs (5) and (2) and adding a circuit equation for the active coil, we have

as a starting point from B, = 0
luOIpr

Y _ gt —
2X, nz—~ Myl - MypJa =0 (17)

along with the circuit equations,

dI, dls | dMypdz
L,,E+R4,I,,+M,.,E+ —cTz—EI"_O (18)
dl, dl, dM,,dz
a5 a av ;o e = Va 1
L dt+RI,,+M dt+ o dtI" V. (19)

Q = (ﬂorn/2XO)a av,a = (M;,(v'a)/Lu,a.)a ﬁu,a = (Mau/Lv,u), ‘Yu,a = (Rv,a/Lu,a); and av,a =
(M;’;(u,a) /Q). Also, we divide through by I, and henceforth I, I,, and V, are in units of

plasma current.
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Using these definitions and differentiating Eq. (17), we obtain
2=8,0y —b0a =0 (20)

along with the circuit equations,

yz + jv + 7vIu + ﬂuja =0 (21)
Qqz + ﬂa-iu + ja +Yala = %/ﬁ (22)
a

As written, these equations can readily be solved by Laplace transform techniques; in par-
ticular, we employ the relation L(df/dt) = sF(s) + f(0%).

We differentiate Eq. (17) to avoid an improper fraction in the transfer function or, stated
differently, to impose as an initial condition that the force balance Eq. (17) is satisfied. Oth-
erwise the evolution of z(t) is determined only to within an arbitrary constant of integration.
Denoting the transformed variables as £ [2(t)] = Z(s), £ [L(t)] = To(s), £ [La(t)] = Za(s),
and L [Va(t)] = Va(s), we Laplace transform this set of determining equations, obtaining

8 —b,5 —b,s 2 (s) 20 — 8ylyy — 8alyy

(avs s+ Bus ) X (Iv (8)) = ( Ay 20 + Tuy + Bulag ) (23)
a8 fas s+, Z. (s) 0a20 + Balug + Iag + Va (s)/La

The general form of the solution to Eq. (23) is

Z(s) - K.(s) + E.(s)
(I,,(s)) = H(s) x (Kv(s) + Ev(a)) (24)
Z(s) Ko(s) + Ea(5)
where K (s) is the vector of the Laplace transform of the initial conditions, and E(s) is the
Laplace transform of the excitation. Equation (24) defines the transfer function i (s), which
relates the response of an output variable to both the excitation and initial conditions.

-1

We write the transfer function matrix in the form H(s) = (ﬂ (s)/|H (s)]) , where

. 82(1_:30:311)'*'3(76'*"70) +YaYv 32(611 - ﬂaaa) + 37a5u 32(5a - ﬂ‘v&u) + 36:171:
H(s) = sz(aaﬂ" - av) = 3QyYa 32(1 + aa6a) + 87q —32(%6¢1 + ﬁu) (25)
sz(au,@a — ag) — 8QgYy —az(aa&, + Ba) s2(1+ aydy) + 37y

and the characteristic polynomial, C(s) = |[H~1(s)|, is

C(s) = 33(1 - ,Baﬂu + aaé.a + avav - C!1:,80.60 - aaﬂvav)
+ 32(a05a7u + aybyYa + Yo + 7‘u) (26)
+ %Yy

11



The characteristic polynomial, C(s), defines the global behavior of the total system, and
the matrix elements H;;(s) contain the input-output couplings. C(s) has one trivial root

(s = 0) corresponding to Eq. (20) and two non-zero roots, which we denote 71 and 7,.

From Eq. (26),
yig = Yo(1+ @aba) +Ya(l+ avby) = R o
Y27 2(@afe — @w)8y + (QwBa — @a)ba + Paby — 1]
where
R = {73(1 + a060)2 + 73(1 + auﬁu)22‘ya7u (28)

+ [6v(aaau5a + 2,08, — av) + 60(2%130 - aﬂ) + 2Bafy — 1]}%

The roots 7,2 are real with one root greater than zero. Note that there is a term which
scales as v,, as found previously, and another which is related to 7a- We shall return to this

point in more detail.

3.1. Adding feedback to the transfer function

We now study the effect of a linear feedback controller on the complete system response.
The particular case is intended to approximate the present DIII-D control system, which
operates with vertical control provided by the F6 and F7 coils (Fig. 1), which are fed in
parallel by independent power supplies but driven from the same controller signal. The
relative gains used are 8:1 in favor of the F7 coils. We shall treat the system as if these two
antisymmetric coil pairs were actually in series, preserving our second-order system and its
relative simplicity.

The unstable open-loop transfer function, H(s), must be stabilized by the addition of
a feedback voltage on the active coil. We employ a simple PD (proportional-derivative)

position controller, giving a coil voltage prescribed as

Bell) _ G, [a6) e+ G ) = ) (29)

It is important to note that a true feedback circuit treats zI, as the controlled variable;
otherwise, the circuit gains would need to be made proportional to the plasma current. This

is not explicit in our notation where we have normalized the original equations, dividing

through by I,.
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G provides the proportional positional feedback and G, provides derivative positional
feedback or velocity feedback. For the moment we neglect the inclusion of integral positional
feedback because it will raise the order of the transfer function, whereas the proportional
and derivative gains preserve the order. We assume that we will subsequently be able to
add an integral feedback term to annul the asymptotic error, using a gain which will not
adversely affect the stability, where it is critical.

Equation (23) now becomes
s —6,8 =88 Z(s)
( a,s S+7v, Bus ) X (1’,,(.9))
(ta —Gy)$s—G, Bas s+17a Z.(s)

2z — 6111110 - 6aIao
Qazp + ﬂaIvo + Ia.o + (Gz + SGU)Zref(S)
The solution for the Laplace transformed variables is still of the form of Eq. (24), except
that we now have the closed-loop transfer function shown above. For the present, we assume
that the initial conditions are quiescent, K (s) = 0, and consider only the regulator problem,
Zref(t) = 0. We restrict our attention to the response to step function excitations of unit

amplitude onto the active coil voltage, Va(s) = 1/s.

With the same notation as previously, with the subscript ¢! denoting the closed-loop

system, the characteristic polynomial becomes

C_dgs_) = 82[1 - ,Ba,Bu + Ju(au - aﬂI@'U)

8
+6a(aa - auﬁa) - Gv(aa - 6uﬁv)]
+ 31[7:1 + Yu + 5uav7a +
5a.ao7u -G, (60 - 5v,3v) - Gu6a7v] (31)

+ 30(7‘07:1 - Gzﬁa7u)

13



where we have factored out the trivial root due to Eq. (20). We rewrite this as

CLS(SI = s¥(az-diG,)

+ s'(a - diG, - doG,) (32)

+ 80(00 - d2Gz)

where we have used the notation C(s)/s = azs® + a,s + ag for the open-loop characteristic
polynomial, Eq. (26).
The effect of positional feedback is therefore seen to be characterized completely by the

two coeflicients: dy = 65 — 6y, and dz2 = 8a7,. The first term, dy, is given by

M, M
dy = 2rs _ Yo Moy (33)
Q Q L.

and simply represents the change in z due to an instantaneous change in the normalized I,,

taking into account the induced change in I,. The second term, d3, is given by

M!. R,
dy = 22 4
QL (34)
This represents the change in z due to a change in the current in the active coil multiplied
by the decay rate of the induced vessel currents, and is the rate at which the change in B,

and hence z due to the active current alone will occur.

The closed-loop numerator matrix, H «(8), remains similar to H (8), and is given by:

Hy Hi Hy3
Ha(s) = ( . Ha+88,G, + 38,6, Hyz — 3Gu8, — G.6. 1?23> (35)
H3 + 82Gy + 3(G: +7,G) + %G Haz — sG,6, — G.6, Has

Most importantly, the element Hi3, which determines the effect of the active coil voltage
on the plasma position, remains unchanged by the feedback gain coefficients. All information
on the modified vertical motion in the closed-loop system is therefore contained in the
denominator.

The roots of the closed-loop denominator are deﬁoted 81,2, corresponding to Eq. (27).
Since the denominator is quadratic, the necessary and sufficient condition for stability of
the closed-loop system is simply the Hurwitz condition, namely, that the polynomial coef-
ficients of C(s) all have the same sign. Stable sélutions will be oscillatory or overdamped,
depending on the choices of G, and G,. Rather than specify criteria on the step response

and then deduce the applicable choice of G, and Gy, which may not be realizable, we inspect
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the behaviour of the solutions in the G,:G,, plane. This will also lead us to a better feeling

for the effect of the various terms which we shall directly control.

For Cy(s) = ahs? + a}s + aj), stability requires that

a; = ay;—d,G, NI]
a; = ap - lez bt dgGu §0 (36)
ay = ag—dyG, 50

where either the upper or lower inequalities are simultaneously satisfied.

Although it appears that this second-order system can be stabilized by gains G, and
G, of both signs, one of these signs is an artifact of the approximation of instantaneous
force balance which requires an infinite speed of response to annul any perturbation. This
is most easily seen by inspecting the third-order system derived from Eq. (30), with a finite
filter time constant on the controller output, (G, + sG,)/ (1 4 s7). This leads to a cubic

characteristic equation given by

ag = apr

"

aG; = Qag— lev +ar (37)
"

a = al—le,—de,,-i-ao'r

0.6/ = dag — d2Gz

The Hurwitz criterion applied to these coefficients now becomes restricted to all coefficients
having the same sign as a,, as a necessary but insufficient condition for stability. One of
the inequality signs of Eq. (36) disappears.

Using this restricted criterion, we explore the coupled system response as the control
gains (G, Gy) are varied, Fig. 8. The stability criteria (86) correspond to the straight thick
lines A-A (G, = a3/d;) and B-B (G, = —ao/d;) and the line C-D defined by the axis
intersection points (G, G,) = (0,a,/d;) and (a;/dy, 0). In the particular case shown, the
line A-A is a stability criterion which only limits the operating region at extremely high
values of G,, when the line C-D crosses it. The stable region is therefore the lower left part
of this figure. |

The solutions are stable and oscillatory in Region I, stable and non-oscillatory in Re-

gion II, unstable and oscillatory in Region III, and unstable and non-oscillatory elsewhere.
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The critical damping boundary is shown by the curved thick line. The oscillation frequency
(w = |Im(sy,2)| ) increases either as the stability boundary C-D is approached or as —G, is
increased, and is shown by the solid lines inside Regions I and III. The system responsive-
ness, given by the most positive root, increases as G, increases away from the axis B-B,
and as —G, decreases towards the axis C-D, shown by the dashed lines in Regions I and
II; w is positive and continues to increase as we cross the line C-D towards higher values of
G,.

Although the shape of this figure does not vary for different coils and different equilib-
rium field decay indices, the regions do move and compress, as we shall see. The shape of
this G;:G, space is not even specific to the tokamak vertical control problem, but is typical
of the control of any second-order system.

One feature evident from Fig. 8, which will be used later, is that there is no connection
between the overdamped zone and the unstable zone without crossing an oscillatory zone,

as long as we keep away from the B-B axis with enough proportional gain.

3.2. Varying the decay index

Varying the equilibrium field decay index and still controlling with the F6 plus F7 coils
distorts the G:G, plane as shown in Fig. 9, for —n = 0.4, 1.0, 1.6, corresponding to
—n/n. = 0.24, 0.67, and 0.97.

Stability requires a minimum value of proportional gain G, (the axis B-B), which varies
with the decay index, n, as shown by curve 1 of Fig. 10. This criterion is always easy
to satisfy in practice. Stability also requires a minimum value of the derivative feedback
coefficient —G,, for a given value of the proportional coefficient G, although since the axis
C-D is always very flat, this value of G, is relatively independent of the chosen G;. As
the field decay index increases negatively, the C-D axis moves to more negative values of
this minimum derivative feedback gain, as shown by curve 2 of Fig. 10. Critical damping
requires an even greater value of —G,, which also increases with negatively increasing field

decay index, as shown by curve 3 of Fig. 10.
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Curve 2 of Fig. 10 shows that the implementation of a velocity term is essential for
stability above a certain field decay index, n = —0.65 for the case shown. This value of —n

is, in fact, the critical decay index of the active coils, given by

oM!2X
Zaepl0 (38)

e = T L,

It corresponds to the equilibrium field decay index at which the plasma vertical motion
would be stabilized by the active coils on their own, without the vessel, and we refer to it
as the coil critical decay index by analogy with Eq. (9). Below this value, only proportional
gain is required for stability, whereas, for a larger value of decay index, the plasma motion
would not induce a large enough EMF in the active coil to provide the necessary restoring
force for stability. By adding external derivative control gain, we can excite the active coil
with a greater total derivative gain than its own passive response, and we thereby continue
to stabilize the plasma motion for greater values of —~n. The finite vessel time constant
allows us to provide this essential derivative control with a bandwidth much lower than the
frequency w; in Eq. (9). Once this minimum stabilizing derivative gain has been added, any
further increase in the derivative gain will not provide increased stability, but will reduce

the system responsiveness.

Figure 11(a) shows the two growth rates and the oscillation frequency of the closed-loop
system when we vary the decay index with no derivative control (Gy =0, G, = -0.1),
illustrating in a different way the significance of this coil critical index n = —n, = —0.65,
beyond which one root is unstable. When derivative control is added, G, = -0.002, the
system is stable up to an intermediate value of no < —n < n., Fig. 11(b). When enough
derivative gain is added, G,, = -0.003, the system is stabilized for all decay indices up to the
critical index, Fig. 11(c). This important result — that we can control the vertical plasma
motion up to the vessel critical decay index — is true for the F6 plus F7 coils but is not
general, as we shall see in Section 5.1.

Curve 4 of Fig. 10 shows the maximum value of —G, that gives a critically damped
response with |s;| > 80, as n is varied with fixed G, = -0.15. The dynamic range of the
optimal G, is over a factor of two, and if we wish to maintain the system responsiveness
over the whole range of critical index from the value of n = 0 needed at breakdown up to

the limit, n., then the controller coefficients will have to vary as the field decay index varies.
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This could be certainly be carried out under open-loop adaptive control or by controlling
the gain coefficients dynamically based on the value of the decay index, which normally

varies slowly during the discharge.

If we choose not to vary the control gains as the decay index varies, during plasma shap-
ing towards the vessel limit n = —n,, Figs 9, 10, and 11 illustrate what will happen if the
(G:,G,) coefficients have been chosen to provide adequate operation for an intermediate
decay index, such as n ~ —n./2. Early in the discharge, at small values of |n|, the control
will be rather sluggish as the elected G, will give an excessively overdamped solution for
this lower |n|, seen in Fig. 11(c). As we increase |n|, the system will become more respon-
sive, until it is critically damped at the chosen point. Beyond this, the solution becomes
oscillatory with an increasing frequency, given roughly by w ~ (4aja} — a?/2a}).

If the power supplies fail to maintain the oscillatory solution up to —n = n,, we must
increase the G, damping term further, optimizing for the highest achievable values of -n,
which may well lead to an unacceptably slow response at smaller values of n.

Increasing the G, damping term not only allows us to reach higher values of [n], but also
reduces the maximum voltage in the linear case. As the decay index increases, the maximum
voltage requirement to correct a step input to the active coil increases dramatically for G,
= -0.001, Fig. 12. We cannot reach —n,, as we have seen. For G, = —-0.004, which we have
shown to be stable up to —n,, the voltage requirement is reduced for all values of n. The
effect of keeping the voltage below the linear evolution of the system response is examined
in Section 4.

The observations made on the closed-loop system response for the given coil set may be

summarized as follows:

¢ The closed-loop performance has been studied by inspection of the resulting charac-

teristic polynomial.

¢ There is an open region in the G,:G, space in which stable operation can be found,

up to a field decay index equal to the vessel critical decay index.

e Above the critical index of the active coils used for vertical control, velocity feedback

is essential for closed-loop stability.
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® As the decay index varies, a fixed system response requires a significant dynamic

variation of the controller coefficients.

e The active coil voltage requirements are reduced significantly by increasing the value

of G,, at the expense of system responsiveness.

3.3. Time-domain solutions

We continue to restrict ourselves to the response to a step in the applied applied voltage
(Va =0, t <0; Vo, =Vp, t> 0) for which £ [V,(t)] = Vo/s. This allows a time-domain
solution suitable for the inclusion of non-linear effects, such as power supply limitations or
time dependence of the decay index. With this restriction, there is additional cancellation
of a factor s in the response function and we can simplify B (3)-[E(s)+ K (s)] to the general

form
as8% + bys + c;
s(s —=71)(s — 72)

The inverse transform of this general response function is

a3 +bev2 +c et 4 avi + b + Ctome | _Ct
‘Y% —N72 ‘712 — 7172 Y172

(39)

We write these response functions in a vectorized form with coefficients expressed as
factors of the initial conditions by defining three vectors corresponding to a¢, by, and c;.
We recall that, when using these solutions in the discussion of power supply requirements,
our intent is to advance them for short time intervals, appropriate to the bandwidth of the
overall system, and then renew these vectors. Thus our generalized coefficients at, b, and

ct will become, effectively time dependent through this renewal process.

; 20 — 61)[00 bt 6¢Iao - - -
H(S) X a,zo + Iuo + ,BUIQO = 5282 + S18+ Sp (40)
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The time-domain solutions are
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- Z0
Sy = (I,,o) (42)
Ia,
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(44)

As our examination of the problem develops, it will become necessary to carry out this
same calculation for a system of four equations, with two control coils. We leave this to
Appendix B.

We close this section with a discussion of the time history of the solution for a particular
case. The feedback coefficients are consistent with the optimization discussed above. Qur
purpose here is to emphasize the physical system being analyzed, in particular the interac-
tion of the plasma with the active coil as mediated by the passive stabilizer. We use this

example as the basis for our study of power supply requirements in Section 4.

We take as an initial condition a plasma offset in z by &, and held in place by the

vessel current. These conditions would be the applicable ones for a step perturbation in B,
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produced by some poloidal coils not active in the vertical control system. (For example, an
asymmetric, single-null diverted plasma, programmed for constant elongation, that suffered
a change in £; due to a sawtooth reconnection would experience a step in B,.) The initial
value of applied voltage is zero. Thus z(0) = &, I,(0) = (n/n.)a,z, I,(0) = 0, and
Va(0) = 0. At t =0, 2, I,, and I, must all be non-zero for Eqs (17), (18), and (19) to be
satisfied. The # signal is passed through an RC filter with a time constant of 16 us since
some filtering is required for computational stability.

The system begins its response to the perturbation, trying to return the plasma position
to z = 0. The trajectory is shown in Fig. 13. In the first instance, the active coil current must
hold the plasma in equilibrium at some positive z. Referring to Fig. 2(b) and Eq. (17), one
sees that the externally produced radial field experienced by the plasma is negative. Before
the vessel current decays and allows the plasma to continue its upward vertical motion, this
negative field must be balanced by a positive radial field produced by the active coil; i.e.
the current in the coil must be negative. Thus, initially, our control system must apply a
negative voltage to the coil and capture the plasma in a new (unstable) equilibrium. In this
interval the active coil will induce positive current in the vessel which reduces the vessel’s
effectiveness in its reaction to the plasma. When the new equilibrium is established at some
z > 0, with the vessel current having decayed, we now consider restoring the plasma to its
initial (z = 0) equilibrium. Since a negative velocity is required, from Eq. (20) we require
f., > 0, and the voltage must turn positive. If we write V ~ G.z + G,z, then both G, and
Gy must be negative.

Note that this motion is also opposed by the vessel, and thus when the plasma has
been driven to z = 0 there will remain a positive vessel current which will push the plasma
upwards again. This positive current, which is induced by the plasma moving down, is
reinforced by the current induced by I,. It is important to recognize that the vessel does
not in any sense restore the plasma position; it only serves to slow any motion of the plasma.
Thus, to get from the initial state, z > 0, to a final state, z = 0, an initial command is
required which, in the absence of the vessel, would move the plasma to a still greater z
value. Whether the plasma actually moves to a greater z value depends sensitively on the
decay index and feedback gain settings. |
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4. POWER SUPPLY REQUIREMENTS

To evaluate the requirements for maintaining control of the plasma we have performed
a non-linear numerical study of the system as expressed in Eq. (41), retaining our series
treatment of F6+F7. We choose a simple power supply model as follows. The internal
impedance of the supply is anticipated to be negligible compared to that of the active
coil. The four-quadrant supply is limited in both voltage and slew rate. The slew time
limit, which is defined as the minimum time to effect a change from zero to maximum
amplitude (four slew times is one period), is linear, i.e. V is only affected when the demand
is greater than the allowable slew. When this condition exists, V' is clamped at the allowed
rate. Similarly, the amplitude limit has no effect until the demand exceeds the allowed
amplitude. In using this model, we must take care to separate amplitude and bandwidth
requirements. Qur feedback relation remains

Va(t)

) = Guls(t) — 2reg(£)] + Gorg [2(6) = 2res(0)]

Thus a slew limit is reflected through z as an increased voltage demand.

The model power supply response to an oscillatory demand which exceeds both the
amplitude and slew limits is shown in Fig. 14.

We determine the maximum required voltage in the absence of any limitation on power
supply slew and then use this value as the power supply amplitude while investigating
bandwidth requirements. We perform this study under conditions of constant G, (-0.4)
and Gy (-0.005). The values chosen are those suitable for operation at n ~ —n.. While
these gains are not optimal for smaller values of n, clearly any single set of gains must

include the point of most stringent requirement.

Our model problem is that discussed in Section 3.3, with the plasma initially displaced
by &z. The responses at the extremes of n are shown in Fig. 15. There is approximately a
factor of two increase in the response time as |n| is decreased from n. to zero, as discussed
previously. These responses are a standard for our experiment in that as limitations are
imposed on the power supplies we shall not allow the solutions to move “too far” from these
ideal solutions. In particular, we will require that the time required to return the plasma
to 2 = 0 is not appreciably changed and that the solution does not become too oscillatory.

We do, however, allow one zero-crossing.
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We begin by turning off the power supply slew limits and examining the maximum
voltage required to return the plasma to z = 0 for 0.002 < (|n|/n.) < 0.95. This curve is
labelled Vinaz in Fig. 16. Next we turn on the supply with infinite slew time and determine
the minimum voltage required to achieve an acceptable solution. This curve is labelled

min- Finally, we begin to restrict the slew capability of the power supply and find the
minimum slew time which does not perturb the voltage requirement very far from V3.
This curve is labelled V.

A typical result with the limited power supply is shown in Fig. 17. Theresponses z(t) for
no supply limitation, for a power supply with infinite slew rate, and for the slew-limited case
are displayed. The limitation in amplitude only makes the system response more sluggish,
as would a reduction in G,. However, the bandwidth limitation serves to destabilize the
plasma, creating an oscillatory response, as would a reduction in G,. Thus for vertical
control, bandwidth is more critical than amplitude in achieving acceptable performance.

We find that the slew rate must always be greater than 7, (209 s™1!). Furthermore,
when the open-loop growth rate Eq. (27) exceeds 4, this growth rate corresponds to the
minimum slew rate. At this minimum slew time, for n > n, the voltage requirement V' (in

Volts) scales approximately as
V = &1, Voexp[~7(n/n.)],Vo = 7.5 x 10~*

with & in meters, I, in amperes, and V; in V/ (A-m). The slew requirement at n = —n, is
in excess of 30 V/us. We note that the typical current maximum in the active coil is about
2 x 1075,

Summarizing these results: the power supply voltage requirement is linear in the plasma
displacement, linear in plasma current, but exponential in the decay index. The slew rate
requirement is adequately represented by the maximum of the vessel current decay rate and
the open-loop growth rate of the unstable mode.

We recall that we have aggressively minimized the requirements here. The power supply
requirements at the ideal limit are formidable at best. With these unpromising results in
mind and a recognition of the importance of the open-loop growth rate, we seek a more

favorable control strategy in Section 5.
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5. OPTIMIZATION OF THE CONTROL SYSTEM

5.1. Comparison of the various DIII-D coils
5.1.1. Open-loop growth rate

In Section 3 we studied the closed-loop behaviour of one particular set of coils used
for vertical position control on the DIII-D tokamak: the F6 and F7 coils, modelled as if
they were fed in series. In Section 4 we concluded that as the decay index approaches
the vessel critical decay index, the voltage requirement for the F6 plus F7 coils increases
exponentially as V' = Vj exp [~7 (n/n.)], while the slew time requirement is 5. As aresult
of this conclusion, we now explore the vertical control capabilities of all the other poloidal
field coils in the DIII-D tokamak (Fig. 1) in the hope of doing better.

When we change the poloidal field coil pair used, the shape and character of the G 2:Gy
plane stay the same, although the position of the stability and oscillation boundaries move.

These changes are due to the different values of Lo, Mgy, M}’m,

and R, of Egs (17-19).
As a first step, we inspect the open-loop growth rates for the coupled system, using each
of the nine antisymmetric coil pairs in turn, with a decay index close to the vessel critical
index, n = —1.64 (—n/n. = 0.99). The results are summarized in Table II. We recall that
the open-loop growth rate represents the condition where the coil is present, but shorted.
The growth rate in the presence of only the vessel is found from Egs (17-19) by setting
R, to infinity, and is 29,854 s~!. The open-loop growth rate for the F6 plus F7 coils was
17,144 s™1, between the values of the F6 and F7 coils separately. There is a very large range
of open-loop growth rates for the separate coils, varying from 1,379 s~? (coil F2) to a barely
modified 29,481 s™! (coil F5).

The predictions of relatively poor behavior of the F7 coil alone and good behaviour for
the shorted inboard F2 coils are surprising at first sight. The difference is mainly due to
the coupling M,, between the active coil current and the vessel image current. Specifically,
it is the coupling between the active coil current and the first antisymmetric vessel current
eigenmode, on which Eqs (17-19) are based, which is important in this calculation. Good
coupling between the active coils and the vessel actually drives a destabilizing current in
the vessel as the active circuit tries to respond to a plasma displacement. Figure 18 shows

the flux distribution of this antisymmetric vessel current mode, in the (R, Z) plane. The
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different poloidal coil positions are also indicated. Coil F7 clearly couples best to this

current distribution, and coils F1 and F2 are the least coupled. Table II also lists these

mutual inductances, M,,, for all the coils.

The flux patterns for two coils, the outboard F7 coil and the inboard F2 coil, are shown
in Figs 19(a) and 19(b) for stationary active coil currents, that is to say, with no vessel
image currents. The field pattern is more favourable for the F7 coil (Fig. 19(a)] than for
the F2 coil [Fig. 19(b)], leading to the intuitive choice of the outboard coils for positional
control. On the other hand, the induced antisymmetric vessel current resulting from a unit

step in the active coil current is
I, =~ a.v/Lv (45)

and also varies from coil to coil. The flux configuration due to the superposition of these
two currents is the prompt, or high-frequency, field pattern for the coils, shown in Figs 19(c)
and 19(d) for the F7 and the F2 coils, respectively. The exclusion of the prompt F7 coil
flux by the first antisymmetric vessel current is almost perfect, and much stronger than for
the F2 coil. When we consider only the vessel image currents in this one vessel eigenmode,
the prompt shielding of the F2 coil is extremely weak, leading to the marked reduction of
the open-loop growth rate seen in Table II. In fact, the stabilizing effect on the growth rate
is dominated by the term d;, Eq. (33), which, as we have already seen, is important when
the feedback was introduced, and which represents the prompt radial field on axis.
However, the vessel shell is of course complete, and all prompt flux must be perfectly
excluded, as we would find if we were to include all of the higher eigenmodes of the vessel
image current distribution. The apparent superiority of the F2 coils in improving the open-
loop growth rate is partially due to the incompleteness of the simple three-loop system
in modelling the vessel image currents. The F2 coils are almost unshielded by the first
antisymmetric mode, Fig. 19(c). To resolve this issue we have evaluated the growth rates
from the characteristic polynomial for a system with two vessel modes. Both the second
and third antisymmetric modes have been tested, and neither, when combined with the first
vessel mode, causes more than a few percent change in the growth rate with the F2 coils.
Eventually, we would reach a mode of high enough order to exclude the F2 flux; however,

these modes are decaying at ever faster rates, while the plasma is still being restrained by
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the first, slowest mode. The control flux from the F2 field coils will always penetrate the
vessel on a much shorter time scale than that from the F7 coils, whose strong coupling to

the first antisymmetric current mode condemns them to the speed of this slowest vessel

mode.

5.1.2. Closed-loop control

In Section 3.2 we found that we could stabilize the vertical plasma motion up to the
vessel critical decay index, n = —n,, and that this was true as (-G, —G,) tended to
infinity. From Eq. (36), f:his is clearly not so if d; > 0. In this case, the coefficient as,
becomes positive at high Gy, leading to unstable roots. This new criterion, satisfied by the
F6 plus F7 coils in Section 3.2, can be written as
M, M

o
> T =1.209 (46)

Inspecting the individual coil pairs for their values of this coefficient, listed in Table II,
we find that coils F1 through F6 satisfy the condition, and the F7, F8 and F9 coils, closest
to the first antisymmetric eigenmode current distribution, do not.

The maximum decay index achievable is shown in Fig. 20 as a function of the velocity
feedback gain times the coil inductance, G, L,, for the F7, F2, and F9 coils. The F2 coils
reach —n = n. at a minimum value of G,L, and continue to provide stable control as
the derivative gain is increased further. Coil F7 reaches —n = 0.9 n., after which more
derivative gain becomes destabilizing. The F9 coils have a still lower value of this criterion

and cannot reach values of —n higher than 0.82 n,.

5.2. Fast/slow hybrid control

The results derived in Section 5.1 led us to conceive a new way of approaching vertical
position control on the DIII-D tokamak. The F7 coils, presently dominant in the vertical
position control, provide the best rigidity of the plasma position for a given active coil
current, but are unable to control the radial field on axis on a fast enough time scale to reach
the vessel limit. The F2 coils, on the other hand, are at least a factor of 3 faster at producing
a radial field on axis, but do not produce a large homogeneous radial field for defining the

steady position. The proposed improvement is to mix the position controller signals between
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both the F2 and F7 coils, weighting the F2 coil predominantly with derivative feedback gain.
We expect this fast/slow hybrid control to improve the positional control as the decay index
is increased and the open-loop growth rate increases. The open-loop growth rates for the

F7 coils only, the F2 coils only, and the hybrid are compared in Fig. 21.

5.3. Power requirements for the hybrid control system

We wish to compare the power required for this hybrid system to the results obtained
with the F6+F7 coils. The Laplace transformed equations, Eqs (17-19), have been extended
to include two active coils (Appendix B). We retain only the first vessel current eigenmode,
having established that the second and third antisymmetric modes still have a negligible
effect on the open-loop growth rates.

As we have presented the hybrid system, steady-state solutions exist when the vessel
current has decayed, but coil currents remain in the fast (inboard) and slow (cutboard) coils
which provide net zero radial field on axis. We shall eliminate such solutions by placing a
high-pass filter in the control loop which drives the fast (F2) coils. Using a time constant of
10 X 7y, these coils are allowed to react to the plasma on the appropriate time scale, but in
steady state the applied voltage will decay to zero. This has an added advantage in that the
measurement system is itself sensitive to the fields produced by the coils. No matter how
good the compensation for these effects, there will always be a difference in the measured
position if the currents producing the radial field are moved from one coil to another. Here
we have a system which will have a unique relation of the measured and actual positions in
the steady state.

Additionally, since we place a premium on higher-frequency power, we will intercept the
derivative signal to the slow (F7) coils with a low-pass filter with a time constant of T,.
Thus, we can still provide derivative gain with the slow coils and avoid the destabilizing
effects which occur if the bandwidth is not limited. That is, we filter the signal to avoid the
creation of a flux pattern inside the vessel similar to that shown in Fig. 19(c). This allows
us to minimize the power to the fast coils at the expense of somewhat higher requirements
for the slow coils. The version of a hybrid control éystem used in these calculations of power

requirements is shown schematically in Fig. 22.
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We have not done a formal study of the stability of the linear system equation, Eq. (B.58),
in the space G,,:G,,:G,:G,,. This would be a complex process and, from the preceding
discussion of the circuit modifications needed for optimum solutions, we would still have to
modify the gains calculated there. We have studied some restricted aspects of this solution
space. In particular, we find that there are stable solutions with only proportional gain
on the coils. These solutions show a very fast response and require larger power supply
bandwidth than those with derivative gain. For this reason we do not pursue them; they
are mentioned here because this feature is discussed in the experimental results.

To quantify the improvement provided by the hybrid system, we have repeated the
evaluation of power supply requirements of Section 4 at n/n. = —0.99. We take as the figure
of merit for power supply utilization the product V™22 ™=(4V/dt)™**  which contains both
power and slew rate demands on the power supplies and is roughly their cost scaling. When
comparing this result to that for the F6 + F7 coils we have divided the voltage for the
latter case by two, accounting for our series modelling. The results are shown in Table III.
ymaz[mas(dv/dt)™e*, which is a rough measure of power supply cost, is reduced by a factor
of 225. The power consumption is nearly halved. Given the fact that the tokamak power
systems typically cost more than the tokamak itself, such a gain for a bit of control circuitry
is not to be ignored. We find that the amplitude requirement is reduced by nearly an order
of magnitude. The bandwidth requirement is reduced by approximately 20 in accordance
with the change in the open-loop growth rates shown in Table II. The power supplies needed
for this control scheme are quite reasonable by the standards of present fusion experiments.
Because the operating point in the four-dimensional gain space has not been optimized,
further reduction in the power supply requirements may be possible.

For the hybrid system, there is not a serious bandwidth requirement for the F7 coils
which position the plasma. These only need a response time comparable to the vessel L/R
time of 5 ms. However, we find again that the slew requirement for the fast part of the
system is the open-loop growth rate. The reduction in this growth rate is the critical factor

in reduced power supply demands.
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6. EXPERIMENTAL CONFIRMATION

We summarize the results of recent vertical control experiments on DIII-D. The full details
of these experiments will be reported in Ref. [4]. We began with the observation that
plasmas with decay indices of about —0.95 were lost vertically, while the critical index for
the vessel is about 1.6. It was found that the amplitude of the G, term in the control
loop was sufficiently small that reversing its sign did not result in a disruption. Thus, this
value of n = —0.95 represents n,. We calculate that for our model configuration of F6+F7,
ng = —0.65. The reason for the discrepancy is that the equilibrium control is based on flux
projection. If the plasma moves vertically, all the poloidal coils contribute a restoring force
as they sense the vertical imbalance in flux. This effective reduction in the impedance of
all the coils to antisymmetric current flow raises the value of n,.

The system response to a series of step inputs was studied for different decay indices
and control gains. The validity of the magnetically measured position was checked against
a differencing of soft X-ray horizontal chords. A typical response is shown in Fig. 23. It
can be seen that as the decay index slowly increases the decay of the oscillatory behaviour
becomes slower.

We summarize here the main experimental results.

e The main character of the G,:G, plane, Fig. 8, has been verified.

e The influence of the decay index, Fig. 9, has also been demonstrated up to the vessel
critical decay index. That is, as n increases, increased derivative gain is required for

stability at constant proportional gain.

¢ The destabilizing effect of the current rampdown has been observed [Eq. (16)]. (The
open triangle in Fig. 24)

e The faster response of the plasma to an excitation of the F2 coils has been experi-

mentally verified.

o A formal system identification of the dynamic closed-loop system has been performed.
The DIII-D vertical control is dominantly a second order system, as in Eqs (17-19).

We observe overdamped, stable oscillatory, and unstable oscillatory responses.
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¢ The vessel critical decay index was not reached even at high G, with only the F7 coils
used for control, as in Fig. 20. This is shown by the solid line in Fig. 24.

e When velocity gain was added to the F2 coils as well as to the F7 coils, the maximum
achieved decay index approached the calculated vessel limit for these particular plas-
mas, shown as circled asterisks in Fig. 24. This series of measurements was carried out
the day after a vacuum leak when the plasma was very dirty. Thus £; was about 1.5,
much larger than normal, accounting for the low value of n, = 1.3 and the relatively

low elongation (x ~ 2.2) obtained in these unfavorable conditions.

e As the decay index approached the vessel limit, the controller voltage output increased
significantly, as discussed in Section 4.

e Proportional gain applied to the F2 coils is stabilizing. (The open circle on Fig. 24)
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7. MEASUREMENT OF Z

The closed-loop Eq. (30) was derived in terms of the plasma position z(t) and a corrector
given by the (G;, Gy) control gains. This presupposes that we are able to instantaneously

measure z(t), the height of the current centroid, under all conditions.

Actual measurements of z(t) are carried out on the DIII-D tokamak using a linear
combination of flux loop and magnetic field signals. The signals obtained from these coils
are, however, also sensitive to all other currents, mainly the poloidal field coil currents and
the induced currents in the vacuum vessel. Since the total signal will be the linear sum of

these two additional effects, we can write

Zobs (t) = 2(t) + Culy(t) + Cals(t) (47)

where we have normalized with respect to I, as before. Except for the relatively fast
skin effect, there are no dynamic terms. Poloidal field coils other than the one we are
considering can contribute, and vessel eigenmode currents other than the first one may
contribute, depending on the detection loop and coil placement. The signs of C, and C,
are negative and positive, respectively, if we measure Z,,(t) by outboard flux loops only.
For more complex measurements, C, and C, must be evaluated for the specific geometry.

One approach to this problem is to back off all the C, terms electronically, using the
measured I,(t) signals, and to back off the C,(t) term using a reconstructed value of L,(¢).
We examine the effect on the closed-loop system stability of not performing this compen-
sation at all, or of doing it imperfectly.

Since the corrector acts on ze, (t) rather than on z(t), the closed-loop system is modified,
and the left-hand matrix in Eq. (30) now becomes

8 —6,8 —b8a8

( a8 S+ Yo ) Bus ) (48)

(0a=Gy)s=G: (Ba—CuGu)s—CuG: (1= GyCa)s + (Ya — G,Ca)
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The resulting characteristic polynomial, analogous to Eq. (31), is

Cals) _ 5%[1 — BBy + u(cy — ctafBy)

3
+6a(Ca — ayBa) — Gu(8a — 6.,8,)
—Ca(aby + 1)Gy + Co(@uba + B,)G]
+ 8'[Ya+ v + fuuTa
+6aavy — G2(8a — 6,8,) — Gubaby
~Ca(@wby + 1)Gy + Cu(auba + Bu)Gy — CaruGh] (49)
+ °(1¥a = G2bam — Ca1uGh)

which we rewrite by analogy with Eq. (32) as
Ca(3)

3

.92((12 - d1Gu - elGuCa + €2G1,Cg)
+ 31 (a1 - lez ol d2Gv - eleCa + eszC., - egCaG,_,) (50)
+ a0 — d2G. — €3CaG,)

where the new coefficients are e; = a,8, + 1, ez = a8, + Bv, and ez = 7,,.

The stability criterion is then that the coefficients of this polynomial have the same
sign as az, as before. We can inspect these modified criteria to develop some intuition for
the effect of a lack of compensation on the closed-loop system stability. Most simply, the
stability of the s term increases, since the coil current increases the response, effectively
increasing —G,. The oscillation frequency will therefore be increased. The s2 term is slightly
destabilized by e; < 0, corresponding to the effectively increased proportional gain, and by
e2 < 0, corresponding to the vessel current “hiding” the displacement. As a result, the
velocity term will have to be increased in magnitude slightly to compensate these terms.
Only if —e;Cy > +d; will such compensation not be possible.

The term linear in s is more complicated and affects the sloping line C-D of Fig. 8
which defines our effective stability boundary. There the terms —e3C,G,, +€,C,G, and
—e1CaG,, will all be destabilizing. We have already seen that the a; term is compensated
by an increase in G,,, which is still possible provided that +e3C, < ds.

With these simple considerations, we have demonstrated that a stable (Gz:Gy) control
setting can be found, provided that —e3C, < —d; and +e,C, < —d;. Otherwise, dynamic

compensation will still allow a practical control system.
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Although this conclusion is not particularly general, one important feature must be
noted. The choice of optimum placement of detection coils will always be complex, involving
the dynamics of the vessel image currents. Furthermore, the apparent coil critical index, ng,
will vary with the detector coil placement. We will, in general, be forced to use G, partly to
stabilize against the effect of the vessel currents, in the position measurement itself, on the
closed-loop response. Thus, we will find particular detection coil locations which will create

a requirement for more or less velocity gain in order to obtain stable system behaviour.
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8. CONCLUDING DISCUSSION

A simple model has been developed for the control of axisymmetric instabilities in tokamaks.
We begin with the proposition that a single-filament model of the plasma is adequate for the
study of the control problem. We then demonstrate that the massless plasma approximation
describes the plasma-vessel interaction on the control time scale, and plasma inertia plays a
negligible role. The ultimate justification for this model is its agreement with experimental
results. A single filament is a successful descriptor for the control problem because even

highly elongated plasmas look similar to a filament at the vessel wall, where controlling

- measurements are made. To illustrate this, we show a highly elongated equilibrium in

Fig. 25. (We have not yet produced this equilibrium in the experiment.) For this case, £;
is 0.65, indicating that the current profile is quite broad. Along with the equilibrium flux
contours, we show the plasma contribution alone. This should be compared to the flux
contours of Fig. 4. While there is some difference near the axis, along the vessel wall the
change is quite small. Thus, the effect of high elongation is more in the effect of the external
field on the measurement of plasma position than in the dynamics of the interaction between

the vessel and the plasma motion.

The equations are solved using only one eigenmode of the antisymmetric vessel cur-
rent distribution. It is a simple consequence of toroidicity that this mode will be excited
predominantly by the vessel-plasma interaction. A strong motivation for using such an
eigenmode expansion of the vessel current is the time ordering of these modes. Each sub-
sequent mode has a finer spatial scale than the next lower mode and, therefore, a faster
decay. These simplifications allow us to add the required active control circuit and continue
with a second-order system. Again, the experimental observation that the system exhibits
second-order behavior is compelling evidence for the suitability of this approach.

While we have studied two higher-order modes, we did not pursue this investigation to
the point of establishing which eigenmodes will interact with the F2 coils. Inclusion of the
£ =2 or £ = 3 vessel eigenmode along with £ = 1 and the F2 coils changes v, by only a few
percent. We did not identify the mode number which interacts strongly with the F2 coils.
The experimental results confirm that the mode number is high enough to have little effect

on the control problem. In separate work [6], the higher-order modes have been examined.

34



It is found that the F2 coils couple most strongly to the £ = 6 mode which decays with an
L/R time of 0.98 ms, compared with 4.78 ms for the £ = 1 mode.

We find that the critical index of the active coil represents the decay index above which
the system is unstable in the absence of derivative gain. However, with the appropriate

choice of coils and gain settings, it is feasible to operate up to the vessel critical index.

Perhaps the most interesting result is the difference in system response with different
choices of control coils. While inboard coils slow the open-loop growth rate by more than a
factor of 20 relative to the vessel alone, many of the coils on DIII-D have negligible effect
on this growth rate. That is, the destabilizing effect that results from their interaction with
the vessel is nearly as strong as the stabilizing effect of producing a radial field within the
vessel. While these results might well be mitigated by strong coupling of the plasma to
other regions of the vessel as the plasma makes large excursions and is deformed, this does
not seem to us to be an attractive feature for a control system. One wishes to control the
plasma with only small excursions from the reference position. From our calculations for
DIII-D, it appears that reasonable control without inboard coils would be quite difficult.
The F7, F8, and F9 pairs do not allow us to reach the critical index, and even the F5 cails,
which are quite close to the center column, are undesirable in that Yol is quite large. It is
unfortunate that such valuable space is required for vertical control, although these coils do
not necessarily carry large equilibrium currents. We have not examined the use of the F6
coils alone in any detail. It can be seen from Fig. 3 that their interaction with the second
and third eigenmodes will be stronger than that of the F2 coils. Their location will make
them much more sensitive to the details of the vessel geometry than inboard coils, but as
outboard coils are moved closer to the midplane they become more effective. However, as
with the comparison of the F1 and F2 coils, moving the coils too close to the midplane will

reduce their effectiveness.

Power supply requirements for control have been studied in detail. The principal result
is that the power supply slew rate is approximately the open-loop growth rate. This is
seen to be the most critical feature of the power system, in that a lack of bandwidth is
equivalent to a reduction in the derivative gain, which is the stabilizing term. The required
voltage scales exponentially with the decay index but linearly with the plasma current and

the position measurement resolution. The choice of coils and the control strategy have a
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marked effect on the power requirements. It is quite possible to find coils on DIII-D, such
as the F5 pair, with which a formal treatment indicates that the plasma can be stabilized
up to the ideal limit, but for which the power supply requirements are not realistic.

Experimentally, in DIII-D the value of n, is approximately 0.94, somewhat above our
predicted value of 0.65. The reason for this discrepancy is partly the flux control used to
shape the plasma. This acts as if proportional control for vertical stability were explicitly
provided to all the coils, since the programming demands a symmetric flux pattern (or a
specified asymmetry). This has the effect of reducing circuit impedance to antisymmetric
current flow if the plasma moves vertically. Additionally, simply the inductive coupling of
the plasma to these coils will act passively to suppress the growth rate. In fact, we have
calculated that were the impedance of all these 18 coils to antisymmetric current reduced
to zero, n, would be about 1.55, quite comparable to n..

One might consider that this is a sufficient control system for a tokamak, in that DIII-D
operates routinely with x ~ 2. However, the large value of n, is attributable to surrounding
the plasma with 18 poloidal field coils driven by individual power supplies. Were the coils
moved further from the plasma or driven symmetrically in up-down pairs, n, would be
decreased. Further, the elongation per unit quadrupole lessens with increasing aspect ratio
and future devices are likely to have aspect ratios greater than the 2.5 value of DIII-D.
Thus it is unlikely that x ~ 2 will be achieved quite so readily.

While the equations describing the system are, in principal, straightfoward, the algebra
is somewhat tedious. The solutions are not intuitively obvious as presented, but are trivially
evaluated numerically. We have provided considerable detail in the hope that they will be
used in the design of future tokamaks which have high elongation as an experimental goal. It
is the nature of the tokamak that all the circuit elements are closely coupled to the plasma,
or else they would not be there. As a consequence, all coils are closely coupled to each other
and to the vessel. Other than the obvious decomposition into odd and even functions of
z, which allows us to eliminate the remainder of the poloidal coil set from the problem, we
were not able to simplify further.
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Appendix A.
EIGENMODE REPRESENTATION OF THE VACUUM VESSEL

In order to incorporate the effects of the vacuum vessel into the equilibrium analysis, a
lumped-circuit representation is required. One option is to use a large number of parallel
filaments and to treat each one as a separate circuit coupled to the plasma, active coils, and
all the other filaments. However, this makes the problem rather unwieldy because of the
large number of coupled equations that result. The approach taken here is to first analyze
the vacuum vessel by itself in terms of the normal toroidal-current modes. The normal modes
turn out to be eigenmodes of an integral operator with a symmetric kernel. Each eigenmode
can be represented by an RL circuit decoupled from the others by virtue of orthogonality,
but inductively coupled to the plasma and active coils (Fig. 26). The eigenvalues are just
the R/L decay rates for the corresponding circuits. As is characteristic of Sturm-Liouville
problems such as this, the decay rate increases and the coupling to the plasma weakens with
increasing eigenmode order, providing a double justification for neglecting all but the lower-
order modes. For most purposes, in fact, only one mode need be retained, thus reducing
the vacuum vessel representation to a single circuit in the equilibrium control analysis.

We approximate the vacuum vessel as an axisymmetric toroid whose cross section is
that of the actual vessel being modeled. The vessel wall thickness, t,, is assumed to be
small compared to characteristic minor dimensions, so the wall can be regarded as a sheet
with a surface conductivity o, = ot,, where o is the bulk conductivity of the material. The
vessel (Fig. 27) is thus defined by the contour of its wall in a toroidal plane (X, Z), which is
described parametrically by the functions X,(s), Z,(s), and oy (s). The parameter s, where
0 < 3 < 30, is the arc length along the closed contour (such that the points s = 0 and s = sq
coincide), and oy (s) is allowed to vary along the contour.

For an arbitrary toroidal surface current distribution K (s), the poloidal flux linked at a

toroidal ring through point s is
Y(8) = 2mpug /ao ds'G(s,s") K (s) (A.1)
0

where the symmetric kernel G(s, s') is the Green’s function,

X(9)X () [(2 - 2*) K (z) — 2E(z)]
722 {[X (s) + X (') +[Z (s) = Z (s")]*}1/2

G(s, s) (A.2)
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22 = 4X (3) X (s) (A.3)
[X (s) + X ()] +[2(s) — 2(s")]?

and K and E are complete elliptic integrals.

For the normal modes problem, in which the vessel is considered in isolation from other

sources, the local current is related to the local flux by Ohm’s law:

2 203) g (5) = —4i(s) (A4)

ayu(s)
An eigenmode £ of the system is characterized by a distributed mode current Ky(s), but

will be represented by a lumped circuit carrying a current I, which we relate to the surface

current by
I

Ky(s) = Zku(s) (A.5)
So

where k,(s) is a dimensionless eigenfunction. The mode decays as exp (—7,t), so Egs (A1)
and (A.4) combine to yield the integral equation,

X(3)
207e(3) ke(s) (A.6)

o7 /’o ds'G(s, 8" )ky(s') =
)

for which the decay rate v, is the eigenvalue. Because of the symmetry of G(s, §'), any two

modes m and £ (m # £) will satisfy the orthogonality condition

* . X(s)
d ke(s) =0 AT
J deom P knalials) (A7)
The normalization condition (i.e. for m = £) is
% X(s) 2 Xoso
d k = — A8
/0 * 1054 (3) (ke o)) HoTyo (A.8)

where X and o, are arbitrary but characteristic values of X and o, for the vessel.

We can now derive expressions for the circuit parameters that represent the eigenmode £.
The mutual inductance M., between the mode and a coil ¢ located at (X.,Z.) (e.g. the
plasma, or one coil of the active control windings) can be derived by combining Eqgs. (A.1)

and (A.5) [since ¥(X,, Z.) = M.Iy):

My =

2o /0 * d5'G(e, o ) ku(s) (A.9)

3o
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where G(c,s’) is defined by replacing [X (s),Z (s)] by (X.,Z.) in the definition of the
Green’s function [Eq. (A.2)]. The mutual inductance between two distinct modes m and £

is

Mone 2””° / ds Enn(s) / ds'G (s, ')ke(s') = 0 (A.10)
which vanishes by orthogonality [Eq. (A.7)]. The self-inductance of a mode £ is
L = 2"“" / ds ky(s) / ds'G(s, &' )ke(s) (A.11)
_ 27TXO
B S00v Mt

and the resistance is v, Ly:

21TXQ
800y

Ry = (A.12)

which, interestingly, is independent of mode number.
We note that the evaluation of Egs (A.10) and (A.11) by numerical integration is compli-
cated by the logarithmic singularity of G(s, s') at s’ = s [or 22 = 1, referring to Eq. (A.3)].

We treat this by using an approximation for G when s’ is close to s, such that 1 — z2 < 1:

G(s,s') ~ 25(’) [InSX( )—2- %ln(s—s’)z] (A.13)

This can be integrated analytically, allowing us to approximate the contribution to the
contour integral over s’ from an interval (s, s + §s) near the singularity:

X (8)ks(s)
2n

/’ " 4G (s, ') ke(s') = b5 [m 8X(s) _ 1] (A.14)

|és]
The integration over the remainder of the contour is treated by simple numerical integration
methods, such as the trapezoidal rule.

The eigenfunctions and eigenvalues of the problem are found by starting with a trial
function ks (s), and successively applying an integral operator proportional to G to it (where
Gk(s) = [5° ds'G(s,s')k(s')). This works because any arbitrary trial function is expandable
in the eigenfunctions of the operator G, namely the k;:

keo(s Z Cik(s) (A.15)

n=0
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The expansion coefficients C, are unknown at this point. We operate on k; a large number

of times N with the operator [ug0,(s)/X(s)]G to obtain the lowest eigenfunction:

ay,(s ay(s N = Cy
by = 228Gy = [A2) gk o) = L k) (4.16)

For large N, the series in Eq. (A.16) will be dominated by the mode with the smallest ~,,

L.e. the lowest-order mode, so that k;y(s) will cease to change with increasing N, except for

- a multiplicative factor. We use this as the convergence criterion. Once k,y has converged

in this manner, we use Eq. (A.8) to find the factor needed to convert it to a properly

normalized ko(s) and use Eq. (A.6) to determine the eigenvalue:
s0 -1
o = [ [ as ko(s)gko(s)] (A.17)

Finding one of the higher-order (£ > 1) eigenfunctions requires that all the lower-order
ones be found first and filtered out of the initial trial function. The coefficients of known
eigenfunctions in Eq. (A.15) can be found by making use of the orthogonality [Eq. (A.7)]
and normalization [Eq. (A.8)] conditions,

XQSQ X(.S
o= (222 s ka(a)kn(s) (A18)
To find the £th eigenfunction, then, we first find the coefficients of modes 0 through £ - 1
for our trial function, and then generate a modified trial function that has mode £ as its

lowest-order mode:

-1

keo(s) = keo(s) — 3 Cukes) (A.19)
=0

If we apply the operator as before, starting with this modified trial function, then k(s) will in
principle emerge as the surviving term. In practice, however, numerical errors cause lower-
order terms to reappear, and these would eventually dominate so that the procedure would
once again lead to ko(s). To prevent this from occurring, the lower-order eigenfunctions are
filtered out as explained above from each kyy(s) before continuing the sequence.

In the case of an up-down symmetric vacuum vessel, such as that of Doublet III-D, the
eigenmodes are of two types: up-down symmetric and antisymmetric. Only the antisym-
metric modes are excited by vertical plasma displacements, so the others can be neglected
for purposes of this paper. The antisymmetric modes are selected by starting with an an-

tisymmetric trial function and enforcing antisymmetry periodically to keep the symmetric
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modes from entering due to numerical errors. The eigenfunctions for the first three anti-
symmetric eigenmodes (numbered £ = 0, 1, and 2, as though the symmetric ones did not
exist) are plotted in Fig. 3 of the text. Table I lists the time constants and the parameter

2M, ['?,Xo /toLye, which is a measure of the mode’s effectiveness in vertical stabilization.
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Appendix B.
THE HYBRID SYSTEM

As in Section 2 we begin with the open-loop system. We replace the subscript a

with s (slow) and f (fast) and extend the definitions of Section 2: Q = (ueI'n/2Xo),

a[v,a,f] = (M;,[u,,'f]/Lv,s,f)s .B[s,f] = (M[a,f]u/L['s)fD’ 7[u,a,f] = (R[v,s,f]/L[u,a,f]): 5[u,a,f] =
(M;”[v.a.f]/Q); we add the definitions e, = (M, s/L,), ¢ = (M, ¢/Ly), vs = (M,,/Ly,),

vg = (Myy/Ly), reducing all coefficients to a single number. The set of equations to be

solved is
s —bys —b,s —bss Z(s)
QuS S+, U, vss Z.(s)
0,8  fB,8 S+7, €8 X T,(s) (B.1)
ags  fPys €8 Yr+s Is(s)
Z9 — ‘SuIvo - 6,.[,0 d 6fIf°
Qyu2o + I"o -+ V,I,O + VfIfo
0320 + Balug + oo + €5, + v,(s)/L,
aszo + Brlu + €plag + I, Vs(s)/ Ly
=-1
Inverting the matrix H  and extracting the characteristic polynomial, we have
= 3(3) =(2)
H(s) = $*xH (8)+s*xH (s) (B.2)
(Vs + Y%+ 8717 87570 64757
+s x ~QY Vs V#7Ys 0 0
— Qs Y 0 Y Y 0
_af737v 0 0 73711
YV 0 0 0
0 0 00O
Tl o o000
0 0 00
3(3) 3(2)
where H (s)and H (s) are
B = (Byes — Bu)vs + (Baes — Br)vs — epes +1 (B.3)
AP = (o, - aze,)v, + (a5 — Qu€4)Vf + QyEfey — Qy (B.4)
BE) = (cuBs — asB)vs + (o = auBp)es + aufs — (B.5)
I:Iﬁ) = (afBs = asff)Vs + (a5 — aufBs)es + By — ay (B.6)
A) = (816, — Sueg)es + Bubses + 6, — Bubs — By (B.7)
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ity

2 = (=65 — ay8l)e, — aubpes + a8, + agdy +1
H;(;sz) = (afby + Br)es — asby + (asfBs — pB:)65 — Bs
Hﬁaz) = (ayby + Bs)ef — apdy + (asBs — a,Bs)8, — By
B = (8185 — 6.)vs + (bues — Byba)vs — S7¢5 + 6,

-

A

3= (=agly — Vuy + (e + agbu)ug + audpes — aud,
B = (~apby = Br)vs + by + (af — auBy)bs + 1
B = (g8 + B1)vs + (=aby — L)es + (@b — ap)8,
BE) = (660 = Bubs)vs + (B.8, — 8,)v5 — buey + 65
fléi) = (€5 + asbf )y + (—aub, — 1)vs + b€, — @, 8¢
HE) = (a8 + Ba)vs + (—ayby — 1)es + (aufy — )8
3334) = (—asby = Bs)s + auby + (a5 — ayfs)8s + 1
Eﬁ) = —BsvsVs — BpYsVs + (1~ €s€,)7, + 95 + 75
B = aypvs + apravs — aus - 0y

E:g:zl) = (afe, — o) + (wBs — as)7f

A = (cues = ap)ro + (@uBs — a7,

H1(22) = (6y = B8 )vs + (85 — Bsba )7y

B = (as8y + 11+ (b + 1y

A = (—a,8, - B.)s

AY) = (~as8, - Bs)ve

B = ~8ovpva + (8, - Sres)v + 857f
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A = -y, — by

Hzgza) = (apbs + 1)y + (@uby + 1)7¢
B = (~¢s - o)y,

Hﬁ) = —8uYsvs + (85 — 8s€s) 70 + 857
Héz‘;) = —Ys¥f — yd57s

B = (~& —aubp)7,

B = (aby + 1)y + (eu6, + 1),

The characteristic polynomial for this system is
C(s) =

s {{(cpby + By)es — aubo + (@uBs — @48,)85 — Bilvs
+ [(asby + Bs)ep — aydy, + (arB, — a.Bs)8, — Bylvy
+ [(—auby = Des + (0us — ap)Bules + (@B, = a)6ses + by
+ (a5 — aufs)8s + (af — auBy)és + 1}

+ 2 {(—asby = Ba)VsVs + (—asby — By )1evy
+ [(—ef — agb)es — aulpes + a8, + ol + 1y,
+ [avby + (af — awBs)8s + 1]7s + [@ubs + (@0 — awfs )8, + 177}

+ $H{{(as8s + 1)70 + (@b, + Lrglye
+ (awbu + 1)7£7.}

+ (v ve)

45

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)



Factoring out the trivial root, and denoting the remaining roots of C(s) as S[1,2,3], We

arrive at the time domain solutions for the system in vectorized form:

z(t)

L(t) | _ & [(52 — 81)s2e% + (5182 — s2s5)e2t + (8253 — 81%55)et
L(¢) 3 i (82 — 81)8% + (s% ~ s2)s3 + 5152 — s2s2

Iy (t)

by r(:32 — 31)33e% + (3182 — s283)e®t + (s183 — slsz)e’lt]

(82 — 81)83 + (82 — s2)s3 + 8152 — 5235

= [(s2 = s1)et + (s; — 83)e"2t + (33 — sz)et
(82 — 81)95 + (s? — s2)s3 + 8182 — 5235

+ 5{‘ -(slsg - sfsz)e"“ + (311"33 - slsg)e”‘ + (szsg - s%sg)e"lt
I (5183 — sBs2)sd + (352 — s183)53 + (s2s3 — s3s2)s3
[ (81 — 82)93 + (2 — s%)s3 — 3152 + 5?3,
L § B.36
® | 2] = sTea)sd + (o2 — a1D)3B T (7% — sT5T)s (B.36)
Defining
le = [(apby +Br)es — asby + (asBs — agB,)65 — Balvs
+ [(asby + Bs)ef — ayby + (afBs — asB¢)8s — Bflvy
+ [(—~owdy ~ 1)es + (awBy — ay)é, e,
+ (avﬁa - aa)6f€f + aydy,
+ (a, - auﬁ,)é, -+ (af - auﬂf)éf +1 (B.37)
the solution vectors are
20
= L,
S3 = I, (B.38)
Ifo
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{(asby + Bs)1sve + (apby, + B )rsvs + [(e5 + @b, )e,
+ adper — auds — aply — 1y, + [—awby + (uff — ay)és — 1]v,
+ [—avav + (aw@a - a3)68 - 1]7f}20
+ (B8 — bues)es + Babses + 6y — By — B¢ lvulu,
+ [(Bs8s — 6u)¥avs + (Sves — Brbs)¥svs + (65 — 61e4)7a] L
+ [(8ues — Bobg)1svs + (B85 — bu)1svs + (85 — bs€5)7415,
[~ e+ st + (228, — $81)8 1w
+ [~ febues + 726, + (B85 — £28,)8.]us
V,
+ Zi-a,é, + L.6f€f — Z:-&_, — f?é‘f

{(a,&,, + ,33)7)‘”5 + (afav + ﬂf)‘Ysz + [—av5u + (av,@f
—af)bs—1lv. + [—audy + (ctwfBs — @5)8, — £ Hu,
+ [(—apbs = 1)yyev, + (€4 + asds)ysvs + (awbpes — aybs)7s]lag
+ [(es + aa5f)7fVa + (—asbs — 1)yv5 + (aubse, — ands)v41Is,
V. \?
- fhea+ (a7t — augh)or + Plvs
[ Fres + (ot — as )6, +sz
- a,,L!6,e, O‘UL drep + avL 8y + a,,L 6f
[(a,&v + ﬂf)eo — by + (as,af - afﬂa)5f = BaYolvo
+ {(@sby + Ba)vsvs + [(€f + afdy)es + asbges

—aabs — apls — 1y + [~avby + (@uBs — )85 — 1]74},,
+ {(@aby + Ba)vsvs + [(— by — 1)€s + (auBs — @s)85}7 3,

V, V,
+ (sl - ags) 6~ 2280 + Fy] vy
+ (av%,tf'au + %";') €y — av%’":'é.v
V. ’ \7
+ (—auz’;ﬁa + avz,‘{:"ﬂf - af%"“ + asz’;)5f - %’f

[(0350 + ,Ga)ef - af5u + (af,@s - a,,Bf)5, - ﬂf]'YvIvo
+ {(afby + Bs)vavs + [(— by — 1)ef + (awBs — af)8s]7s Hio

+ {(aslo +B)revs + [(ef + arls)es + aslses — @by — azdy — 1y,

+ [~ad, + (auﬂf ~as)bs — 1]v,}1y,

+ [(a’% ) "+L,ﬂ9 Lﬂf]ys+(avL by +%’:~>ef
”??6 (a”fLﬂ’—avaﬁf+af ) ,‘%
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§1 = ZX (B40)

/ {[(afbs +1)7s + (@585 + el + (awbe + 1)75vs 20
+ (B85 — 8u)vs + (Bsbs — bu )7 o Tv,
+ [0uv£Vats + (81€5 — 87570 = 8577511
+ [6u7575v5 + (8560 — 85} 570 — 57175015,
+ (—%’!’-5363 - %’:erf + {-:6, + %;—Qf) Yo — %5,,7,1}1:

V;
+ ff,af')'a + %‘;&ﬂ’f - %‘; vYfVs

(awdy + 1)'7f7sIVO + (71‘78”3 + auéa'Tf‘Ys) Iy,
+ (Y705 + aubpr57s) I,

\Z V,
- %’:'7_”/3 - Zf;‘huf - av]‘;’;‘sfn - avi":"ss')’f

(aa‘su + ,Ba) 7f7vIun + (a,é, + 1)7}71;-[30 + (E, + a,ﬁf) 7f7UIf0
V; \7
-+ [(a‘f%’:' - asf,:;) 6_f + ‘Z/‘:] Vv + (au‘r,:"sv + ')‘_‘:,';) Y- Efl'ea

(afby + Bf) YsYoluo + (€7 + @p8,) Yo¥olao + (a6 + 1) Yo7, Iy,
\7 v, V. V; V. v,
+ + [(asf;' - afL.) 53 + fﬁ'] Yv + (avfﬁ'av + f!;) Ys — T,6f

el

U
(=]

[

l

X

7 (B.41)

/ Y VsYv20 — 6u7f7a7v-[vo - s7j7s‘7vIaQ - 6f7f7s7v-[fo
V,
+ (B8 + £b677) 70

o Ta

{jf' Ys Yo

We now proceed to obtain the closed-loop characteristic polynomial and transfer func-

tion. Here there are proportional and derivative gains for both active circuits. Thus,

s —0y8 —b,8 —0ys
I‘:I‘»‘l _ Qty$ S+Yy V8 vss
o ~Gy,s+ a8 — G, Bss 8+, €,3
~Gys+ags—G;,  PBys €18 s+¢

(B.42)
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We express the reduced transfer matrix in terms of its value relative to the open-loop

system by defining

D=Hy-F (B.43)
Then
Diy=D12=D13=D14=0 (B.44)
D2’1 = 33[(53(;11; - Gv‘)ll, -+ (€va‘ — Gv; )Vf]

+ 32[(_Gz, + GOGz! - 7fGV:)V’ + (Gsz‘ - sz - 73GU)‘ )U.f]

+  3(=7sG.vs — .Gz, vy) (B.45)
D2z = 8*[(8ef — 6,)Gy, + (8.6, — 65)Go,]

+ 32[(6fef ~ 6,)G., + (85€5 — 8£)Gzy — 857£Gy, — §57:Gy;]

+ 3("'6.97sz, - 6}7.1sz) (B46)
Dya = 8°(6;Gy,vs - 6,G.,vy)

+ 32(6szlV, ~ §,G,,vg) (B.47)
Dys = $%8,Go,vs — 6:Gy,v,)

+ 32(’53G2.Vf - 6sz,Vs) (B48)
D3,1 = 33[('B’G1,’ - ﬂqu.)l/f + Gu, - E,Gv,]

+ 32[(:3st; - ﬂsz.)Vf + Gz. - fan,

+ (v +7£)Go, — €7 Gy,]

+ sl + 7f)GZ. - €s7szf + 717Go,] + 151G, (B.49)
D3,1 = 33[(ﬂan, - ,Bva.)Vf + Gu. - esGu,]

+ 32[(IBJG1! - ,Bsz,)Vf + Gz‘ - e’sz

+ (70 + 7I)Gv. - 6370Gu!]
+ 3{(v +74)Gz, — €1Gay +7570Gu, ] + 141G, (B.50)
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D3z = $°(8y — By8f)Gu, + (Bsbs — 846,) Gy
+ (8, — Bs8s)Ga, + (Babs — bv€s)Gz, + 6,7£Go,]

+ $8,75G., (B.51)

DS,3 = 33(50G0!Vf - 6vaf)
+ 32(6uszVf - 5sz! - 6f‘7uGu,)

- 35f‘7,,Gz' (B.52)

Dy 4 $2(6¢Gy, — 6,Gu,vy)

32(—61102.”4‘ +64G., +67,Gy,)

+ o+

$6¢1uG2, (B.53)

Dy,

33[(ﬂfGV| - ﬂJG‘Ul )VS - eva. + Gu!]
+ $((BG:, = BiGey)vs — €4G., + Gy,
- €f7va, + (71: + 7,)Gu,]

+ s[=e1Gz, + (0 +75)Gay + 7570 Gos ] + 15706, (B.54)

S
I

33[(13f63 - 6"€f)le + (50 - 16353)G‘Uf]
32{(131‘63 - &Jef)GZa + (60 - ﬂsas)Gz, + 61:7st,]
88,7, G

+  +

2 (B.55)

Dy = 33(6,G’,,J. — 6,Gy,vs)
+ §%(-6,G.,v, + 6,6, + 6,7,G,,)

+ $8,1G, (B.56)

D4,4 = 83(61!G‘U,V3 - 63Gu.)
+ 32(6uGz.Vs - 63Gz, - 6371:Gu.)

— 88,1 G., (B.57)
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,,,,,,,

The elements I;Il,a and H’m are unchanged in the closed-loop system, as expected from the
results of Section 3. The closed-loop characteristic polynomial is
Ca(s)

3

$*{[(8 — B18£)Gu, + (Bs85 — 8u€,)Guy + (g8, + Bp)es — by
+ (@sBs — apfs)bs — Balvs + [(B£6s ~ 8ues)Go, + (8, — Ba6,)Gh,
+ (b + Bs)eg — afby + (apB, — a,Bs)8s — Bflvy
+ (656 — 65)Gu, + (8s€s — 85)Gu, + [(—awby — 1)es
+ (awBy — ayf)bsles + (aufBs — a,)8ses + aydy
+ (@ = @ufs)ds + (a5 — aufy)bs + 1}
+ 3*{[(6v — B#64)G., + (865 — 6v€s)Gay + 871G, + (— 8y — Bs)v£]Vs
+ [(Br8s = 6uer)Gz, + (80 = Beb,)Gry + 6u7,Guy + (—asby — By )7, v
+ (8565 = 6,)Ge, + (8260 = 6£)Gay + (6565 ~ 6,)10 — 6,741Go,
+ [(8s€5 = 8¢)10 — 647,]G,
+ [(—es — agba)es — aubses + a6, + asbs + 1y,
+ (b + (af — auff)ds + 1]vs + [awby + (@0 — @ufB,)8s + 174}
+ $M{8711G. Vs + 647:G2yvs + (856 — 64)70 — 6474]Gn,
+ [(8s€s = 85)10 = 871Gz = 857£10Go, — 6577 Go,
+ [(afbs + )7, + (@08, + )vslre + (@udy + 1)747,}

+ $(=8,711.Gx, = §47:7uGx,y +117670) (B.58)
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FIG. 5. The eigenvalues of Eq. (11); real and imaginary parts are shown.

FIG. 6. (a) Growth rate of the vertical instability in the approzimation of instantaneous
force balance versus n/n.; (b) The ratio of the approzimate root to the ezact root versus
n/n..

FIG. 7. The system of tokamak, feedback, and power supply.

FIG. 8. Schematic of the operating regions in the G, .G, plane. G, is in units of V/H-m.
The stable operating region is below A-A, below C-D, and to the left of B-B. The thick curve
separating regions I and II is the §(s;,$2) = O contour. The dashed lines are contours of
constant R(s1, 32) and the thin solid lines are contours of constant S(s;,33). This particular
ezample uses the F2 coils, n = -1.1, and n, = 1.65.

FIG. 9. Stability diagram in the G, G, plane for various values of the decay indez, (a) n=
—0.4, (b) n = —1.0, and (c) n = —1.6. The vessel critical indez is 1.65 for this case, which
uses th series combination F6 + F7. Contours are denoted as in the previous figure.

FIG. 10. Dependence of the control gain criteria to be satisfied as a function of the decay
indez. Curve 1: minimum G, for stability. Curve 2: minimum G, for stability (G, =
—0.1). Curve 3: value of G, for critical damping. Curve 4: mazimum G, for a fived
response (G, = —-0.1, —s; > 80).

FIG. 11. The dependence of the growth rates and the oscillation frequency on the field decay
indez for G, = -0.1 and (a) G, = 0.0, (b) G, = -0.002 and (c) G, = -0.003.

FIG. 12. Voltage required to correct a step input on the active coils as a function of n for
two values of G,,.

FIG. 13. Ewolution between two plasma positions.

FIG. 14. Response of model power supply to an oscillatory demand which exceeds the
supply’s amplitude and bandwidth capabilities.

FIG. 15. Response for nfn. = 0.99 and 0.002. There are no power supply limitations,
G. = —0.4, and G, = —0.005.

FIG. 16. Voltage required to stabilize the plasma vsubsequent to a 5§ mm displacement versus
n/n.. The power supply slew time required at minimum voltage is also shown. Vi, is the
result of a linear calculation, V.53, results from an amplitude limited power supply voltage,

but no limitation on the slew rate, and Vi, is the result with the slew time and amplitude
limited.



FIG. 17. Response for a typical case limited by power supply. For this case, n = —1.32,
ne = 1.65, ng, = 0.65, G; = —0.4, and G, = —0.005. Shown are (a) the plasma position,
(b) the vessel current, (c) the active coil current, and (d) the applied voltage. Along with
the actual plasma position, the plasma positions which would occur with no amplitude and
slew limits are shown in (a).

FIG. 18. Fluz contours of the antisymmetric vessel current in the (R, Z) plane.

FIG. 19. Fluz contours for stationary active coil currents in (a) the F7 coil and (b) the F2
cod, and flux contours following an instantaneous jump in the active coil current when the
induced vessel current is added in (c) the F7 coil and (d) the F2 coil.

FIG. 20. Mazimum decay indez achievable as a function of G, (G, = —0.1).

FIG. 21. Open-loop growth rate versus —n/n.. With (a) the F7 coils only, (b) the F2 coils
only, and (c) the hybrid system.

FIG. 22. Block diagram of hybrid vertical control system as modelled in calculation of power
supply requirements. -

FIG. 23. System response for an underdamped case controlled with the F6+F7 coils.

FIG. 24. Mazimum values of —n reached during decay indez ramps terminating in a loss
of vertical control disruption, with and without the use of the F2 coils.

FIG. 25. (a) A highly elongated (x = 3) plasma within the DIII-D vessel. (b) The inter-
section of the plasma field with the vacuum vessel.

FIG. 26. A circuit representation of the vacuum vessel eigenmodes € =1,23,..), with
the plasma and active coils.

FIG. 27. Parametric description of a vacuum vessel with arbitrary cross-section for eigen-
mode analysis.
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