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Abstract - An energy functional is devised for magnetic confinement
schemes that have anisotropic plasma pressure. The minimization of
this energy functional is demonstrated to reproduce components of the
magnetohydrodynamic (MHD) force balance relation in systems with
helical symmetry. An iterative steepest descent procedure is applied
to the PFourier moments of the inverse magnetic flux coordinates to
minimize the total energy and thus generate anisotropic pressure MHD
equilibria. Applications to straight EIMO Snaky Torus! configurations

that have a magnetic well on the outermost flux surfaces have been

obtained.



I INTRODUCTION

Helical magnetic axis stellarator configurations with circular
coils constitute a potentially very attractive magnetic fusion energy
reactor concept because they are steady state devices that have finite
rotational transform and can be built modularly. However, they possess
a magnetic hill in the vacuum state and are therefore susceptible to
large scale magnetohydrodynamic (MHD) instabilities. To construct a
device that has a magnetic well, one possible approach is to deform
the plasma boundary into a bean shape with a linked toroidal
hardcore. This configuration is called a Heliac.2:3 A different
scheme that does not sacrifice the volume utilization and the
modularity is the EIMO0 Snaky Torus conceived by Furth and Boozer.!
This type of device is a helical axis stellarator that has displaced
circular coils that generate a toroidal (axial) magnetic field and has
an energetic electron population that provides stability in a similar

way as the hot electron rings in the EIMO Bumpy Torus concept.”

To obtain anisotropic pressure MHD equilibria in the limit of
helical symmetry, we formulate a positive definite energy
minimization procedure that employs a steepest descent method to
determine the Fourier moments of the nonignorable geametric
coordinates and of a periodic poloidal angle renormalization parameter

S

in terms of the magnetic flux coordinates.’® Using this approach, we

generate numerically straight EIMO Snaky Torus equilibria.

Previously, Miller has calculated helically symmetric EIMO Snaky

Torus equilibria.® His work is different from ours in three important



aspects. First, he employs a standard direct method to obtain the
helical flux as a function of the nonignorable geametric coordinates.
We use an inverse moments method that can be straightforwardly
extended to three dimensions.’ Second, Miller advocates transport
arguments to prescribe zero averaged plasma current along the magnetic
field lines. We define an effective axial plasma current that vanishes
on each flux surface from which we recover the zero current condition
of the isotropic pressure model when PH=RL-7 Third, he searches
for the conditions that will generate a global magnetic well and finds
that a hot electron population that occupies almost the entire volume
of the plasma is required. We rely on a more local hot electron layer
to obtain a magnetic well on the outermmost flux surfaces only and then
tailor the thermal pressure profiles to have weak radial gradients in
regions where a magnetic hill prevails. Oonsequently, the work we

present here is camplementary to that of Ref. 6.

In Sec. II, we discuss the magnetic field geametry. In Sec. III,
we discuss the MAD force balance, define an effective axial current
and present the corresponding rotational transform. In Sec. IV, we
construct an energy functional and demonstrate that its minimization
with respect to an artificial time parameter yields camponents of the
MHD force balance relation in helical symmetry. The Fourier moments
steepest descent procedure is outlined. In Sec. V, we derive the
radial force balance. In Sec. VI, we present applications to a
straight EIMO Snaky\'lbrus configuration and in Sec. VII, we discuss

the summary and conclusions.



IT MAGNETIC FIELD GEQMETRY

The Maxwell equation Vv « B = 0; in a magnetic confinement system
with a coordinate of symmetry ¢ implies that the magnetic field in

contravariant representation has the form

B=Vé x V¥ + /gB¥Wp x VO = Vo x V¥ + V® x Vg (1)
where 2n¥ and 27n® are the helical and axial magnetic fluxes,
respectively, which are functions only of the radial variable p. The
variable 6, corresponds to a poloidal angle in a flux coordinate
system in which the magnetic field lines are straight. It can be
expressed in terms of any arbitrary poloidal angle & by the relation
8,=6+\(p,0), where N\ is a periodic renormalization paraneter.5 In
systems with helical symmetry, it is convenient to identify the
ignorable angular coordinate ¢ as ¢ = hZ, where h is the helical pitch
and Z is the axial distance. With this choice for ¢, the Jacobian of
the transformation fram the rotating Cartesian frame (X, Y, ¢) to the
magnetic flux ocoordinates (p, 6, ¢) and the metric elements gij
acquire very simple forms.® A schematic diagram of the geametry in

systems with helical symmetry is shown in Fig. 1.

The magnetic field components in the covariant representation are

= - 0
By=0ggB%+954B? s By=90¢B+9¢¢B? and
By =950 B9+gp¢ BY. The magnetic  field  camponents in  the
contravariant representation are BY=(1+31/26)0°/Yg and B®=18"//g,°
where (p)=¥ /® is the rotational transform and the primes denote

derivatives of flux surface quantities with respect to p.



III EFFECTIVE PLASMA CQURRENT

In systems with a coordinate of symmetry, the vanishing of the
MHD force balance component along the magnetic field 1lines is
irvoked to demonstrate that the perpendicular pressure p; is
related to the parallel pressure py, that both are functionals of

p and B, and that the MHD force reduces to

oPy
F=- Vo +Kx B (2)
= ) Axz
vhere K=Vx(oB) is the effective current density and

0=1/png-(3py /0B)/B is the anisotropy par:amet:er.9

In an equilibrium state, we have that F = 0. (Oonsequently, K
satisfies the same properties as the current density J in the
isotropic pressure limit, namely that K » Vp = 0 and V « K = 0.

Therefore, in analogy with the scalar pressure case, we define an

effective axial current
I(p)=/[dpdevg(K-V¢)=[d6(aBg) . (3)

Expanding By as shown in the previous section, we can derive an

expression for 1(p) that corresponds to a prescribed I(p),

I(p) - Jde __@’ (1 + ax)
P e 26 ge¢
1(p) = . (4)

”

o
fdo 9
/g
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For configurations of the stellarator type, the absence of induced

currents makes I(p) = 0 within each flux surface a natural choice.



IV ENERGY MINIMIZATION

We define the total energy of the system as

B, pile/B)
w=[[[a® + 2Py , 5
/1] x[2p0 = (5)

where we express the parrallel pressure as

r 1+ p(p,B)
<1+ p(prB)>l

pr(p,B) = M(p) [& (p)] (6)

in which M(p) represents the mass function introduced previously in
the scalar pressure formulation of this problem5 and is a flux
surface quantity, p(p,B) is the energetic species contribution to
the pressure, and <p(p,B)>=/[d6d¢vgp(p,B) denotes its flux surface
average. For an adiabatic index I'>1 (that we typically take to be
the ratio of specific heats 5/3), W is positive definite which
guarantees that the minimum energy state corresponds to an MHD
equilibriumn. We then vary the energy W with respect to an
artificial time parameter t in such a way that the magnetic fluxes
® and ¥, the mass M, and the magnetic coordinates p, 6, ¢ remain
invariant.’ This also entails a variation of the function p which

is carried out through its dependency on B, namely,

dp _ 3p 3B

—_—— 7
dt 2B dt 7



As a result, we obtain for a fixed boundary calculation that

dw X Y
ar = = J//dpdedeFy 5 - [f[dpdedeFy ¢

)
- [ffdpdeder, 2X (8)
ot
where
o’ 2 2
e 2 (CE R L Py e 1 (BT L)
% /g 08 20 h dp 2ug
1Y , B? _o(8")?

d O\, (. 0Y dA
a'p“[ﬁa‘e‘ (m_+pl)] —~ (1 +59_)[1W+ (1 +a_6_)x], (9)

and

d (o (@)% oY I 13X ,B?
Fy= O e+ Mx]-192 2
v o | /g (% 28 ] h 20  Zug 28
d 103X , B o(@7)? dA.r BX N
+ O (10X (B in)1+ (1 + 259022 - (1 + My, (10)
dp [h 20 2ug )l 20 [ae 20 I

An alternative form for the force balance relation given in Bqn.
(2) is E=-E(PL+BZ/2L10)+(§'_‘7_)(G_§)- Then, noting fram Fig. 1 that
VYxV¢=h(VX-¥V¢) and V¢xVX=h(VY+XV¢), it is easy to show that
(BeV) (VYxV¢)=hB®(Y¥+XV¢) and  (BeV)(VOXVX)=-hB®(VX-YV¢). With
these expressions it becomes a straightforward vector algebra
exercise to demonstrate that the force components that result from
the wvariation of -the energy are  Fx=/gV¥xV¢+F/h  and
Fy=/gV¢xVX+F/h. These constitute the covariant camponents of the
MHD force balance relation in the rotating Cartesian frame. The

remaining component in Egqn. (8),



o} .
=9 [(eBp)e’] 1
B = 55 [(oBy)e”] (1

corresponds to -/gd’'BxVp+F/B?, which is basically the binormal
component of the force balance. 2n equilibrium state is achieved
when these force components simultaneously vanish. Note that the
vanishing of F, makes the function (oBy) a flux surface

quantity.

The next step in the procedure to obtain an MHD equilibrium is
to expand each termm of Eqn. (8) in a PFourier series. The path of
steepest descent that minimizes the energy of the system

corresponds to

5

M= p ' 12
St xm(p) (12)
oYy -
¢ - Fwmle) (13)

at— )\m(P) r (14)

The subscript m denotes the Fourier amplitude of the expression
with respect to the poloidal mode number m. The Fourier moments of
X, ¥, and A are thus advanced iteratively in t until all of the
force amplitudes vanish within some tolerance. The convergence of
these equations are accelerated, however, with a second order
Richardson scheme.” The numerical procedure was previously
developed and applied to axisymmetric and three dimensional systems
with isotropic pr:essure.5 In this article, we extend the method to

helical devices with anisotropic pressure dynamics.
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\' RADIAL FORCE BALANCE

To diagnose an equilibrium that has been obtained with the
energy minimization scheme we have described, it is useful to

evaluate the radial component of the force balance relation (2),

)
i

/98 x ¥ + F

2" /g9 dpy 4 d(oByg) N

B
- __( (1 +.?}.) 6(034)) _ 16(0 p)
4

— . (15
® dp op 00 op ) (13)

This expression set to 0 corresponds to the MHD equilibrium
equation (the anisotropic helical Grad-Schliiter-shafranov equation)
in the magnetic flux ooordinates that was solved by Miller to

obtain straight EIMO Snaky Torus equilibria.®
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VI  APPLICATION

We have implemented a computer code to obtain helically
symmetric MHD equilibria that have anisotropic plasma pressure with
the steepest descent \energy minimisation procedure we have
described., This is a variant of the isotropic pressure code

HESMEC.10

An appropriate model for electron cyclotron resonance heated
(ECRH) energetic electron species is a Maxwellian distribution
function with a scale factor that loads particles in the

perpendicular velocity direction,

M 3/2 E L
Fn(Emm,p) = Np(p)(—=e ) / exp(~ )(”B“(p)), (16)
21Th(p) Thip) E

where N, is an average hot electron density on a flux surface,
Th is the electron temperature, My is the electron mass, By
is the minimum value of the magnetic field B on a flux surface, E
is the energy, p is the magnetic moment, and the integer L is the
anisotropy factor. Typical distribution functions in the V1-Vy
space for different values of L are shown in Fig. 2. A hot electron
pressure moment p(p,B). that is consistent with this type of

distribution function is

L
p(p.B) = R (p) (BM(D))
B

. amn

We choose to represent the function ph(p) by a Gaussian centered

about a flux surface p=pa with a width A,



- 12 -

2
(p-pa) )

" . (18)

Phip) = pp exp(-
To describe the mass profile, we choose

L
M(p) = Mg(Mp+(1-My) (ng) )(1#+pnie))T (19a)

for p < Pa and
PP 2
Mip) = MMy (1-(352)) (1+pn(e))T (19b)

for p>py, where My is an arbitrary constant, M- is a constant

between 0 and 1, and

M
L= 2‘7%;’ () (20)

so that M is a continously differentiable function. The philosophy
that underlies the choice for the mass profile we have made is the
generation of pressure profiles that have very weak or nonexistent
radial gradients in regions where there is a magnetic hill in the
"vacum" which would be susceptible to MHD instabilities, and we
concentrate all the gradients in the region of magnetic well. In
this context, the temm "vacuun" means the equilibrium state with

zero thermal pressure but finite hot electron pressure.

All the numerical calculations we present have zero effective

axial plasma current prescribed within each flux surface, satisfy
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the mirror stability criterion <=3(oB)/dB > 0 ever:ywhere,9 have
®’zp, and are carried out on a grid with 41 radial points, 25

poloidal points, and 8 poloidal mode numbers.

a) Reference equilibrium

A Reference equilibrium case in the "vacuum" is obtained for a
configuration that has a circular cross section with a minor radius
of 0.23m, a helical pitch h=1.0/(0.375m), with My=3.4x10~",
M-=0.15, p5z=0.93, P,=9.5, 4=0.1, and L=8. The flux surfaces,
the mod-B surfaces and the energetic electron pressure surfaces for
this case are shown in Fig.3. This equilibrium has a Bth=0 and

Bh=0.7%, where we havevdefined

_ JI]&x pen
1@ x(B2/2p4)

’ (21)

and

g’ 2 + 1
Bh = i X(3 plh 3 puh) , (22)

[1[@x(B%/2u0)

and the subscripts th and h refer to the thermal and hot particle
components, respectively. The minimum value of pgt is 0.017 and the
peak value of By 1is 4.6%. In Fig. 4, we plot the differential
volume, pressures, 1 and g=1/1 radial profiles. The differential
volume profile shows that a magnetic hill exists on the inner flux
surfaces. A magnetic well develops, however, on the outer flux
surfaces where the hot electron pressure gradient is strongly
negative. The 1 profile shown corresponds to that in the rotating

frame of reference. One must add unity to it to obtain the

rotational transform values in the laboratory frame.’
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b) Variation of hot electron layer radial width

We vary the radial extent of the band of hot electrons by
changing the parameter A. The flux surfaces, mod-B contours, and
hot electron pressure contours for A=0.1 (the reference case),
A=0.2 and A=0.3 are presented in Fig. 5. As A increases, the radial
extent of the hot electron layer broadens and also its peak moves
slightly towards the magnetic axis. The flux surfaces and mod-B
contours are not noticeably altered. The differential volume
profiles for each of these cases are shown in Fig. 6. As A
increases, the magnetic well becomes slightly broader and shallower
as the negative radial hot electron pressure gradient becames less
localized, which is evident in Fig. 7. To obtain a hot electron
induced local magnetic well that extends to the plasma edge, a
Bh=1.2% with A=0.2 and a Bup=1.5% with A=0.3 are required,

respectively.

c) Variation of hot electron poloidal extent

We vary the poloidal extent of the band of hot electrons by
changing the integer L. The flux surfaces, mod-B contours, and hot
electron pressure contours for [=8 (the reference case), I=6 and
I=4 are presented in Fig. 8. All these equilibria have BL=0.7%.
As L increases, the hot electrons become more localized poloidally
about the point at which the magnitude of the magnetic field is a
minimun on the flux surface where these electrons are radially
concentrated. The flux surfaces and the mod-B contours are not
noticeably altered, nor are the differential volume profiles.

However, of these cases, the [~=8 example seems the most realistic
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because the hot electron pressure contours are more closely aligned
with the mod-B contours which is a result one would expect with
energy deposition from an ECRH source. For L>8, the mirror
stability criterion is violated for the Bh=0.7% that is required

to produce a magnetic well in the plasma edge region.

d) Variation of thermal beta

We vary Bip, while keeping B, fixed as well as controling
the thermal pressure gradients in the region of vacuum magnetic
hill, by changing My M and Py - The flux surfaces, the mod-B
contours and the hot electron contours for Byh=0 (the reference
case), for Bep=2% (M0=8.0><10‘3, M-=0.3, P, 0.64), and for
Brn=18% (Mg=6.9x10"2, M.=0.93, po=0.067) are presented in
Fig. 9. All these cases have By=0.7%. The mod-B contours are
affected by the change in B¢, but only on the outermost flux
surfaces. The flux surfaces and the hot electron pressure contours
are not noticeably altered. The pressure profiles are shown in
Fig. 10. As can be seen, we have tailored the thermal pressure
profile so that its radial gradients remain close to zero in the
regions that there is a magnetic hill in the vacuum state. As a
consequence, there is no perceptible shift of the magnetic axis
with increasing Bih. The differential volume profiles that appear
in Fig. 11 show a deepening of the magnetic well induced by the
thermal pressuwre gradient as B¢p increases, but no significant

change of the region and magnitude of the vacuum magnetic hill.
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VII SUMMARY AND CONCLUSIONS

In sunmary, we have formulated an energy functional for
magnetic confinement schemes that have anisotropic plasma
pressure. We have demonstrated that the variation of this energy
functional with respect to an artificial time parameter reproduces
the two covariant camponents of the MHD force balance relation that
lie in planes of helical symmetry (surfaces with ¢=constant) in a
rotating Cartesian frame. The third force camponent is binomal
(perpendicular to the magnetic field line on a flux surface) and
its vanishing makes the function (cB¢) a constant on a flux
surface. A steepest descent procedure is applied to iterate the
Fourier amplitudes of the inverse coordinates X(p,0) and Y(p,9),
and of poloidal angle renormalization parameter A(p,0) to minimize
the energy of the system, and as a result generate MHD equilibria

with helical symmetry and anisotropic pressure.

We have implemented a camputer program to construct numerical
EIMO Snaky Torus MHD equilibria in the limit of helical symmetry
that employs an accelerated steepest descent method. All the
calculations that we have carried out have zero effective axial
plasma current within each flux surface. We find that an energetic
electron layer localized on the outer flux surfaces with a modest
energy content (Bp=0.7%) can reverse the magnetic hill to a well
at the outer edge of the plasma. To generate equilibria with high
themal beta (Bth), we tailor the thermal pressure profile so
that its radial gradient is concentrated in the region where there

is a magnetic well when Btn=0. In the region of magnetic hill,
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which is susceptible to MHD instabilities, we tailor the thermal
pressure profile such that it has a weak radial gradient. Tis in
conjunction with the zero effective axial current condition,
removes the sources of free energy that could drive these classes
of modes. As a result of the small pressure gradients throughout
the bulk of the plasma, neither the magnetic axis nor the magnetic

hill displays any perceptible change with increasing Bthe
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Figure captions

FIG. 1. Schematic diagram of the geometry in a system with helical
symmetry. The coordinate system (X,Y,¢) constitutes a rotating
Cartesian frame about the Z-axis. These coordinates are related to
the static Cartesian coordinates (X0 ,Y0,2) through
X=Xgcosp+Y¥ysing, Y=-Xgsing+Ygcosy, and ¢=hZ. Note that Xy=X(¢=0)
and Yp=Y(¢=0). The elliptical contour identifies a flux surface

with label p of a magnetic flux coordinate system (p,8,4).

FIG. 2. Oontours of oconstant number of particles in the vy-vy
space of a loaded Maxwellian distribution function with I=8 (top

figure), L=6 (middle figure), and L=4 (bottom figure).

FIG. 3. The axial (®) magnetic flux surfaces, (the nearly circular
contours), the mod-B contours (the nearly vertical lines), and the
hot electron pressure surfaces (the moon shaped contours) defined
by (p+2p1)/3 of a reference straight EIMO Snaky ‘Torus
equilibriun with a minor radius of 0.23m, h=1./(0.375m),

Mo=3.4x10~"%, M-=0.15, p5=0.93, pPy=9.5, A=0.1, and L=8.

FIG. 4. The differential volume profile (top figure), the hot
electron pressure profile <py+2p1>/3 (dashed 1line in middle
figure), the themmal pressure profile (solid line in middle
figure), the 1 profile (dashed line in bottam figure), and q
profile (solid line in bottom figure) as a function of the axial

flux ¢ for the reference equilibrium shown in Fig. 3.
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FIG. 5. The axial (®) magnetic flux surfaces (the nearly circular
contours) , the mod-B contours (the nearly vertical lines), and the
hot electron pressure surfaces (the moon shaped contours) for the
reference equilibrium that has A=0.1 (top figure), for A=0.2

(middle figure), and for A=0.3 (bottom figure).

FIG. 6. The differential volume profiles for the reference
equilibrium that has A=0.1, for A=0.2, and for A=0.3 as a function

of the axial flux &.

FIG. 7. The hot electron pressure profiles <py+2p1>/3 for the
reference equilibrium that has A=0.1, for 4=0.2, and for A=0.3 as a

function of the axial magnetic flux &.

FIG. 8. The axial (@) magnetic flux surfaces (the nearly circular
contours), the mod-B contours (the nearly vertical lines), and the
hot electron pressure surfaces (the moon shaped contours) for the
reference equilibrium that has L=8 (top figure), for [=6 (middle

figure), and for L=4 (bottom figure).

FIG. 9. The axial (@) magnetic flux surfaces (the nearly circular
contours) , the mod-B contours (the nearly vertical lines), and the
hot electron pressure surfaces (the moon shaped contours) for the
reference equilibrium that has Byp=0 (top figure), for Bth>2%

(middle figure), and for Byh=18% (bottom figure) .

FIG. 10. The thermal pressure profiles (solid lines) and the hot
electron pressure <pI+2p1>/3 profiles (dashed lines) for the

reference equilibrium that has Bih=0 (top figure), for Bip=2%
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(middle figure), and for By,=18% (bottom figure) as a function of

the axial magnetic flux &.

FIG. 11. The differential volume profiles for the reference
equilibriun that has Bgp=0 (top figure) for Brp=2s (middle
figure), and for Bh=18% (bottam figure) as a function of the

axial magnetic flux .
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