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ABSTRACT

This paper discusses major and minor disruptions in tokamaks. A
nunber of models and numerical simulations of disruptions based on
resistive MHD are reviewed. A discussion is given of how disruptive
current profiles are correlated with the experimentally known
operational limits in density and current. It is argued that the
da=2 limit is connected with stabilization of the m=2/n=1 tearing
mode for 2 < gy § 2.7 by resistive walls and mode rotation. Experi-
mental and theoretical observations indicate that major disruptions
usually occur in at least two phases, first a "predisruption”, or loss
of confinement in the region 1 < q < 2, leaving the g = 1 region
almost unaffected, followed by a final disruption of the central part,
interpreted here as a toroidal n = 1 external kink mode.



1.  INTRODUCTION

The major disruption is probably the most important phencmenon
limiting the range of operation for tokamaks. Disruptions manifest
themselves as violent MHD activity on timescales ranging fram those of
resistive instabilities to the ideal MHD instability timescale. A
disruption is temmed major if it leads to the termination of the
discharge after broadening the current profile, whereas disruptions
fram which the plasma recovers are termed minor.

Apart fram the purely theoretical interest in understanding such
dramatic behaviour, there are clear practical motivations why detailed
understanding is desirable. First, disruptions set operational 1imits,
hence it is important to understand what can trigger a disruption in
order to be able to extend the range of operation and improve on
tokamak perfomance. Secondly, in particular for large tokamaks at
high current operation, very large amounts of energy are released in
disruptions, leading to significant erosion of limiters and walls and
giving rise to large mechanical stresses on coils, etc. Thus, from the
viewpoint of experiment (or reactor) lifetime, it is important to
minimize the number of hard disruptions, either by avoiding
disruptions altogether or by finding some way to "soften" them.

This paper is an attempt to give an at least partial and necess-
arily somewhat biased review of the present theoretical understanding
of disruptions. Section 2 reviews experimental results concerning both
the factors leading to disruption and the observed dynamical
behaviour. Section 3 gives a basic account of MHD stability for the
cylindrical tokamak and Section 4 reviews a number of numerical
simulations and theoretical models of disruptions. Recent results on
the influence of resistive walls on the qy-limit and concerning the
final phase of major disruptions are discussed.

2. EXPERTMENTAL RESULTS

It is well known that tokamaks disrupt when the density or
current exceed certain values. This restricts the operating regime to
lie within a triangle of the so-called Hugill diagram, where the
Murakami parameter' nR/Bp is plotted vs. 1/q,.
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Figure 1: Schematic Hugill Diagram
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The current limit is given by g > 2 and the density limit, which
is proportional to the average current density, by n < CBp/Rij,
where C is a slightly machine-Gependent number usually between 1.102°
and 2:10%° wo!for chmically heated plasmas. The Hugill diagram drawn
in Fig. 1 is very schematic and, for example, ignores difficulties
often encountered in crossing g, = 3, but the basic picture is
similar for most tokamaks.?—> The density limit can be increased
somewhat by the addition of neutral beam injection®'’ (which increases
the amount of heating) and pellet fuelling7 (which reduces the
impurity fraction).

The density limit has been correlated with cooling of the outer
region of the plasma, leading to contraction of the current profile so
that little or no current flows outside the q = 2 surface.’ In temms
of the current density at g=2, cooling of the outer regions gives rise
to profiles that are similar to those arising at low-q operation where
Qa = 2. Ashby and Hughes® showed that a limit in nRyy/Byr arises
from the condition of 100% energy loss in a radiating layer at the
edge of the plasma (assuming that the impurity content and plasma
temperature are kept fixed). Perkins and Hulse,® canparing radiation
losses with ohmic heating for a flat g-profile, found that the
radiative density limit is almost independent of the electron
temperature and should depend on the impurity content as



Zeff/(Zeff-1). They also found strongly dependence on the impurity
species, light impurities giving a higher density limit than heavy
impurities.

The current - or g - limit is in practically all cases
9a > 2. There is some variation in how closely the q; = 2 limit
can be approached; gy = 2 is reported from Doublet III,3 Jet,9 and
TFRIO; da = 2.2 from FI’ and JIPR-II." Experiments with gz < 2
have been reported from DIVA!! with a conducting shell, T™10%2 in the
presence of large amounts of light impurities, and fram TFR!? under
discharge cleaning conditions.

Qoncerning the mechamismn for disruption, an almost universal
feature is that the disruption is triggered by an m=2/n=1 mode
becoming unstable.?'*12113-19 1 the case of high~density disruptions
the reason for instability of the m=2 mode is often iden.tified as
radial contraction of the current profile caused by edge
cooling.* 1211311441618 Many experiments show excitation of an m=3/n=2
mode after the m=2 mode has grown to large amplitl.de.z'“'”‘19 In
TOSCA, even high order modes such as m=5/n=3 have been observed.l’
With respect to the presence of the 2/1 and 3/2 modes, the
high-density and low-q disruptions are similar, but the timescales are
quite different, the low-q disruptions occuring much faster.’'!® fhis
difference becames very pronounced in a large machine like JET, where
the density disruptions can have precursors 1lasting for about
1 second.’ A typical feature in the early phase of disruptions is the
slowing down of the m=2/n=1 mode rotation as the mode starts to
grow. 16120

While the initial phase of a disruption is similar on different
machines, there is less agreement on the final phase. TFR} reports
strong coupling between the m=2/n=1 and m=1/n=1 modes leading to a
large drop in the central electron temperature. In JIPP-IT!? the
coupled 2/1 and 3/2 modes were found to lead to only partial disrup-
tion, leaving the central region unaffected, while the final temmina-
tion of the discharge occured via coupled 1/1 and 2/1 modes. It is
suygested in Ref, 19 that the ability of the plasma to survive partial
disruptions depends on the ability of the control system to maintain
the plasma position. (bservations of a sequence of events, namely,
shrinking of the discharge, "predisruption" by an m=2 instability,



"mixing" by m=1 activity, and a final stage with m=2, 3 and 4 modes
were presented already in 1976 by Mirnov and Semenov.l* an interesting
observation concerns the angular distribution of tracks in the T-10
liner?! which gives evidence that the plasma touches the limiter in
the form of anm = 1/n = 1 helix.

3. BASIC MHD STABILITY CONSIDERATIONS

The disruption models discussed in this paper are all based on
resistive MHD calculations, usually in the large aspect ratio, zero B
approximation. In this limit, the only remaining MHD instability is
the resistive tearing mode (or, if the electrical conductivity is
sufficiently low at the resonant surface, the external kink mode). A
cammon feature of all these models is the dominant role of the
m = 2/n = 1 tearing mode in triggering the disruption.?2-31

Before discussing the different models it is useful to recall
some basic stability oconsiderations for resistive modes in the
cylindrical tokamak.l? The tearing mode is known to be stable if and
only if33

A'= éhg*' a}-(—l—)-[g"_, (r i+ 5)-9“’—(1: -5)]<0. (1)
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and where b is the radius of a conducting wall. Huation (3) shows

that the standard current gradient in tokamaks (dj,/dr < 0) is

destabilizing when it occurs inside the resonant surface for q < m/n,

and is stabilizing on the outside. Furthemmore, current gradients

located where q = m/n have a strong effect on the linear stability
because of the m/(m-ng) weighting factor. The --mzq,»z/r2 term makes
high-m modes stable unless a large part of the current gradient is
confined to a region just inside the resonant surface such that
0 < mng < 1. A conducting wall is strongly stabilizing if it is
located close to the resonant surface.

If we now oconsider the stability of the m=2/n=1 mode in a
tokamak, it is clear that when the current density is low for q > 2,
the 2/1 mode tends to be unstable because the main part of the current
gradient is located inside the resonant surface. If the current densi-
ty at the q = 2 surface is constrained to a low value, the best
solution for stability of the 2/1 mode is to move the current gradient
as far inward as possible, away from q = 2. Thus, it is desirable to
minimize q in the centre. However, at least in the cylindrical model,
¢ cannot be less than unity. Then, in order for the 2/1 mode to
remain stable, if j; = 0 at g = 2 (and ju(r) is non-negative), the
current profile must approach a stepfunction with j, = 2B1/Ru
= constant in the central region where q, = 1 and j, = 0 for
q > 1. The stability of the stepfunction current profile (for which
tearing modes become equivalent to external kinks) was analyzed by
shafranov.}* por % = 1 and in the absence of a conducting shell,
the shafranov profile is marginal to the modes with m = n and m = n+1
and stable to all other modes. The stabilizing effect of a perfectly
conducting wall can be seen fram the range of gy-values for which a
current channel of radius rgy is unstable to the m/n external kink

(1/n) [m -1 + (ro/b)zm J<q <mn . (5)

We see that in the absence of a close-fitting wall, g, must be close



to unity in order for the 2/1 mode to be stable.

It is emphasized that if the current density is finite at q = 2,
as would be the case if gy > 2 and in the absence of excessive edge
cooling, much more relaxed profiles stable to all tearing modes can be
constructed.3® Although the stepfunction current profile in a sense is
optimal for stability, it is clearly in conflict with the effects of
transport on the equilibrium. Qonsequently, decreasing the current
density at q = 2, either by increasing the total plasma current so
that g3 + 2 or by cooling the edge plasma, produces a conflict
between transport and MHD stability, unless wall stabilization is
effective. The influence of wall stabilization will be discussed in
some detail in Sec. 4.D.

4. DISRUPTION MODELS

4.,A Profiles Unstable to the m=2/n=1 Tearing Mode

In a nonlinear, single helicity study of the m=2/n=1 tearing
mode,22 white, Monticello, and Rosenbluth found that if g is well
above unity and the main part of the current gradient occurs inside
g=2, the saturated width of the g=2 island is very large. The
g-profiles used in Ref. 22 and many subsequent studies of disruptions
were parametrized as

ar) = @1+ e I, (@r0® = (gat - 1. (@)

For qy=1.37, ry=0.6a, and A=4, giving a current profile whose gradient
is concentrated just inside g=2, White et al?? found that the g=2
island encampasses virtually the whole plasma cross-section, the
saturated island width being w = 0.7a. They also pointed out the
sensitive dependence of the island width on the central g-value, with
gy = 1.1, the island width was reduced to w = 0.4a.

The conclusions of Ref. 22 are in agreement with those of the
linear theory in Sec. 3. One aspect that becomes clear in nonlinear
canputations is that low shear inside the resonant surface makes
possible very large islands nonlinearly.22'27 fhis has also been
observed in ideal MHD simulations of the so-called vacuum bubbles?? 140
due to external kink modes. In linear theory, shear has two opposing
effects on the tearing mode. First, low global shear inside the



resonant surface tends to increase the driving energy A', because of
the m/(m-nq) weighting of the current gradient in Bj.(3). On the other
hand, the dynamics of the mode, taking place inside the resistive
layer, is sped up by shear, and the linear growth rate’? scales as
an/ 5a'4/5, In the nonlinear phase, when the island is wider thefln
the resistive layer (the so-called Rutherford regime“) . the growth

only depends on the resistivity n and a nonlinear A',“"’z
dw _ '
g& = 16610 [ A'(w) - aw ] ; (7)

where a depends on the resistivity profile inside the island.

Sykes and Wesson,?? using an initial current profile with gg=1.5
and low current density at g=2, found that the 2/1 mode is
destabilized if the g=2 island makes contact with the limiter. Limiter
contact cools the island and hence decreases the current density near
the O-point and this enhances the growth of the island. (However, as
the island grows mainly inward in cylindrical gecmet:ry,l‘2 gy must be
very near 2 for the island to touch the limiter.) It has been pointed
out that other physical effects cooling the interior of the island,
43 can enhance island growth.

Oonversely, magnetic islands can be suppressed by the application of
bl 45

such as increased radiation losses,
radiofrequency waves so as to (a) heat the interior of the island
to increase the ohmic current at the O-point, (b) heat the plasma

46

outside the resonant surface to move the current gradients outward

and reduce A', or (c¢) drive current non-inductively within the island.

4.B Multiple-Helicity Interactions

A significant element in the theoretical understanding of
disruptions was found in three-dimensional MHD simulations carried out
at Oak Ridge.28-3% Waddell et al?® showed that when the 2/1 tearing
mode produces a large island it can strongly destabilize the m=3/n=2
mode. The simultaneous presence of resistive modes with different
helicities leads to field line stochasticity and destruction of the
magnetic surfaces. If the islands created by the 2/1 and 3/2 modes are
large enough to overlap radially, large scale stochasticity and loss
of confinement results. Refs. 28-31 showed that such overlap also
leads to very violent MHD activity.



Waddell et al2® presented a simulation starting fram an
equilibrium (6) with gg=1.38, qgyz=4, and A=4 (the same as used by
White et a122). For this equilibrium, the 2/1 and 3/2 modes are both
highly unstable and, if each is evolved in a single-helicity
canputation, their islands are large enough to overlap. When overlap
occurs in the multiple-helicity calculation, the oconsequences are
dramatic. The 3/2 mode is strongly destabilized and its growth rate is
increased by a factor of almost 4, at a Lundquist number
S=1:r/'cA==1.3-105. The destabilization is dependent on the coupling
to nonlinearly driven modes such as m/n=5/3 and 1/1.

The simulations of Refs. 28-31 showed that nonlinear interaction
between modes with different helicities could lead to rapid
instability, on timescales comparable to those observed in major
disruptions, and considerably faster than single-helicity calculations
would predict. Furthemmore, the 3-D nonlinear interaction of resistive
modes is a mechanisn that results in stochastic magnetic fields and
loss of confinement over a large region of the plasma.

The violently unstable multiple-helicity ccmput:ationsza’31
stimulated a large interest in MHD turbulence and several different
mode-coupling theories were presented to explain the numerical
simulations. Carreras, Rosenbluth, and Hicks,"7 in a third-order
randan-phase calculation found non-linear growth on the ideal-MHD
timescale, with a growthrate independent of resistivity but
proportional to the fluctuation level. Tetraul t*® derived an anomalous
resistivity due to the turbulent fields, whereas Biskamp and Welter't?
proposed a model in which small-scale turbulence acts on the large-
scale fields as a negative resistivity. Diawond and coworkers>?
derived renommalized equations for the large-scale fields, in which
the short wavelength turbulence gives rise to an anomalous resistivity
by turbulent fluid convection and an anamalous vorticity damping by
turbulent magnetic stresses.

In Refs. 51 and 52, a simpler question was asked, namely, what is
the ideal and resistive stability of equilibria with large g=2
islands. These studies point at the destabilizing influence on the 3/2
mode when the g=2 island grows to large size and pushes the main part
of the current gradient inside the g=3/2 surface. Kleva, Drake, and
Bondeson showed that a significant fraction of the increase in the
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growthrate of the resistive 3/2 mode could be accounted for by the
steepening of the current gradient by the island together with the
relative displacement of the current gradient and the q = 3/2 surface '
so that the current gradient became highly localized just inside
q = 3/2. Reference 51 showed that even ideal instability can occur
when the g=3/2 surface becames sufficiently distorted by the inner g=2
separatrix. In contrast with the random phase prediction,*’ however,
this ideal instability has a large threshold in island width.
Recently, the accuracy of the Oak Ridge computations?8-30 has
been questioned, both with regard to the time-stepping, which is
explicit and unstable in the absence of dissipation,®3 and the spatial
discretization, where aliasing may cause nonlinear, numerical, but
non-physical, instabilities if the radial resolution is
insufficient.’* while several independent simulations3!'37155 phaye
verified the destabilization of the 3/2 and higher order modes and
also find generation of short-wavelength turbulence, the final
catastrophic growth of the 3/2 mode at a rate independent of the
resistivity reported in Ref. 50 is not observed in other

simulations.3! *37

A clear indication of numerical difficulty in Ref.
30 is the temperature profile, which, in a minute fraction of the
ohmic heating time develops sharp local extrema, although the
temperature should mainly be diffusing on this timescale. Biskamp and
Welter’! stressed that the required resolution increases sharply with

decreasing resistivity and viscosity.

4.C Transport-MHD Simulations

It has been emphasized throughout this survey that the current
profile plays a crucial role in triggering disruptions. To a large
extent, the temperatuwre and current profiles are determined by
microscopic transport processes in the plasma. However, when large
scale MHD activity occurs, such as sawteeth or q = 2 islands, the
magnetic field structure is affected and the transport changes. Thus,
there is an intimate coupling of transport and instability, or, to
cite Turner and Wesson?® "it is clear that neither transport nor the
behaviour of instabilities can be treated in isolation." This is
particularly true if we want to understand the conditions leading to
disruption.



- 11 -

Turner and Wesson?® formulated a one-dimensional model where the
tearing modes were treated according to Rutherford theory Sl obeying
BEg. (7) with a=0. The temperature was evolved selfconsistently
including themmal conduction, ohmic heating and radiation losses. When
a magnetic island developed, the temperature was flattened across the
island and the effect of the sawteeth was modelled by a large increase
in the thermal oonductivity in the region where g<1. The current
profile was evolved according to a one-dimensional diffusion equation
with Spitzer resistivity, n « T-3/2, pespite its simplicity, this
model includes the essential element of coupling transport processes
and MHD instability.

When g; was reduced fram 8 to 4 and qy went below 2, the
m=3,2/n=1 tearing modes gradually became unstable, while still
qy > 1. (The current profile is generally more peaked in a tokamak.
The peaking depends on the themmal conductivity profile, which was
taken as a constant in Ref., 25. Neoclassical corrections®® to the
resistivity also increase the peaking.) With the transport model of
Turner and Wesson, a g=1 surface appeares in the plasma when
d5*3.4. Further increase of the plasmna current makes the g=2 surface
move outward and forces the main part of the current gradient to occur
inside g=2. As the maximum current density is constrained by q > 1,
lowering g also forces the current gradient outward, closer to the
g=2 surface, where it destabilizes the 2/1 mode producing an
increasingly large magnetic island. Turner and Wesson concluded that
as gz drops to about 2.8, the cambination of a growing g=1 region in
the centre and a large island at g=2 finally removes the isolating
layer between g=1 and g=2 and leads to disruption. They could also
produce repeated soft disruptions for q; above 3 if the current
density at g=2 was reduced by impurity radiation. An important feature
of all simulations described in this subsection is that they used
no?5136 or a very distant3’ conducting wall so that there was no wall
stabilization.

Hopcraft and Turner3® refined the 1-D model, including the 3/2
mode and its corresponding island. By ramping the plasma current so
that g3 went from above 3 to about 2.5, they found a series of
mini-disruptions and finally catastrophic interaction where the g=2
and 3/2 islands spanned the whole region fram the plasma edge to the
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g=1 region. According to the assumed transport model, with flattening
over these regions, confinement was then campletely lost.

A major contribution of Refs. 25 and 36 was to relate the
disruption clearly to the experimental operating conditions. The
interaction of different tearing modes in this model does not include
mode-coupling, but only occurs through the quadi-linear modification
of the current profile.

The simulations of the present author3’ include transport and MHD
phenamena within the framework of the three-dimensional reduced MHD

28-31 The thermal conductivity is highly anisotropic, with a

equations.
large conductivity along the fieldlines. Althowh the disruptions
simulated with the 3-D model are more distinct than those of the 1-D
model, the 3-D simulations give a similar condition for the occurrence
of disruptions: g3 < 2.6. As this limit is approached, first weak
oscillations occur in the equilibrium profiles, followed by soft, and
later harder disruptive events.

The initial motivation for these simulations was to see whether
in a self-consistent 3-D simulation, with slowly varying external
parameters, distinct disruptions would occur, or whether the plasma
would respond in a "soft" way, for example, by increasing the level of
turbulence. It is clear that the carefully selected, highly disruptive
initial conditions used in the previous 3-D studies?®-3! could hardly
arise in practice, simply because they are too unstable.

Disruptive behaviour indeed occurred3’ as a result of multiple-
helicity interactions of resistive modes and their effects on the
temperature profile. However, as these disruptions start from
effective "initial conditions" that are much less unstable than those
of the nonselfconsistent simulations,22'28-31 fop example by having
go=1, their swsequent evolution differs considerably. The
selfconsistent disruptions are initiated by the 2/1 mode becoming
unstable at a time when the 3/2 mode is stable, and the 3/2 mode
becomes unstable primarily as a result of the profile modifications
due to the growing 2/1 mode. The destabilization of the 3/2 and
subsequent higher-m modes takes the character of a "shock™ moving
inward fram the g=2 surface tearing successive flux surfaces. In front
of the shock, the flux surfaces are intact but behind it the magnetic
fields are stochastic and the plasma is turbulent. In the case of a
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disruption, the s'hock proceeds past the g=3/2 region, destabil'izing
‘modes with successively lower g=m/n (and therefore higher m) to remain
in resonance with the background magnetic field, as the front
propagates toward the g=1 region. Figure 2 shows the equitemperature

lines in a poloidal cross-section at an early (2a) and late (2b) phase
of such a disruption.

Figure 2. Bquitemperature lines at (a) an early and (b) a late
phase of disruption in the region 1 < q < 2.

2.0 k__2 == <
\\ Figure 3. Current profiles at
o ] the end phase of a disruption
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°© \ before and (—) after giant
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An unexpected result found in Ref. 37 was that the disruption
fronts always stopped when the reached the g=1 surface. At this point,
the current profile is highly contracted, in fact, it is almost a
stepfunction with qo slighly below unity, an example of which is shown
in Fig. 3. As discussed in Sec.” 3, .such a profile is stable to all
external modes with m/n > 1 (although near marginal to the men+l
modes) . Evidently, the shock stops because it runs out of driving
energy and the g = 1 region is not penetrated. The contraction ends
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with an internal sawtooth-like relaxation in which the central
temperature drops sharply because the plasma outside q = 1 is cold.
Following this internal relaxation, the calculation recovers and the
profile broadens again, which eventually leads to another contraction.

Despite several similarities with the experimental observations,
the results of Ref. 37 obviously disagree with the experimental
findings in that there is no final termination of the discharge with a
pronounced broadening of the current profile. In particular, the drop
in the internal inductance found in Ref. 37 was small, at most a few
percent, and it appears highly probable that the contractions in the
external regions simulated in Ref. 37 correspond to what is often
referred to as "predisruption" Jald

It will be argued here that toroidal effects are important for
the final stage of a major disruption, and that the instability may be
fairly ideal-like because the g=2 surface is cold and highly
resistive. The n=1 stability of contracted profiles has been studied>2
within ideal MHD using the ERATO stability code.®® For the sake of

1.10 EXTERNAL KINK 7
1.08 |- -
1.06 7
.04 |- o

l I ]

0.1 0.2~ 03 rR

Figure 4. Stability diagram, q; vs. inverse aspect ratio for
Shafranov equilibrium with a conducting wall at
b/r = 1.78. Solid curve: q = 1.1 - 0.505 (rd/R)z.
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simplicity, the equilibrium was chosen to have a slightly rounded-off
= stepfunction), zero B, circular cross-section and a vacuum region

stepfunction for the current profile (j 6

for 9 > g5 = 1.6. With a conducting wall at r=b, a current channel
of radius ry is stable to the m=2/n=1 mode in a cylinder if
1< qo < 1+(r0/b)l'. In the toroidal calculation,58 b/ry = 1.78 so that
the corresponding cylindrical case is unstable if qg > 1.10. Figure 4
shows the stability boundary in gy as a function of inverse aspect
ratio. Note that the Shafranov equilibrium is considerably more un-
stable in a low aspect ratio torus than in a cylinder. For rg/R=0.324
the toroidal equilibrium is unstable for q; down to 1.048 to an n=1
mode that shows strong coupling of m=1, 2, and 3. It is proposed on
the basis of these linear camputations that toroidal external kinks
(possibly further destabilized by finite pressure) are responsible for
the final phase of major disruptions and that it is this instability
that produces the large drop in internal inductance and the negative
voltage spike. To make a more conclusive statement, nonlinear, fully
toroidal simulation would be necessary.

The picture presented here of the major disruption thus involves a
sequence of events. (a) Low current density at g=2 destabilizes the
m=2/n=1 mode which, by nonlinear multiple helicity interactions,
destroys the confinement in the external, @1 region. (b) The
contraction of the current channel makes the central q fall below
unity after which an internal sawtooth-like instability strongly
reduces the central temperature and makes q; > 1. (c¢) The contracted
current profile with gp > 1 is unstable to the toroidal n=1 external
kink which temminates the discharge. This scenario is in accord with
recent data from JET,®%'®! and is also very similar to the early

14

observations of Mirnov and Semenov as well as to those fram

Jipp-11t° and pLT.%?

4.0 Mode Locking, Stabilization by Resistive Walls and the g=2 Limit

It is usually observed experimentally that as the 2/1 mode begins
to grow, its rotation frequency decreases!®129162 ang the instant at
which it locks to the wall signals the beginning of the disruption.
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It is clear that when the rotation frequency of the mode is much
larger that the inverse time-constant for the vessel, the wall looks
conducting, and the mode may be wall stabilized. For instance, in JET,
the 2/1 rotation frequency is typically between 1 and 10 kHz depending
on operating conditions, and the time-constant of the wall is about
4 ms, thus the wall should appear nearly ideally conducting. Ruther-
ford*® and Nave and Wesson®3 derived equations for the slowing down of
the plasmna rotation due to eddy currents induced in the resistive
wall. These authors point out the nonlinear, self-reinforcing effect
of the wall locking, namely, once the mode starts to grow, the
resulting torque slows down the plasma rotation, as a result the wall
stabilization is reduced and the mode grows even faster, etc.

Reference 64 points at another aspect, namely that mode
rotation may resolve the discrepancy between the disruption
limit 2.6 < g3 < 2.8 found in the cylindrical free-boundary

canputations2 5136437

and the experimental result, 2.0 { g3 < 2.2. As
long as the mode rotates fast enough for the resistive wall to appear
conducting, the 2/1 tearing mode becames increasingly stable as gy
is lowered toward 2 (in fact, A' » - » as g3 + 2 if the wall is
close-fitting). We conclude that tokamaks can be operated with
2 < g3 § 2.7 because of stabilization by resistive walls and mode
rotation. As long as the g=2 surface is inside the conducting plasma,
the rotation frequency of the mode is determined by the plasma flow

(and diamagnetic drifts, etc.) locally at the resonant surface. The

important point is that if the g=2 surface moves out of the conducting
plasma, the 2/1 mode is free to rotate (with moderate frequency) with
respect to the plasma, as the mode is frozen into the plasma only at
its resonant surface. Thus, in this case, the mode can lock to the
wall and may be thought of as an external kink, slowed down by the
resistive wall. A simple calculation shows that the growth time is
T = spg/A', where s = ¢ by is the surface conductance of the wall
and A' is evaluated at the wall with ¢ = r™ on the outside.

We are led to the conclusion that the g-limit is reached when the
g=2 surface approaches the edge of the plasma where the conductivity
is sufficiently low for a wall-locked mode to slip with respect to the
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plasma. This condition agrees very well with the experimental
da-limit 2 < gz § 2.2, where the variations between different
machines may be due to differences in the temperature profile near the
plasna edge. The wall locking with g = 2 has been simul ated®* with
a modified version of the code in Ref. 37. The mode rotation is due
to mass flow of the plasma, and because of the reduced MHD ordering,
only poloidal flows can be handled (but we expect similar behaviour in
the case of toroidal rotation). When g = 2, the resistive layer
formed at the imperfectly conducting wall coincides with the usual
resistive layer at the resonant surface g=2. Under these
circumstances, a variety of behaviours can be produced for the
mode-locking by varying the flow speed and the conductance of the wall
and the edge plasma. A consistent feature is that the locking is fast
compared with the g > 2 cases analyzed by Nave and Wesson.®? It is

clear that the q > 2 scenario®?

is relevant to high-density
disruption and that of Ref. 64 to low-q disruption. The difference in
time-constant between the two cases is in excellent agreement with the
experimental observations regarding precursor lengths for the
high-density and low—q disrupl:ions.g'l""62 We note that for the
da = 2 case, limiter contact and cooling in the center of the
island, as proposed by Sykes and Wesson,?3 will be effective in
enhancing the island growth. Figure 5 gives the time evolution of the
mode amplitude and frequencies together with  9Bg/dt for a case
where q goes through 2 and the conducting plasma extends to the
resistive wall.®"

The free boundary limit of g = 2.6 found in the cylindrical
model would also be lowered by the stabilizing effect on the tearing
mode of toroidicity and finite pressure.®°—®® However, this stabiliza-
tion depends on the cambined effects of high conductivity and finite
B, therefore, it is at its weakest at the edge of the plasma and may
only have a slight influence on the free-boundary gi-limit. Thus, it
seans justified to conclude that stabilization due to mode rotation

and resistive walls plays a role in low-g operation of tokamaks and

that the g3 = 2 disruption 1limit is due to 1loss of wall
stabilization when the g=2 surface moves out of the conducting plasma.
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Figure 5. Time histories of (a) mode amplitude (b) mode frequency
and (c) dBg/dt for mode-locking when gy = 2.
(dga/dt = -2-10~%/tp and gz=2 at t/ta=72 000.)
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