LRP 337/87

i anpLiNG

ooL

User Manual and Report (V 1.0 - october 87)

J.-M. Moret

1. Introduction

The data volume of a Tokamak is divided in shot files, each of them mainly containing
information as a function of time. By analogy with the use of an oscilloscope, these
functions are called traces. In the TCA Tokamak, there are between 200 and 300 such
traces acquired by ADC's with local memory during the 3 second discharge sequence and
then transferred to a PDP 11-60. The acquisition frequency of these traces is very
variable, ranging from a typical 500 Hz to a few MHz; the number of points varies from
300 to a few thousands; this results in a total data volume per shot of the order of 200
kBytes.

This data volume has to be analysed. Software exists to display graphically the raw traces
and standard combinations of these traces (multiplication by gains, standard derived
functions). In the past, when more complex or less standard analysis was required, a
particular program had to be rewritten, built and checked, leading to excessive
compilation, linking and debugging times on a small PDP 11, together with a required
operator expertise and time waste.

The aim of the software described in this paper is to solve this situation, giving the user
the opportunity to perform even complex analysis without the need to rewrite a full
Fortran program. Most of the programs previously written shared a large amount of code
including the data retrieval and the graphic routines. The basic idea was to use a very
versatile and easy to learn command set, which is interpreted by the program. Since most
of the actual computing is done by the compiled subroutines, the interpreted nature of this
package was not expected to lead to an excessive inefficiency.

Requirements to produce a good and general analysis tool lie in (a) a wide variety of
powerful mathematical treatments covering the simple arithmetic operations, standard
mathematical functions, digital signal treatment (filtering, integral and derivative, FFT),
all acting on traces, i.e. arrays of values in time, (b) a very versatile graphic display
including dividing the page into frames, choice of axis, title and comments, and (c) a
userfriendly command syntax, easily readable, with the use of symbols and keywords,
like a high level language.

A first attempt was made at a very low level to provide such a flexible tool: Experience
showed that none of the above conditions were met satisfactory, and the problem was
attacked from the start.

The resulting software was called THT, Trace Handling Tool.

2. Program_description

The syntax of the command was chosen to be very close to that of Fortran, a widely
known language among scientists and in which the corresponding subroutines were all
written. The details of the syntax are described in Appendix 1. To give a general idea, an
example of a THT application, together with the corresponding graphical output, are
shown below for a real case.

2.1 Problem posed

The aim in the example shown is to plot a complex signal COS + i SIN in the complex
plane and its amplitude and argument as a function of the variable DEN. The first part of
the session initialises the different parameters needed by the subroutine QDL. In this
subroutine, the graphic layout is described by calls to PAGE, BOX and AXIS. Then
the requested shot file is open by SHOT and traces are fetched by FUN. Resampling
between T1 and T2 is performed by CLOCK. Calculations mainly consist in extracting
the amplitude and the argument from COS + i SIN. Finally the graphic is done by calls
to PLOT; some values are displayed by VALUE.

2.2 THT terminal session!

>THT

THT> NSHOT=30461

THT> T1=.08

THT> T2=.11

THT> OS=.8

THT> OC=.4

THT> @QDL
;GRAPHIC LAYOUT DESCRIPTION
CALL PAGE(3,'QDL')
CALL BOX(1,1211,204,205)
CALL BOX(2,1214,204,203)
CALL BOX(3,2214,201,202)
CALL BOX(4,1213,204,19)
CALL AXIS(201,-3,4,'SIN')
CALL AXIS(202,-5,5,'COS)
CALL AXIS(203,0,15,'AMP")
CALL AXIS(204,9,14.25,'DEN")
CALL AXIS(205,-180,-180,'PHA")

1 in what follows, echo from the computer is typed in bold characters, and input from the user

in outlime characters, and out session comments in italic.

;FETCH AND RESAMP

CALL SHOT(NSHOT)
SIN=FUN(-214)
COS=FUN(-215)

CALL CLOCK({(T2#T1)/SAMP(2),SAMP(2),T1)
DEN=FUN(6)
LAMBDA=FUN(14)
;CALCULATIONS

C1=90

C2=0

C3=-90

SIN=SIN#SIN[1]
COS=COS#COSI[1]
PHASE=57.3*ATAN2(SIN,COS)
AMP=(SIN*SIN+COS*COS)A.5
;PLOT

CALL PLOT(COS,SIN,3)
CALL PLOT(C2,SIN,3)

CALL PLOT(COS,C2,3)

CALL PLOT(DEN,C1,1)

CALL PLOT(DEN,C2,1)

CALL PLOT(DEN,C3,1)

CALL PLOT(DEN,LAMBDA 4)
CALL VALUE(T1,'T1',1)
CALL VALUE(T2,'T2',1)
CALL VALUE(OS,'0S',1)
CALL VALUE(OC,'0C'1)

THT> AZ

>

2.3 THT graphical output

304L1

Q0L

502
EE'y DOD'E ¢9°V EE'D O0°- EE2- /9°E- 0O°G-
N
[.0
m
m
Tl
Y
c
=]
.f"'lZ
o mz
« (N
{ @ -E
]
[N
o
a
=]
a
m
]
, b dWy
0yy 02°L oot DE'0 09'0 0y'0 02'0 00°O
coofty L OE'L ZL'L ED°} Ob'0D ££°0 ES'D 0O5°PQ
EEEE 09K -
= , el
.ngan ’ ’7; . ;
< o
y M
a
—— " _l'\J
P g .
9=
L " w
-0
a
a
\ o
o
9571 Ba- L 09°0 210 9£°0- vB'0- 2£°L- opB'L"
2 Obx HHd

3. Note on usage

The arithmetic expressions are essentially identical to the form encountered in all high
level language, with the same operation hierarchy, the use of the parenthesis and calls to
generic functions, but the operations are performed on trace arrays. For example the
algebraic expression

1- sin’(x)

1+ cosz(xi)
is coded as

((I#SIN(X)A2)/(1+COS(X)72))70.5
This expression will be estimated for each element of the array X. If one of the variables
was undefined, it is set to zero. An array element is specified by placing the index
between square brackets, eg:

fi - fl, i= 1,...,1’1

1s coded as

F#F[1]

The assignment statement has the form
THT>A=B+C

If the variable A does not exist, it is created. In this form all the elements of the array A
are assigned. An index range of the array is specified by placing the index range in square
brackets, separated by a colon, giving the following possibilities :

A= updates A between indices 1 and n where n is the dimension of A
AllI1:11]= updates A between indices I1 and 12
Al:I]= updates A between indices 1 and I

All:]= updates A between indices I and n

Different examples follow :
fi=2,1=1i,..,i,

is coded as
THT>F[I1:12] = 2

If the lower bound is not specified, the beginning of the array is assumed; if the upper
bound is omitted, the end of the array is the default; eg:

THT>STEP = 0
THT>STEP [50:] = 1

will create a step function starting at index 50;

THT>DELTA =0
THT>DELTA [50:50] = 1

will create a delta function at index 50.
The use of generic procedure is done by a procedure call statement, eg:
THT>CALL PLOT (T,TRACE,1)

will draw the array TRACE as a function of T. Each argument appearing in the list may
be an expression, eg:

THT>CALL PLOT(T,TRACE+10,1)

Arguments are limited to being input parameters for the procedure or the function which
do not export any result to the calling program section. A detailed list of the generic
functions and procedures is given in Appendix 2.

The user can define his own subroutines, keeping in mind that the variables are global
to the whole program as if the whole subroutine were inserted in line. As implemented on
the PDP 11, the subroutine statements have to be stored in a separate file, and its
execution is performed by the following command :

THT>@SUBROUTINE

where SUBROUTINE.THT is the name of the particular file containing the THT

8-

subroutine statements. This file is simply created by a text editor with one statement per
line. The execution returns to the calling program section when the end of the file is
reached. A maximum nesting of 4 calling levels is implemented.

THT allows two control structures. The first one is the conditional control; eg:

THT>IF (CHOICE[1] :EQ: 1)

THT> A = COS(OMEGA*T)
THT>EIF

THT>IF (CHOICE[1] :EQ: 2)
THT> A = SIN(OMEGA*T)

THT>EIF

will create a sine or a cosine wave, according to the value of CHOICE. It must be
specified that the test if performed on the first element of each expression appearing in the
test, even if one of the expression is not a constant so that in the example the index
specification in CHOICE[1] can be omitted. Also, since this control structure uses a
single flag, nested conditional statements are not possible.

The second control structure is the loop structure, for example

THT>COEFF[1:1] = 1
THT>COEFF[2:2] = 2
THT>COEFF[3:3] = 1
THT>COEFF[4:4] = -1
THT>I=0

THT>F=0

THT>LOOP

THT> I=I+1

THT> F=F+COEFF[I]*XA(I#1)
THT> IF 0 :EQ: 4)
THT> EXIT
THT> EIF
THT>REPEAT

will estimate a given polynomial form for F. Note the statement sequence included
between LOOP and REPEAT is stored in memory. Thus the loop control structure may
not be nested, and there is a limit on the loop length. An exit test must always be present
inside the loop.

4. The way THT works

This section explains the way THT interprets the commands and how it performs the
operations. Each command line is converted in a sequentially executable list of operations.
Most of these operations involve the use of a stack where data is temporarily stored. In
order to be able to use a stack structure, the conversion to these sequential operations
consists mainly of permutations of symbols or reordering of the commands, eg: all
arithmetic expressions are converted into Reverse Polish Notation (RPN), stack based
arithmetic language, eg: Helwett-Packard calculators. Details concerning this conversion
are listed in Appendix 3, and some examples are given here.

The first example involves the evaluation of an expression and its assignment to a
variable. The studied command is

THT>MOD[1:5]=(AA2+BA2)A0.5
According to rules given in the Appendix 3, this command is converted into
[TISTAI2IAIBI21A1+1051A1=IMOD|

The evaluation of the expression itself is | A 12 1A B2 1A1+10.5121and is performed
as on an RPN calculator : each time a variable name or a constant appears, the top of the
stack is filled with the values of the corresponding array; each time an arithmetic operation
appears, it is performed on the top of the stack, the stack pointer is decremented and the
result is left on the top of the stack. Some mathematical functions with only one
argument, eg: SIN, modify only the top of the stack without moving the pointer. At the
end of the evaluation, the final result is found on the top of the stack.

A 2 * B 2
2
2 B B
A A A2 A2 A2
- + 0.5 -
B2 0.5
A2 A"2+B"2 A'2+B"2 (A"2+B"2)"0.5

-10-

The two first values | 1 | 5 | appearing at the beginning of the sequentially converted
command are the bounds of assignments; they are pushed on the the stack before the
evaluation of the expression, so that at this time, the stack status is :

(A"2+B"2)°0.5
9
1

The sequential operations | = | MOD | will if necessary create the variable MOD and then
update it between indices 1 and 5 with the value located at the top of the stack.

Another example is the call to a generic procedure :
THT>CALL PLOT(T,SIN(A*B),1)

According to the sequential language command rules, the operation set is
ITIAIBI*INSINI1I\PLOI

Each argument is successively pushed in the stack; during these successive pushes the

expressions are evaluated, and finally the generic procedure is called, with its arguments
on the top of the stack :

T A B *
B
A A A*B
T T T T
\SIN 1 \PLO

sin(A*B) sin(A*B)

-11-

5. Implementation details

This section develops some implementation details which are in part specific to the host
system, eg: memory limitation, programming language and acquisition system.

First the acquisition interface is done by calls to generic procedure and function :
CALL SHOT opens a requested shot file and all subsequent accesses to the data will
refer to this shot; these accesses are the function FUN which will return, according to the
local normalisation, a raw voltage trace if the argument is negative and a predefined
derived function if the argument is positive, and the function CON which will return the
specified acquisition constant, eg : an amplifier gain, the filling gas mass, etc.. The
success of the operation SHOT and FUN can be tested through the function SAMP2.

As the calculations in THT are performed between traces with different acquisition
timing, a time base has to be specified and controlled. This time base consists of three
numbers; the number of points of a trace n, the acquisition period dt and the time at the
first point t,. All three can be accessed by the function SAMP2. By default, n is set to its
maximum value (1024) while dt and t; are both set to 0. When the first trace is fetched
through FUN, these three numbers are updated to the values of the fetched trace. All
subsequent call to FUN will cause a resampling of the requested trace according to the
first trace. Nevertheless the time base can be imposed by a call to the procedure CLOCK,
during which all previously created variables are resampled with the requested time base.
Note that the special case CLOCK(0,0,0) will reset the time base and consequently
reset all THT variables.

The language used, Fortran 77, is somewhat inadequate for this kind of application
lacking in reentrance, local, dynamical or structured variables, which lead to inelegant
code and major limitations. This explains why the use of nested expressions, which
appear as nested parenthesis, are limited, as well as nesting of conditional statements.

The small size of the PDP 11 memory requires the stack and the variable set to be placed
in scratch files. Attempts are made to avoid access to these files : (a) real 32 bits traces are
compressed in 16 bit integers if the number of points exceeds 512; (b) traces containing
only one element (constants) are kept in memory; (c) variables are not actually in the stack
but are represented by a pointer to their allocation.

The basic idea to perform all calculations and data transfers through the described stack
and the imposed modularity of the software allow to add or modify generic procedures

and functions very easily.

Details of the graphic philosophy and layout are listed in the Appendix 4. Appendix 5 give

2 see Appendix 3.

-12-

a commented example of a full THT session.

Acknowledgments

This high level interpreter is imposed on top of the full TCA data retrieval and graphics
packages, developed by many people during the operation of the TCA tokamak. This
work was partially supported by the Fonds National Suisse de la Recherche Scientifique.

-13-

Appendix 1 : THT syntax definition

program = {statement}.
statement = [comment | assignment | procedure_call | subroutine_call | if statement |

loop_statement | EXIT] ..

comment =; {character | space}.

assignment = variable [[[index] : [index]]] = expression.
procedure_call = CALLL procedure parameter_list.
subroutine_call =@ subroutine.

if statement = IIF (expression : test_operator : expression) I {statement} EIF.

loop_statement = LOOP J {statement} REPEAT.

expression ="' string ' | term {addition_operator term}.

term = factor { multiplication_operator factor}.

factor = sub_factor {A sub_factor}.

sub_factor = number | variable [[index]] | function parameter_list | (expression).
parameter_list = (expression {,expression}).

addition_operator = + | #.

multiplication_operator = *1/.

test operator = LT | LE | EQ | GE | GT.

variable = designator.

index = expression.

function = designator.

procedure = designator.

subroutine = file_name.

designator = letter {letter | digit}.

number =[-] {digit} [.] {digit} [E [-] {digit}].

string = {character}.

character =letter | digit |} 1@ 1# 1S 1D IAI* (1) I-1_I=1+1[IJ1/INb I, 1s)
Il

letter =AIBICIDIEIFIGIHITIJIKILIMINIOIPIQIRISITIUIVI
WIXIYIZ.

digit=0111213141516171819.

file_name =3

3 running system specification.

-14 -

Appendix 2 : THT generic functions and procedures*

Functions

A = ABS (X) A =X i=1,...,n

A = ATAN2(X,Y) A; = arg(Y, + X)) i=1,....n

A = AVG(X) Aj = (E, o Xj)/n i=1,...,n

A = CONN) A, = acquisition constant number N i=1,...,n

A = COS(X) A, =cos(X)) i=1,...,n

A= DER(X) Ai = (Xl - Xi_l)/dt i=2,...,n
A =0

A = EXP(X) A; = exp(Xy) i=1,...,n

A = EXT(X) Ay =il X;=min;_,(X))
Ay =i | X;=maxj; (X))

A = FUN(N) A = acquisition function number N ifN>0
A = acquisition trace number -N ifN<O 5

A = IND(T) Aj=int(T-tp)/dt+1 ifTe [tyty] i=1,..,n
A=1 ifT<t i=1,...,
Aj=n ifT>ty i=1,...,n

A = INT(X) A=A +X,-dt i=2,...,n
A =0

A = LN(X) A, =In(X) i=1,...,n

A = MAX(X,Y) A; = max(X; Y,) i=1,..,n

A = MIN(X,Y) A, =min(X; Y;) i=1,...,n

A = ROLL(X,N) Ai = X((i-l-N) mod n)+1 i=1,...,n 6

A = SAMP(N) Aj=errorID? ifN=0 i=1,...,n
Aj=n ifN=1 i=1,...,n
Aj=dt ifN=2 i=1,...,n
A=t ifN=3 i=1,...,n

A = SIN(X) A, = sin(X) i=1,...,

A = SMOOTH(X,N) A; =X N X80 / By 8G9 i=N,...,n-N

)

4 in this Appendix, n refers to the number of points of the arrays, dt the time interval between two
points, t, the time at the first point and t, the time at the last point.

3 if the time base was not specified by a previous call to CLOCK or FUN, the time base of the
specified function will define the array time base. If the time base already exists, the array will be
resampled according to the existing time base; the beginning and the end are filled with the first and
last value respectively if necessary.

6 roll the array to the right if N > 0, and to the left if if N < 0.

TerrorID 0 ok

1 CALL SHOT failed
2 FUN failed

A = TIME(N)

A = TFI(X,Y)

A = TFR(X,Y)

A = UNSAVE(N,fn)
A = ZERO(X)

A = ZFILTR(X,C)
Generic procedures

-15 -

gi-j) = exp(-((-)/N)?)

A=Ay i=1,..,N-1
A=Ay i=n-N+1,...,n
A=ty + (i-1) - dt ifN=0 i=1,...,n
A;=G-1)/n - ! fN=1 i=1,...n 8
returns the imaginary part of the FFTof Z=X +j.Y 9
returns the real part of the FFT of Z=X +j-Y 9

unsaves the trace stored in file fn at record number N 10

A, = number of zero crossing of X

A=jl Xj-Xj_l < (), crossing indices i=2,...,A4

A; = Zizo,c31) C2045 X5 - Zio1,0130) C1045°Ai + Caz
i=k+1,...,n

A =G i=1,....,k
k=max(Cs(,C3;)

CALL AXIS(AXIS,MIN,MAX,title) defines a user axis number AXIS, where

AXIS = 201,..,206, going from MIN to
MAX, labelled title.

CALL BOX(BOX,F,XAXIS,YAXIS) defines a box number BOX, where BOX

= 1,...16, XAXIS and YAXIS are the X and Y

axis number. If the axis number is negative, an
autoscaling is chosen. F defines the format!! of
the box by : F = 1000-position + 10-format +
axis_position.

CALL CLOCK(N,DT,T1) changes the time base according ton = N, dt =

CALL DEBUG(LEVEL)

CALL PAGE(Ftitle)

DT and t; = T1. All existing variables are

resampled during this operation.’

changes debugging level according to :

LEVEL =0 no debugging

LEVEL =1 displays command lines

LEVEL =2 displays sequential operations

LEVEL =3 displays variable set and stack
status

creates a page labelled title. F describes the

format and the output unit according to : F =

10-format? + unit. If the format is not 0, all boxes

8 create the corresponding frequency array for FFT.
9 when this function is called, n is reduced to the nearest but smaller or equal power of 2.

10 see also CALL SAVE.

11 see Appendix 4 for graphic display layout.

CALL PLOT(X,Y,BOX)

CALL SAVE(X,N,fn)

CALL SHOT(N)

CALL TYPE(X,N,fn)

CALL VALUE(X,title,BOX)

-16 -

will be defined with autoscaling axis.

plots the array Y as a function of X according to
the definition of box number BOX.

saves the array X in record number N of file fn.
The file is a direct access block read file; each
record contains five blocks; the first block
contains n, dt and t;; the array is stored in the last
four blocks. If n>512 SAVE cannot be used.
opens the shot number N. If the operation failed,
the function SAMP(0) is set to 1. All subsequent
calls to the function FUN and CON will refer to
the opened shot.

dumps the first N values of the array X in file fn.
fn is a sequential file, written with one value per
line accompanied with the sample number and its
corresponding time. If fn begins with character
'T', the dump will be performed on the terminal.
will display the first value of X accompanied by
label title in box number BOX. If more than one
call to VALUE is performed on the same box,
the display will be vertically aligned.

-17 -

Appendix 3 : THT sequential command conversion

assignment
procedure_call
subroutine_calll2
if_statement
loop_statement
index

expression

term

factor

sub_factor

addition_operator
multiplication_operator
test_operator

variable

parameter_list

12 running system facility.

[index index] expression variable =
parameter_list \designator

expression expression test_operator {statement} \EIF
\LOO ({statement | \EXI} \REP

expression

string | term {term addition_operator}

factor {factor multiplication_operator}
sub_factor {sub_factor A}

number | variable [index \NOF] | parameter_list
\function | expression

+ | #

¥ | /

\LT I\LE | \EQ | \GE | \GT

designator

expression {expression}

-18 -

Appendix 4 : Graphic specifications
Format

An oblong A4 page is divided in boxes. Their can be between 1 and 4 lines of boxes,
each of them containing from 1 to 4 boxes. The format is a two digits number NNy
specifying respectively the number of rows and lines.

Position

The position of one specific box is labelled by a number Nj, scanning the box lines of the
page (Np < NxNy).

Axis position

The position of the vertical axis is specified by a number N,. 1 refers to the outer left, 2
to the inner left, 3 to the inner right and 4 to the outer right position. 0 is used when no
axis is needed. There is always one horizontal axis placed below each box.

Boxes size
N, Ny
1 21 cm 1 15¢cm
2 10.5 cm 2 7 cm
3 7.5cm 3 5cm
4 5.5cm 4 4cm
11)
3 11 4 s
5 6

Here is an example of the graphical layout for a NNy = 23. N, is specified inside each
box. Vertical axis position N, for box 1, 2, 3 and 4 is respectively 1, 2, 3 and 4.

Appendix 5 : Example

O 00~ O Wt b W

Pk ek ek ped
W N = O

(V] W W W L W WK NN DNNNDNDNDN = = = e e

-19-

THT> NSHOT=28714

THT> @EXAMPLE

CALL SHOT(NSHOT)
REAL=FUN(-171)
IMAG=FUN(-172)
PHASE=ATAN2(IMAG,REAL)*57.3

THT>

I=IND(0)

PHASE=PHASE#PHASEII]

LOOP

REPEAT

I=1+1

JUMP=PHASE[I]#PHASE[I#1]

IF (JUMP :GE: 180)
PHASE[I:]=PHASE+360

EIF

IF (JUMP :LE: -180)
PHASEI[I:]1=PHASE#360

EIF

IF (I :EQ: SAMP(1))
EXIT

EIF

I=EXT(PHASE)

I=1[2]

MAX=PHASE[I]

CALL PAGE(3,'EXAMPLE')
CALL AXIS(201,-5,5,'REAL')
CALL AXIS(202,-5,5,' TMAG')
CALL AXIS(203,0,800,'PHASE')
CALL AXIS(206)-.01,.2,'TIME")
CALL BOX(1,1131,206,201)
CALL BOX(2,2131,206,202)
CALL BOX(3,3131,206,203)
T=TIME(0)

CALL PLOT(T,REAL,1)

CALL PLOT(T,IMAG,2)

CALL PLOT(T,PHASE,3)

CALL VALUE(MAX,'MAXIMUM',3)

AZ

o0

10
11

12...

15...

18..

21
22

23
24
25

26..

30..

33

34...

37
38

14

17

.20

29

32

36

=20 -

the variable NSHOT is created and initialised to 28714. As all variables are
global, this variable can be used in the following subroutine.

subroutine EXAMPLE is called. The lines of this subroutine (3 to 37) are
contained in the file EXAMPLE.THT.

opens the shot number NSHOT. All subsequent access to the data will refer to
this shot.

the variable REAL is created and filled with the trace number 171. The time
base is to the acquisition setting of this trace.

the variable IMAG is created and filled with the trace number 172 resampled
according to the current time base, i.e. the one of the trace 171.

the variable PHASE is created and filled with the argument of the complex
(REAL,IMAG) by mean of ATAN2. Conversion to degree is made by
multiplying the result by 57.3.

the variable I is created and initialised with the index of time 0.

PHASE is set to zero at time 0 by subtracting the value at this time.

beginning of a LOOP.

this loop runs over the array index I, incremented at each loop.

JUMP contains the difference between successive point of PHASE.

if this difference is greater than 180°, a whole turn is added to the end of the
array PHASE (positive fringe jump).

if this difference is less than -180°, a whole turn is subtracted to the end of the
array PHASE (negative fringe jump).

if the last point (SAMP(1)) is reached, EXIT of the loop.

end of the loop.

indices of the minimum and maximum of PHASE are stored in the first two
elements of L.

I contains the index of the maximum.

MAX is created and contains the maximum of PHASE.

the procedure PAGE prepares a graphic page on unit 3, with title
EXAMPLE. This call is necessary to obtain graphic output. If SHOT was
previously called, the page will also contain the shot number.

these four calls to AXIS create user axis number 201, 202, 203 and 206,
with their respective bounds and titles.

these three calls to BOX create three boxes labelled 1, 2 and 3. The page
format is 13 and axis will be drawn on the outer left of the box. Calls to BOX
and AXIS can be interchanged; a call to PAGE does not reset these
definitions.

creates the time array in variable T for use in plotting.

plot the variable REAL, IMAG and PHASE as a function of the time T in
box 1, 2 and 3 respectively.

VALUE writes the first element of MAX in box 3 with the label MAXIM.
exit THT.

