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ABSTRACT

The study of radiofrequency (rf) waves is one of the oldest [1-3] and most
fertile field of research in plasma physics. In this lecture we shall point out

the problem of wave propagation and absorption in connection with rf heating of
magnetized plasmas.

We shall survey the numerical techniques to solve relevant differential
equations, in particular the finite element methods [4] which are so universal
that they are applied to numerous other problems in physics and engineering:
aerodynamics, elasticity theory, solid state physics. etc.

In the first part of this lecture these methods are presented. As a parti-
cular example we have chosen the cold plasna wave equation in one-dimensional
(1-D) geometry. We outline how the finite element methods are applicable to
time-dependent and/or non-linear equations, such as Fokker-Planck or quasi-~
linear equations.

The second part of this lecture is dedicated to the cold and warm plasma
wave propagation and absorption in toroidal geometry in the Alfvén‘ Wave and Ion
Cyclotron Range of Frequency (AWRF and ICRF, respectively). After derivation of
the basic equations in exact geometry we apply the discretization procedure
described in the first part, but there in a two-dimensional (2-D) domain. Some
results are presented and discussed. In particular the physics of 2-D resonance
absorption and the presence of global modes are analyzed.



I.  INTRODUCTION

A complete presentation of the physics of rf heating in magnetized plasmas
is certainly beyond the scope of this lecture. We merely show guidelines to the
problems and in particular what has been called the "global wave" approach. The
subject is presented in such a way that the methods of resolution can be
generalized to other problems. By "global" approach we mean the global determi-
nation of the wave field in non-homogeneous, non-uniformly magnetized, finite
size plasmas. We emphasize two points here: Firstly, the problem is solved in
one well-defined geometry, in the whole damain (plasma, vacuum, antenna and
shell) and, secondly, the solution obtained is by essence the sum of all

incident, tranamitted, reflected and evanescent waves.

In the AWRF and ICRF, three basic physical phenomena can be exploited for
rf heating:

1) The existence of global eigemmodes of the fast magnetosonic wave and of
the Alfvén (or ion-cyclotron) wave.

2) The perpendicular resonances of the cold plasma model, Alfvén and ion-ion
hybrid, which are described in hot plasma theory as mode conversion points
("mode conversion regime").

3) The ion cyclotron damping, which can be exploited in two ways: either by
adding a small fraction of another ion species ("minority regime") or by

setting the frequency equal to a harmonic of the ion cyclotron frequency
("harmonic regime").

The first problem to tackle is the choice of a physical model. Depending
on its sophistication the description of the above-mentioned phenomena will be
more or less complete (provided that the equations can be solved!). It can be
said that the finer the model, the more difficult it is to solve exactly. The
skill of the physicist consists of finding a model giving a good description of
the basic phenomena (1°, X and 3°) together with an accurate method of resolu-
tion. A sophisticated model resolved with such or such approximation may give
results of weaker physical contents than a rougher model solved exactly.



For our problem of waves in plasmas there exist different models, named
"cold", "warm" or "hot" plasma, depending on the degree at which we take into
account the effect of the temperature on the waves and their damping. We have
also the alternative of neglecting the electron inertia y an approximation which
is often made in the AWRF and ICRF. These different models describe different
waves and different absorption mechanisms. The reader can refer to Table I for
a summarized comparison between these models.

Another difficulty is related to the complexity of the geometry of the
magnetic configuration. See Fig. 1 for the tokamak case. Some authors use a 1-D

approximation (plane or cylinder), or make a develomment in inverse aspect
ratio [5] Some neglect the poloidal magnetic field. Some authors use
different geametrical approximations in different parts of the plasma [6,7]. We
shall demonstrate how the "exact" geometry of the ideal MHD equilibrium can be
taken into account in Chapter 3.

The next problem to treat is the inhomogeneity of the plasma. It is
crucial to describe it since much of the physics (mode conversion, resonance

absorption, accessibility, etc.) depends on it. A possible approximation is the
geometrical optics approximation, or "WKB" (Wentzel, Kramers, Brillouin). It
consists of defining a local wavelength and assume that the properties of the
substance do not vary too much on a wavelength. Unfortunately, its limitations
are numerous. In the AWRF the wavelengths are larger than the dimensions of the
system. Mreover, WKB is not valid near the most interesting points: the
resonances, where the WKB-defined wavelength becomes infinite; the mode con-
version points, where two wavebranches came close to each other; or the places
where strong absorption occurs, such as the vicinity of the ion cyclotron fre-
quencies or their harmonics. Therefore, the models based on WKB approximation
must be coupled to other methods such as the use of an analytical formula near
the resonances. However, the use of WKB approximation is not campul sory and in
Chapter 2 we shall present how we can solve the equations without any WKB-type
of approximation.

Moreover, the plasmas that one wishes to study are bounded. Many models
ignore it and can only compute the "single-pass absorption" but not the total
wavefield consisting of all incident tranamitted, reflected and evanescent
waves. It is only in taking into account the finite size of the plasma, with



appropriate boundary conditions, that the global eigemmodes or global oscilla-
tions of the plasma column can be described.

The necessary tool for the resolution of the equations remains to be
defined. There are mainly two "philosophies": the methods based on the WKB
approximations (ray tracing [8] for example) and the "global wave" methods
(finite differences [5] at finite elements [9]), though there are intermediate
approaches such as the parabolic approximation [10]. Actually only the finite
element methods can fully take into account the complexity of the geametry, the
inhomogeneity, and the finite size of the plasmas. They have a sound mathemati-
cal foundation [4] and have been since a long time applied to other domains of
physics: elasticity theory, aerodynamics, hydrodynamics, thermodynanics, etc.
Their application to the problem of rf heating is rather recent. The aim of
this lecture is to show their pertinence and to demonstrate that they are
powerful and useful tools for the investigation of physical processes.

Chapter 2 presents the finite element methods on a simple example.

Chapter 3 deals with an application to rf heating in the AWRF and ICRF in
toroidal geometry [9,11,12].

IT. NUMERICAL TECHNIQUES BASED ON THE FINITE ELEMENT METHODS

We assume that we have chosen a physical model and a given geometry, and
that we have obtained a system of ordinary or partial differential equations
(ODE or PDE) for our problem. In this chapter, we shall not make the derivation
of these equations but introduce the finite element method on a simple 1-D
equation:

dE - .
-C%( (ot(x)a_; ) + BWE = f(x) , xen=[o1] 2.1

where a(x), B(x) and f(x) are given sufficiently smooth functions. We impose
Dirichlet boundary conditions:

{E(O)
E(1)

n
W

(2.2a)
(2.2b)

]
o



We simply mention here that Bg. (2.1) has the structure of the wave equation of
the cold plasma model with Ey = 0 (model 1 of Table I) in a plane geometry.
The inhomogeneity is along x-axis, the magnetic field is parallel to the
z-direction and in this case E is the y-component of the wave electric field

[13].

The first step to solve (2.1) (2.2) with the finite element method is to
obtain a variational fomm of the equation. This can be easily done in the

following way:

P  Multiply (2.1) with a sufficiently regular test-function E(x) such that
~ s
E(o) = E(1) = 0.

X Integrate over the domain where the solution is searched :
1 1
~d ,_.dE > e )dx = J E f dx
j(Ed—;( «E ) +E/SE) D fdx

4

3  Integrate by parts

[l s pe)d - [Efuc
o v}

(2.3)

We can now formulate the problem variationally: "find E(x) in [0.1] such that
(2.3) is satisfied for any test-function 'E\:'(x)". This problem is equivalent to
finding a solution of (2.1), except that the solution of (2.3) has less
restrictions on its smoothness: the integration by parts has lowered the order

of the highest derivative operating on E.

The second step is to discretize the damain [0,1] into a finite number of
intervals {xj, i = 0..N, X5 = 0, xy = 1}. The intervals need not to have
all the same size.

The third step is the heart of the finite element methods: we approximate
n
the unknown function E(x) and the test-function E(x) by piecewise polynomials

(see Fig. 2). In other words, we expand the function E in a basis of functions

¢i(x) having a finite support ;



N

Ex)=2 vidoo | (2.4a)

1=0

and usually we use the same basis of functions for the test-function:

N

§(X)=Z WJ-4>J(X) . (2.4b)

jo

The functions ¢j(x) have the property d)j_(Xj) = 5ij° Figure 2 shows the
example of linear elements. The coefficients vj became now the unknowns of
the problem.

The fourth step is to introduce the Ansatz (2.4) into the variational form

(2.3). The discretized problem can then be formulated: "find {vi, i = 0..N}
such that

1

of { x (%Ow&-cp.')(go v;d):) + /Z(J);:owjﬁ)({oviq,i)}dx

1

i DJ f(g‘{o i
Vol s g=0eNg -

The prime denotes the derivative with respect to x. let us define

IR R TN

1
b, = J f‘t de (2.7)



and the vectors v = (Vo, VijeeosVN)r W = (Wo Wlyees,WN),
b = (bg, by,...,bNg). With (2.6) and (2.7), the problem (2.5) is equivalent
to "find v e R™1 such that

N+

YweR . (2.8

weAy = web ,

or "find v ¢ R™1 such that

A \" = ':> (2.9)

Note that we have to introduce the boundary conditions (2.2). Those imply
that vo = a and vy = b. In other words we must set

A = b s Aojzo ¥J>O

00 -d—: )
b (2.10)
AN» = f ? ANJ' =0 VJ<N ‘

Suppose that the boundary condition at x = 1, E(1) = b is replaced by the con-
dition
! —
E'(L) + ¢ E(1) =4,

(2.11)

where ¢; and d; are given. This type of boundary condition arises quite often,
for example in our problem of rf waves. It is called a natural boundary condi-

tion because it appears in a natural way in the variational form. (The condi-
tion (2.2) is called an essential boundary condition because it has to be
explicitely and a posteriori imposed on the matrix A.) Let us consider our new
problem, namely BEq. (2.1) together with the boundary conditions (2.2a) and
(2.11), and let us follow the steps described before. We multiply (2.1) with
E(x) such that E(o) = 0 (but E(1) # 0), we integrate by parts and we get
1 1
N A
[{<EE + pEejd - apBi)Ely) = [fEox .

o (7]




We can see that the boundary condition (2.11) appears in the term integrated by
parts. We can write:

1 1

[ {«B'e +pBE}dx + ¢ EE() = [ fE dx + daivEn,

0 S e o L/W
(%) (% %)

The boundary condition (2.11) will therefore appear as contributions to the
matrix A (#) and to the source vector b (¥ .

Iet us follow on our path. The fifth step is to choose an integration
scheme for the calculation of Aij and bj, egs. (2.6) (2.7). We note that
fram the definition of the basis functions, having a finite support, only a few
elements of Aj4 will be non-zero. In our case (linear elements, Fig. 2) we
have Ajy # 0 only for j = i-1, i, i+1. Hence the matrix A is tridiagonal. The
most rational way to construct A is to proceed interval after interval
("element by element"). Iet us consider the k-th interval A = [xk_1,
Xk]. Only the functions ¢x_q and ¢x will contribute to the matrix
(Fig. 2). Let us define

’ Mﬂ =l{ ( «q&é.(‘ %I-L ¥ /34’&-: ¢ﬁ-: ) dx
R

My =] (<4’ 4’(/ */"1’4,,%)‘1"

\ A& (2.13)
My = My
My = | (& &' +4d ¢ )d
22 i& R Tk £ ] ‘f&
S, = [y, &
3 b4 (2.14)
S, = J f’qSﬁcix




The contribution fram k-th element to matrix A is the 2x2 "local matrix" M; to
source vector b, it is the "local vector" (S;,S;). These contributions are
added at the correct place by means of a correspondence between the "local
numbering" (1,2) of the nodal points of Ax and the "global numbering"
(k-1, k). Note that in this case the correspondence is trivial. More care has
to be taken in the case of multi-dimensional problems or when ther are more
than one unknown field.

The integrals (2.13) and (2.14) are usually computed with the Gaussian
integration formulae, which express an integral over the interval [-1,1] as

1 m
f 9(x)dy = 3 € q(5) (2.15)
-4 P= 1

Table II displays the weights ¢y and the abcissae gy for the 1- to 4- point
formulae. The m-point formula integrates exactly polynomials of order 2m-1.
Hence the order of the error is 0(h2M). In our case (6(x) linear), if we want
to integrate exactly (2.13) for B(x) linear, we must integrate exactly 3rd
order polynomials and thus choose m = 2,

The sixth step is to solve the linear algebraic system of equations
Av = b(2.9). The safest procedure is the Gaussian elimination:

’ /

A=LDUWL . LDy=5b . Uy =y (2.16)

where L and U are lower and upper triangular matrices and D is a diagonal
matrix. We mention here that there are also iterative methods to solve Av = bs
Gauss-Seidel, Successive Over-Relaxation (SOR), Gnjugate Gradients (0G), etc.
Most of them are valid only for symmetric positive definite matrices.
Unfortunately for our wave-propagation problem the matrices obtained are
general complex matrices without any "good" property.

The seventh and last step is to reconstruct the field E(x) from the solu-
tion vector v according to (2.4a) and to make diagnostics of the solution (in
our case the power flux, the power absorption, the polarizations, etc.).
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How good will the solution be? In other words, for a given number of
intervals N how close to the exact solution will we be? For model problems such
as ours and for "good" functions a«(x) and B(x), one can mathematically

demonstrate that the discretized solution converges towards the exact solu-

tion. Te order of accuracy, O(h?), where h = 1/N, depends on the order of
the polynomials chosen as basis functions and on the order of accuracy of the
integration formula. Therefore, the basic check of the numerical procedure
described above is to vary N and look whether the solution converges. This is
by the way a great advantage of these methods: the accuracy of the solution can

be measured.
Exercises: (1) For «(x) and B(X) = const. canpute the matrix elements of M
(By. 2.13) for linear basis functions ¢(x) (define hyx = xx - Xgk-1).

(2) For hx = h ¥k construct the matrix A.

Remark on time-dependent problems

Suppose that we want to solve an equation of the type :

A (x, k) _ .
Led e

where (f is a spatial differential operator. We can straighforward apply the
finite element scheme (steps 1 to 5) described above. We formally get

Al B

where f is the vector of unknowns fj at nodal points and the dot denotes the

(2.18)

time derivative. We need a time-integration scheme to integrate (2.18). Let us
define a discretization of the time {tp}. At n~th timestep, _f_(n) is known
and we campute :f'(n‘”) using

NS

t(nfz) -

(n+1)

{n)
i M"S)f ) (2.19)

with 0 < 6 < 1. The case § = 0 is said to be an explicit scheme, 6§ = 1 is an
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implicit scheme. The case § = 1/2 is known as the Crank-Nicholson scheme. At
each time step we must solve the algebraic problem:

(n+l)

()
(A - JMB)_F = (A + (1—J)A£B)_f : (2.20)

The system (2.20) can usually be solved with iterative methods. Note that there
are other integration schemes ("Alternate Direction Implicit", "Chebychev acce-
leration", etc.).

Remark on non-linear problems

Suppose that we want to solve an equation of the type :
(£ = F(fes)

where .f is a linear differential operator and F is a non-linear function. The
simplest way to solve (2.21) is to use the iterative Picard's scheme. Suppose
that we are at k-th iteration and that an approximation f(k) has been con-

structed. We campute f(k+1) using

(R)

(ogf(kﬁ)) (x) = F(f (%) (2.22)

We can solve By. (2.22) at each iteration step with a finite element method as
depicted above. We obtain the algebraic equations

A f - _‘2 (2.23)

where A is the discretized version ofx and b is the discretized version of
F(£(k)),

Note that to ensure that the Picard's scheme is stable one usually under-

relax the new guess f(k+1) of the solution:
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l‘k*‘f) (&*1) f&)
= wf o+ (1w ocw< 1 @

More sophisticated schemes are the Newton and continuation methods.

ITI. ALFVEN AND ICRF IN TOROIDAL GEOMETRY

III.1 Basic Equations of the Cold Plasma Model

Let us consider a magnetized multi-species plasma in an ideal MHD equili-
brium state:
_ (3.1)
We assume that it carries a current j,, and that this current is parallel to
By ("force-free" condition)
J]o = 1B

We neglect the electron inertia and assume no electric field (Ec = 0) and no

(3.2)

mass flow (vjo = 0). This implies that the equilibrium current is carried by

electrons:
. 3.3)
Jo = -@Ng Vg = =~ €ne Vu) EM (

where e = Bo/By.

Iet us now consider a perturbation ~e~1wt and linearize the equations of

motion:
[ (1) O= E +VexB, + Vet, xB (3.4a)
(2)  -wov, = 9 (E + % xB,) (3.4b)
m;, - -
(3) o (3.4c)
{ :] = LZ Nig 9. Vi +  Ney(-€)Ve
() obE = iwB (3.44)

| (5) rol B = /MOJ' (3.4e)
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The basic feature of the derivation is to project these egs. in the local
magnetic frame of reference, in the parallel direction to By(e;=By/Bp)

and in the perpendicular plane to EO(EN'_e__L)' See Fig. 1 for the toroidal
case.

Taking the parallel component of (3.4a), we immediately get

Ey =0 (3.5)

Thus we do not need the parallel equation of motion anymore. Operating with
&yx on (3.4a) and (3.4b) and introducing into (3.4c) we obtain a relation
between the perturbed current j and the wave fields E and B. With Maxwell's
equation (3.4d) (3.4e) we get in the (ense J.) coordinates:

rot rot E- ¢ E = 0 (3.6)

£

ENN é‘N.l. EN
EE =] ¢ HE ) +/*(r°t‘_-'-'.“’;‘""°t§) (3.7)
== R V] 4
where
z 4 ﬂ
r . W _ 9&
Evv = ZZS R 'yw“
. 2 f w/wu
Evy = 12D = Lw -
¢ Car i 1- w/wu
_ Jo R Bo (3.8)
M= =7
%D
A ’
CAZ - Bo /JZ "jmj (Alfvén speed)
rc' = n;w\; /Z.AJ.M . (summations over ion species)

The first term of (3.7) is well known [3] but not the second which is due to

the equilibrium current jo. It comes straighforward from the third term of
(3.4a).
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Notice that the dielectric tensor (3.7) has been obtained without any
assumption concerning the geometry. Because of the force-free condition (3.2)
it neglects any finite B effect. If (3.7) is applied to a finite B equilibrium,
it corresponds to neglecting the diamagnetic equilibrium current jo_L-

III.2 Warm Plasma Model

If parallel temperture is taken into account (but still neglecting the
perpendicular one, that is neglecting the ion Larmor radius), we can replace

enn and ENY, in (3.8) by:

2

2 w_ -
(= & 5 ¢ (Z. +Z .
Woe® Z/Ku"‘rtlliw 1 -lL)
ey (7 3
= W . -
e 7R vy w e "“.) >

oA ey £ .
£y = Z(Wﬁ)ﬁn;) ; Z(X)= e}/‘ﬁ"zf‘”w’) ;

‘ U-l:uc' = parallel thermal velocity of i-th ion species.

Note that (3.9) is only approximate when there exists an inhomogeneity of
Bo along By: in this case k; is a differential operator and g is formally
an integral operator. For a toroidal plasma we shall approximat-é ky in (3.9)
by n/r, where n is the toroidal wavenumber and r is the distance to the axis of
the torus.

II1.3 Variational Form and Discretization Procedure

We apply the finite element scheme described in Chapter II: after multi-
~ . .
plication of (3.6) with E, integration over the plasma volume Q, integration by
parts, we obtain the variational form:
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Ew EmL

Ime

de{ obEerobE - ME - mlE -
n

E
&y Enn (3.10)

. A Ay
—i[drExy =0 , ¥E

-Xolk

We explicate (3.10) in an axisymmetric geometry (see Fig. 1) and write it
in magnetic coordinates (¢,x,¢) (Fig. 1). The surface temm in (3.10) is con-
nected to the vacuum solution (including antenna and shell) which we will not
discuss here. (This part is technical only. The reader can refer to Ref. [9]
for more details). We obtain a variational form for two variables which are
the two camponents of the wave electric field Ey and E L.

We formally obtain:
of/EN,EJ_)=O. (3.11)

We can proceed with the discretization scheme described in Chapter II.
However, the problem of rf waves in cold plasma theory has a particularity: the

equations are singular where the perpendicular resonance condition is met:

VA
£NN - Ku =0 J (3.12)

which is the dispersion relation for shear Alfvén waves. These points are very
important because resonance absorption occurs there. One can show in 1-D geome-

try that the behaviour of the wave field around the singularity is

EN A 1/X
(3.13)

EE* ~ EL ’X'
where x is the distance to the resonance.

In 2-D geometry the problem is more complex since ki is a differential
operator along the magnetic surfaces ¢ = const. (Fig. 1). This implies that the
perp. resonances occur along ¢ = const. surfaces [11,14,15].
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The way to turn the signularities is to add an imaginary part & to ENN
(enny + i8), and make 1im 8 » 0, with 6 > 0 to satisfy the causality principle
(any physical damping is causal: collisional, cyclotron, etc.).

One can show that dE; /3¢ has the same singular behaviour as EN, as
(3.13) suwgests. A good finite element method should reproduce this result,
This is the basis of what has been called the "finite hybrid elements" [16]:
instead of considering (3.11) as a functional of two variables, we consider it
as a functional of the variables and their derivatives:

W (2) (3) )
«f{ Ev , EL 2L | ¥E, , 2Ew ) =0, (3.14)

ST T S T

with the constraints

y _ =2 (1 (2) (3) (3.15
EN - tN 7 E.L = EJ. :EJ. . !

The main idea is to choose different basis functions for Ey(1)  and
Eg(2), EJ(_”, EJ(.Z) and Ei3), such that 9E[{2)/3¢ can behave in the
same way as Ey(1) on a single mesh cell. Such an approach is called "non-
conforming, non-polluting". We have chosen the lowest order finite elements so
that each term in (3.14) is constant on a mesh cell. For more details see
Refs. [9,16]. We just retain here that the hybrid elements are faster to
compute, simpler to programme and yield better results than the usual, regular
ones.

The discretization procedure follows the same guidelines as in Chapter II:
we subdivide the plasma volume into finite~size mesh cells (birxj), con-
struct the matrix A and the source vector b and solve Av = b.

The obtained algorithm has been computer-programmed. The numerical code
has been named LION [9] and has been installed on JET. Other similar codes
exist or are under develomment in the world [5,17,18].
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III.4 An Application to ICRF in JET Plasmas

Some results of the LION code have already been published [9,11] or are
suwmitted for publication. In this section we show an exanple of what can be
obtained with our global wave approach based on the finite element method.

Let us consider a JET-plasma with the following parameters: By = 3.4 T,
o = 3m, a = 1.25m, elongation 1.68, safety factor b = 1, 9q = 2.2,
Negp = 3.242 10%° m3, mixture of deuterium and hydrogen with ng/ne = 30%.
We select the frequency near to 42 MHz and study three different positions of
the antenna: Low Field Side (LFS), High Field Side (HFS) and Top-Bottom (TB).
The basic theories (Budden's model [1]) predict for LFS almost 100% reflection
of the fast wave and for HFS almost 100% absorption in a "single-pass". The HFS
antenna would apparently be the good choice in this case. However, let us
consider how our global approach can modify this opinion.

Figure 3 shows the total power absorbed versus applied frequency as calcu-
lated with the LION code for the three antennae. (In all cases the anplitude of
the rf antenna current is normalized to the same value, therefore the power
shown in Fig. 3 is a measure of the resistive impedance of the antenna). For
the LFS antenna we find sharp peaks that we identify as global eigenmodes of
the fast wave. Notice that the main peaks (f = 41.35 MHz, 42.85 MHz) are
surrounded by smaller "satellite" peaks. These peaks are a result of the mode
coupling due to the toroidal geometry: the modes have the same radial
"wavenumber" as the main peaks but different polodial "wavenumbers". See in
Fig., 4 the wave field for a main peak (f = 42.85 MHz) and in fig. 5 for its
"satellite" (f = 42.24 MHz). As expected the wave is reflected in the centre of
the plasma column. The presence of so many global modes for LFS excitation
makes the average coupling of the LFS antenna rather high.

The results for the HFS antenna look quite different (Fig. 3). No global
mode is excited, and the coupling is very low. This surprising result is an
effect of the toroidal geometry. The fast wave is evanescent near the plasma
boundary due to the low density in these regions. However, it is more evanes—
cent on the HFS than on the LFS. If we consider the 1-D dispersion relation of
the fast wave and replace the parallel wavenumber by n/r, which is 2.4 times
larger on the HFS than on the LFS, we see that the evanescence extends over
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23 am on the HFS and 1 am on the LFS. The HFS evanescence reduces the wavefield
amplitude by a factor of 6 and thus the total absorbed power by a factor of
about 36 (since it 1is proportional to the wavefield squared). Hence the
coupling is weak.

This can be visualized on a plot of the wavefield solution for the HFS
case, f = 42 MHz (Fig. 6). In addition to the evanescence near the HFS edge of
the plasma we discover the remarkable structure of the perpendicular ion-ion
hybrid resonances in the central regions. They lie on magnetic surfaces, as was
expected from analytical theory. Inspecting Fig. 6 more carefully we observe
poloidal modulations of the wavefield along the perpendicular resonances. These
modulations are tighter and tighter as the perpendicular resonance surface
approaches the surface where w = wgy, which is situated on the right-hand
side of the resonant surfaces. We can explain this result in the following way:

the antenna excites a fast magnetosonic wave which in its turn excites shear
Alfvén waves at specific places in the plasma where the resonance condition
(enn - k||2 = 0) is met. Since the shear Alfvén wave has its group velocity
parallel to B, all the power exciting it will be "imprisoned" on a magnetic
surface: this is the physical reason why the perpendicular resonances lie on
magnetic surfaces. The poloidal modulation of the wavefield along the resonan—
ces simply reflects the fact that the parallel wavelength of the shear Alfvén
wave goes to zero as w goes to wej. Due to the finite poloidal magnetic field
of the equilibrium, the parallel wavelength projects onto the poloidal plane.

Note that the magnetic structure of the perpendicular resonances is a con-
sequence of the existence of the poloidal magnetic field (Bop) . If we make
Bop 90 to zero, we observe that the poloidal extension of the resonances
shrinks and that they come closer and closer in the radial direction until they
merge to yield a vertical resonance structure defined by ENN — n/r? = 0

[11].

The results of the TB antenna (Fig. 3) show that global modes are also
excited and the coupling is rather good. Unfortunately, most of the power is
absorbed near the plasma boundary just in front of the antenna (not shown).

To sunmarize these results, we have shown that our global approach can
bring a new picture to the theory of rf heating. Firstly, the description of
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global modes is possible. We have shown a striking example where it has drastic
consequences on the coupling of the antenna and where it brings an answer
totally opposite (however not in contradiction) to the "single-pass" theories.
Secondly, the geametrical effects on the structure of the perpendicul ar
resonances and the effect of the poloidal field have been analyzed.

Other results obtained with the LION code include the determination of the
power deposition profiles. We have found [19] a relationship between the
absorption coefficient as calculated fram "single-pass" theories and the
focusing of the power towards the centre of the plasma.
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TABLE I

Comparison between different models

Model Nd NL Nw Waves described by the model
(1) cold 2 0 1 * Fast magnetosonic (F) (sometimes called
E, =0 "Alfvén campressional”). The "surface mode"
is the 1st radial mode of F for m = -1
¢ Shear Alfvén (or ion cyclotron). Global
Modes of the Alfvén Wave (GEAW) = ion
cyclotron modes.
(2) cold 4 0 2 Same as (1) plus "Surface Quasi-Electro-
E“;#O static Wave" (SQEW).
(3) warm 2 0 1 Same as (1)
E =
[}
(4) hot 4 2 2 Same as (1) plus Kinetic Alfvén (KA) or
E" =0 ion Bernstein (1IB)
*
(5) hot 6 2 3( ) Same as (4) plus "Surface Quasi-Electro-
E"¢0 static Wave" (SQEW)
Ng = order of the 1-D differential equation
N;, = order of the expansion in Lammor radius (k pp,)
Ny = number of wave branches in ky?
(*) = the "third branch" is usually unphysical since k pr, > 1.




- 23 -

TABLE I (cont'd)

Comparison between different models

Model Features of non-hamogeneous plasmas | Absorption mechanisms
(1) cold | The shear Alfvén wave appears as a Resonance absorption. Power
E)=0 | perpendicular resonance of the fast | absorbed at the resonances
wave (exx—kﬁ = 0) (Alfvén and ion- is independent of § for
ion hybrid perpendicular resonan- small 8. w = wyj is not
ces), where the wave equation is a singularity of the Hjs.
singular. Singularity removed by In fact E; = 0 » no cyclo-
making eyy + i6 and lim 8 » 0. tron damping.
(2) cold | The perpendicular resonances of Mode conversion between F
Ey#0 | (1) are replaced by mode con- and SQEW. The SQEW has a
version to the SQFW resonance at the "ion-ion
hybrid Buchsbaum resonance"
(exx = 0).
(3) warm | Same as (1) unless the perpendi- Same as (1) plus ion cyclo-
E)= cular resonance is close to wej tron damping of F. (paral-
lel temperature only)
(4) hot The perpendicular resonances of Ion cyclotron damping of
E)=0 | (1) are replaced by mode conver- the F, KA and IB at w=wgi
sion to the KA. Also mode con- and w=2wej. Mode conversion
version to the IB near w=2wgj. processes.
(5) hot Same as (4) but if cp/Vipe > 1 mode | Same as (4) plus Landau
Ey#0 | conversion to the SQEW instead of damping and Transit Time

Ka.

Magnetic Pumping (TIMP).
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TABLE I1I

Weights cy_and abcissae £y for the Gaussian Integration Formula

1

m
[ g(e)ae =§ c9(E,)
_1 2=1

m ¢ gy
1 2 0
2 1 + 13
3 8/9 0
5/9 + 0.774597
4 0.642145 + 0.339981
0.347855 + 0.861136
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Figure Captions

Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

Fig, 5:

Fig. 6:

Toroidal configuration showing the local magnetic frame of reference
(ex+ €4+ €), the polar coordinates (r,z,6) and the toroidal
magnetic coordinates (¢,y,¢).

Piecewise linear approximation H,(x) of E(x) with linear basis
functions ¢j(x).

Total resistive power (arbitrary units) versus frequency for a JET
plasma containing deuteriun and 30% hydrogen excited with three
different types of anntennae: LFS, HFS and TB. Only the contribution
of the toroidal wavenumber n = -15 is represented.

Level lines of the wavefield E for the IFS case, f = 42.85 MHz ,
corresponding to a main peak of Fig. 3.

Level lines of the wavefield E for the LFS case, f
corresponding to a satellite peak of Fig. 3.

42.24 MHz,

Level lines of the wavefield E for the HFS case, f = 42 MHz.
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EXTERNAL KINK IMPOSED OPERATING BOUNDARIES IN TOKAMAKS

W.A. Cooper, F. Yasseen, F. Troyon, T. Tsunematsu* and A.D. Turnbull+

Centre de Recherches en Physique des Plasmas, Association Euratom-Con-
fédération Suisse, Ecole Polytechnique Fédérale de Lausanne, 21, Av.
des Bains, CH-1007 Lausanne, Switzerland

ABSTRACT

The linear stability code ERATO is applied to MHD equilibria of low
and moderate aspect ractio to determine the operational diagrams
imposed by n = 1 external kink modes in the q,-qg damain. An
unstable wedge between two stable windows appears at low aspect ratio,
where strong non-resonant m = 1 instabilities are driven by toroidal
coupl ing effects.

INTRODUCTION

Ideal magnetohydrodynamic (MHD) theory constitutes the simplest
model to describe the dynamics of magnetic plasma confinement sys-
tems, Nonetheless, the very simplicity of the dynamics permits this
model to tackle problems in devices with very camwplicated geametries.
Linear MHD stability codes such as PEST' and ERATO? have become very
important tools in the design of Tokamaks. They help map out the
regions of stable operation and identify those configurations that
maximise the parameter beta (B) which is the ratio of the volume
average pressure to the volume average magnetic field energy density.

We briefly describe the ERATO stability code and discuss the
input profiles that are used to generate MHD equilibria. The damains
of stable operation imposed by n = 1 external kink modes fqr Tokamaks
with low and moderate aspect ratios are cawpared. The eigenstructure
patterns of unstable equilibria with similar values of B and safety

factor profiles in each one of these damains are also investigated.

* Permanent Address: Japanese Ataomic BEnergy Research Institute
(JAERI), Tokai, Japan.

+ Permanent Address: GA Technologies, Inc., La Jolla, CA / U.S.A.



PHYSICS BACKGROUND OF ERATO

The ERATO code determines the linear ideal MHD stability proper-
ties of axisymmetric plasma configurations by examining the energy
principle3 that is obtained from the linearised MHD equations, namely,

SL = S\o\/l,-(-SWv—oo"SWK::O_ (1)

The potential energy of the plasma is expressed as (2)

sup = § [ {[Te(x8)r (-5} (jxs+ Yp (o5,
’2(1"331@-"9_’)'(55",7.32 S 3 (2)

where v = 1¢/‘1¢| is the unit vector nommal to the flux surfaces. The
equilibrium magnetic and current density fields are B and j, respec-
tively, and the perturbed displacement vector is . The equilibrium
plasma pressure is p and y is the adiabatic index. The contribution of
the vacuum fields to the energy of the system is given by

oWy = ';' gdz" (zxA)", (3)

where A is the perturbed magnetic vector potential, and the kinetic
energy of the system is

SW¢ = —'i sd3)< §)§2_J (4)

where p is the mass density. A plasma equilibrium state is unstable if
the eigenvalue w? > 0. The value obtained for w corresponds to the
growth rate of the instability.

Furthermore, the perturbation is expanded as"
5 = N(v,8) QKP[L“@—C;@] (5)
when nq > 10, where ¢ is the geometric toroidal angle and 6 is the

poloidal angle in a straight magnetic field line coordinate system
(¢$,0,6). In systems with axisymmety, instabilities with different



different toroidal mode nunbers n are decoupled one from another and
can be therefore investigated independently. The safety factor q,
which is the derivative of the toroidal magnetic flux with respect to
the poloidal magnetic flux, corresponds to the number of toroidal
transits a magnetic field line makes per poloidal transit. This
quantity is one of the critical variables of Tokamak MHD stability
analysis because instabilities tend to concentrate in regions where g
has an integer value. To increase the accuracy of the calculations,
the ERATO code is constructed with a variable radial mesh that permits
packing around the rational gq surfaces. The perturbed vector
amplitudes n(¢ 0) are expanded further using finite hybrid elements. A
detailed description of the numerical scheme of the ERATO code can be
found in Reference 2.

PARAMETRISATION OF THE BQUILIBRIA

The plasma~-vacuumn interface for the MHD equilibrium models under
consideration is described by

n= R +acos(9~+ $sin©)

]

(6)

and z = EasinB | (7

where r is the distance of any boundary point fraom the major axis and
z is 1its distance from the midplane. The other parameters are the
major radius R, the minor radius a, the elongation E and the triangu-
larity 6.

The average toroidal current density flowing within a poloidal

magnetic flux surface ¢ is defined as

J(Y) = % S:rd@ & (J.'Y@ R (8)

- 2 . . . .
where V'(¢) = 2n ][0 dev/g 1is the differential volume and /g is the
Jacobian of the transformation fram the cylindrical coordinates



(r,$,z) to the magnetic coordinates (¢,9,¢). The prime indicates the
derivative of a flux surface quantity with respect to ¢. The total

current is

v,
- L\ '
T = M% dav V) T,

9
¥, (9)

We prescribe the p'(¢) and J(¢) profiles with functional fomms that
have continuwous piecewise smooth radial derivatives, namely

' 0 Yoo < W,
P (¥) = cubic function Yoed <dy (10)
quadratic function \Vd «\P< \Ps

and

quadratic function YoV <Y,
’j‘(v\ — cubic function Vo< Y2, (11)
0 \Pg, <Y< ‘{Js

Typically we choose p'(¢g) = 0, p'(¢g) to be a maximum, and ¢g =
¢p 0 that the peak of the pressure gradient matches the point at
which J vanishes. A detailed description of the specific forms and the
philosophy behind the éhoice of these profiles can be found in Refer-

ence 5.

NUMERICAL RESULTS

We concentrate here on a configuration with low aspect ratio.
Although design and engineering constraints pose some severe problems,
the physics aspects indicate the possibility of operating at very high
values of B which makes this an attractive type of device to consid-
er.® The plasna boundary parameters are given by E = 1.68,
A = R/a = 1.67 and § = 0.3. The operational diagram in the Y-qg

space determined by n = 1 external kink instabilities is obtained with

fixed Bp = 8“fpds/l1012 = 0.35 and shown in Fig. 1. The qgy-qg



domain is scanned by varying the current, the current profile and the
total pressure. What we find for qg < 4 are two stable bands loca-
lised about q, = 1.0 and q, = 1.1, with an unstable band wedged in
between. This type of structure differs considerably from that ob-
tained in a more conventional Tokamak with moderate aspect ratio. As
an illustration, we consider a configuration with A = 3.7, E = 2.0 and
6 = 0.4. The corresponding operational diagram that is shown in Fig. 2
for a case with 81 = 0.95 has only a single stable band. It is also
useful to compare the eigenstructures of two unstable equilibria that
lie in the operating diagrams presented and have similar monotonic g
profiles and B values. The instability flow pattern for an A = 1.67
equilibrium that 1lies in the unstable wedge of Fig. 1 with
9% = 1.065, gg = 3.517 and B = 8% appears in Fig. 3. The pattern
reveals noticeable m = 2 and m = 3 activity about the q= 2 and q = 3
surfaces, respectively. Throughout the bulk of the plasma a signifi-
cant non-resonant m = 1 structure is clearly visible that is driven
unstable by the strong toroidal coupling with the m = 2 and m = 3
external modes at this low aspect ratio. The instability flow pattern
for an A = 3.7 equilibrium with g, = 1.06, gg = 2.89 and B = 7.4%
appears in Fig. 4. A dominant external m = 2 mode is localised about
the g = 2 surface. Here a non-resonant m = 1 mode is also apparent,
but it is much weaker than the one shown in Fig. 3 because the toroi-
dal coupling effects at A = 3.7 are not as strong.

SUMMARY AND DISCUSSION

A brief description of the ERATO stability code has been presen-
ted and the profiles and boundaries that are used to prescribe MHD

equilibria have been discussed. We choose to employ J(¢) as the input -

profile in order to have control over the total plasma current and the
current profile as well as to avoid peeling instabilities that arise
fram current density discontinuities at the plasma-vacuum interface
when for example the q(¢) profile is prescribed and maintained in a

flux conserving manner.

We have examined the stability of a low aspect ratio configura-



tion to n = 1 external kink modes and found that they were two stable
operating windows with an unstable wedge in between localised near
9 = 1.05 in the gy - gg damain. In a more conventional moderate
aspect ratio configuration, only a single stable operating band is ob-
served in this domain. The eigenstructure in a low A equilibrium in
the unstable wedge has significant non-resonant m = 1 activity
throughout the bulk of the plasma driven by the strong toroidal coupl-
ing with m > 2 instabilities. A comparable moderate A unstable
equilibrium displays negligible non-resonant m = 1 activity because
the toroidal coupling effects with the dominant m > 2 modes is
correspondingly weaker. These equilibria we have computed are not
optimal for ballooning stability. However, because the low n-kink
modes tend to be sensitive to the plasma current, the current profile
and the global value of g, but relatively independent of the details
of the pressure profile, the stability to ballooning modes can be
achieved with appropriate retailoring of the p' profile without signi-
ficantly altering the kink mode stability properties of the configura-

tions under consideration.
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FIGURE CAPTIONS

Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

The B1 = 0.35 stability boundaries with q, - qg space
for a configuration with A = 1.67, E = 1.68 and § = 0.3
(solid curve). The dashed lines connect points of constant
normal ised current pyI/RR,.

The B1r = 0.95 stability boundaries in the gy - gg
space for a configuration with A = 3.7, E = 2.0 and 6 = 0.4

(solid curve). The dashed lines connect point of constant

nomalised current.

The instability flow pattern in a configuration with
A =167, E=1.68, 6§ = 0.3 and B = 8%. The equilibrium
state has q, = 1.065 and gqg = 3.517.

The instability flow pattern in a configuration with
A =37, E=2.0, 6 = 0.4 and B = 7.4%. The equilibrium
state has q, = 1.06 and qg = 2.89.
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