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ABSTRACT

Optimization studies for resonator cavities of quasi-optical gyrotrons have
been carried out. With the constraint that the RF field is limited by peak power
load on the mirrors, the electronic efficiency can have a value of up to 10%
higher than the confocal results by using spherical mirrors with g=1-d/R close
to -1. Optimized nonspherical cavities yield similar results. When output
coupling through circular slots is considered, confocal (g=0) as well as more
extreme designs near the resonator stability boundary are less favorable and
the optimum configurations found are spherical mirrors with g-factors of
about -0.3, -0.6, and possibly -0.75.



1 INTRODUCTION

It is well known that in conventional gyrotrons the efficiency is strongly
dependent on the shaping of the RF field profiles along the direction of beam
propagation. As part of the quasi-optical gyrotron project at the CRPP
Lausanne, we have carried out extensive efficiency optimization studies for
various resonator designs. A main objective was to find out whether, for
example, cavities with nonspherical mirrors might lead to significant
improvement of efficiency.

Quite generally the efficiency of interaction increases with increasing RF
field strength up to a certain field value from when on the effect of
overbunching of the beam decreases again the efficiency However, an
important consideration in the design of a steady state system is that the heat
load on the mirrors is limited [2]. We have therefore carried out the
optimization keeping the maximum local power dissipation fixed.
Furthermore, since with a quasi-optical resonator, power can be lost outside
the output coupling structure [2], we have considered the total efficiency, i.e.
the product of electronic and output coupling efficiency. In all cases quoted,
results refer to the maximum single mode efficiency after optimization with
respect to frequency detuning and tapering of the background field Bo(z).The
results of the optimization study have been presented at the 11th International
Conference on Infrared and Millimeter Waves in Pisa [7].

2. GENERAL REMARKS
2.1. Short Description of the General Resonator Configurations

The numerical calculations have been done with a resonator code that
calculates the eigenmodes - the complex electric field E - and the eigenvalues
for general mirror configurations using the Huygens-Fresnel integral
equations. This generalized mirror programme enables one to consider within
the paraxial approximation deviations of the mirror surfaces from the
standard spherical shape. A schematic description of the resonator
configuration is given in (Fig 1). In a second step the calculated electric field
distribution in the beam plane is implemented into the gyrotron equations of
motion for the electrons.
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In terms of the coordinate system described in (Fig 1) we characterize a

general nonspherical mirror with a function 8y(x,z) of the mirror coordinates x

and z giving the deviation in the y-direction from an underlying spherical
surface; positive values leading to an increased curvature of radius. In the

optimization study we have restricted ourselves to the three following resonator

configurations:

a)

b)

resonators with spherical symmetric mirrors (Fig 2a) characterized by the
g-factor (g=1-d/R, where R is the radius of curvature of the spherical
surface and d is the mirror distance). A detailed description of such
mirror systems can be found for example in [6]. In the computations
reported here, we have used the spherical approximation for the
surface,i.e. its deviation from a plane parallel to the x-z-plane is
Ays=r2/(2R), where r2=x2+z2.The diffraction loses of a resonator with
spherical mirrors depend on g and the Fresnel number N=a2/\Ld, where a
is the mirror radius and A the wavelength of the E-field.

resonators with ellipsoidal mirrors (Fig 2b), which are characterized by
the two independent radii of curvature Ry and R;, in the x and z
directions, respectively. For small x and z the deviation in the y-direction
from the (x,z) plane is Ay=x2/2R, + z2/2R,.

We can define in analogy to case a) two corresponding g-factors in the
directions x and z :

gx =1 ‘d/Rx (211)
gz =1'd/Rz

The deviation from the underlying spherical surface with a radius of
curvature R and the corresponding g-factor g =1-d/R is

Ex-8 gz-8

dy(x,z)=Ay-Ays =5d x2 +53 72 (2.1.2)
x2 22
=Sx‘a" + SzT

where the coefficients sy and s, are defined as

sx=(gx-g)/2 (2.1.3)
8z=(g,-8)/2
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In the calculations we choose either sx=0 or s;=0, e.g. Rx=R or R;=R
(Fig 2b). The deviation 8y is then a quadratic function of either x or z only.

c) resonators with non-symmetric mirrors that are spherical on one half
and ellipsoidal on the other (Fig. 2¢). For such cases, the function 3y
(deviation from the spherical surface) is a quadratic function of z for either
the negative or positive z-values (8y=s,-z2) and equal to zero otherwise
(6y=0). To simplify the subsequent discussion we define separate g-factors
in the z-direction on the positive and negative sides as g* and g-.

The electric field profiles of the fundamental modes of the above mentioned
resonator types are in case a) rotationally symmetric around the axis y, in b)
independently symmetric in the x and z coordinates and in c¢) symmetric only
in x. As illustration for the above cases, Figs 2a), b) and ¢) show in an
axonometric representation the three different mirrors types.

2.2 Basic relations for spherical resonators

In the following chapter a short summary of some basic relations for
spherical resonators is given. We refer the reader to [2] for a more detailed
study. If the mirror radius is large compared to the spot size w the field of the
fundamental mode TEMgg of such a resonator is to a good approximation
gaussian in the x-z-plane, and has a standing wave pattern in the y-direction.
For a linearly polarized field Ex in the x-direction, the E-field is

Ex(x,y,z,t) = E(x,y,2) sin (kyy + a(x,y,z)) cos wt (2.2.1)

where ky=w/c (@ is the angular frequency and c the speed of light)

E(x,y,2) = Eo (g (5p) & ®2+22/w:2() 2.2.2)
alx,y2) = R(y) (x24z?) g - tan'l (D)

Eg (=7=) is the peak amplitude at given y position

W (y)
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with wo the minimum spot size at y=0, wg(y)=wo(1+y2/YR2) is the spot size in
the plane y=const, YR=w? w/2c is the Rayleigh length, and Ry=y(1+YR2/y?) is
the radius of curvature of the spherical wavefront.

The spot sizes on the mirrors (with, in general, different g-factors) and in
the beam plane depend on the g-factors and the parameter ro=(d/k)1/2, where

k = 2n/\ and A is the wavelength. We have the following relations :

- in the beam plane :

wo? = 2rg2 Vg1g2(1-g182) / (g1+82- 2g182) (2.2.3)

or,ifg1 =ga=g

+
Wo2 =102 A / _Eil_g

- on mirror 1 :

g2 1

w12 =2 ro? P B (2.2.4)
orifg; =go =g

w12 =2 o2 '\/13_;—
-on mirror 2 :

w2 = 2192 %1-g11g2 (2.2.5)

A special case is the confocal resonator g=0 with wo=rg and wi=wa=(2rp)!/2,
Due to the conservation of the power flux the peak amplitudes of the

electric field of the travelling wave component in the beam plane Ey, and at the
mirrors K, are related.

WmEm = wpEp



Eyw wm , 2
E___ - -]::-g— (2.2.6)

The central value of the electric field for the standing wave in the beam
plane is twice the above value.

The ohmic heat losses on the mirrors impose an important technological
constraint since the peak thermal loadings on the mirrors should not exceed
the maximum values which depend on the material and the cooling
technology. The heat losses on each mirror are given by

Li= N{Z02 8lEm(r)Pd?r W] (2.2.7)

where Zy = \] Ho/ep = 377 Q, o the conductivity and 5=(wpyo/2)-1/2 the skin depth.

For spherical mirrors and a gaussian beam the heat loss is related to the peak
amplitude of the incoming wave.

TCWm

Li=——
1Z00‘5

| Eip 2 W] (2.2.8)

The relation between the heat power flux and the electric field

2
Pohmic = Ze258 IE12 [W/m2] (2.2.9)

then leads to the following relation

W2 2
L= ""éln_ Pohmic,max »  Pohmic,max = 20260 |E,o 12 (2.2.10)

between the total heat loss Lj and the maximal thermal load per unit area (at
the center of the mirror) Pphax. As a reasonable value we shall take the
maximal heat load on the mirror to be below 1.5 kW/cm2. The average heat load
Pohmic/(mirror surface) is of course smaller and this would allow for some
margin in the selection of the maximal permissible E-field value. In Table I,
we give specific values for the corresponding permissible maximal electric
fields in the cases of copper and brass mirrors.



2.3 Electron orbit calculation

We refer the reader to [1] for a detailed description of the single-mode
nonlinear computations in quasi-optical gyrotrons. To take into account the
non-gaussian nature of the cavity field we allow the amplitude Eq(z) and the
phase &(z) to be specified as arbitrary functions of z.

E = Re (Eg(z)e-x2+22)/w2¢i(0t+8(z))

This additional dependency of the phase 8(z) in the direction of the propagating
beam could have an influence on the gyrotron interaction efficiency of similar
nature as the magnetic field tapering.

The basic equations of motion (using guiding center variables and the slowly
varying phase angle 0) are

dp. -em .

T =gp. E() sinkygeos 0 2.3.1)

dé m dd(z), myeE(z) |, .

d_Z = p—z (Q-’Y(l) - dz ) + _zbﬁz— SInkygSIH 0 (23.2)

d

—JE

qz =0 (2.3.3)
eBg ) .

Q= o By is the external magnetic field

Note the additional term -d&(z)/dz in the second equation as compared to
the equation in [1]. The slowly varying phase angle 0 is now defined as

0=Y- ot - dz) (2.3.5)

where W is the gyrophase of the electron. In the numerical calculations we use
a pencil beam placed at a maximum of the electric field in the y-direction.
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24 Comments on ellipsoidal mirrors

Under the assumption that pi2 » p,2 and 1«1 (Y= (1-B2)12 =1+p;2/2m2c2)
and assuming a gaussian field profile one can derive a set of approximate
scaling laws [1] for the electron orbit equations.

dp

d& = -g¢ 5> cos O sinky, (2.4.1)
do = A-xp2+ (—) e €2 gin 0 sinky. (2.4.2)
dg p ¢

with the dimensionless variables and parameters

j A1

P=010 ° &-— (2.4.3)
eE WhH(Q2-)
c—==h. , WHRA0) 2.4.4
©= 2p,B1 ome? Bz (24.4)
_ wwpP102
cPz

For B, and B, fixed, one sees that two important quantities are E-wy, and
@ wp. In [3] it was shown that the optimum value for wi/A lies around 4.8 with
the electronic efficiency changing only slightly in the range of 3.8 < wp/A < 5.5.
For a gaussian field profile wp/A = (d/27A)1/2. (1+g/1-g)1/4 so that for constant d
and A the g-factors should preferably lie in the range 1gl<0.5 in order for wp/A
to be near the optimum value. The dependency on wp/A is not very strong as
compared to that on the other parameter E-wy not very strong. To have a high
efficiency it is necessary to have a large E-wp, The results mentioned in [3]
show that for normalized values\/-;eEwb/mc2 greater than 0.2 one obtains
high electronic efficiencies. It must be pointed out though that a too large value
r(n)eE-wp/mc2 (greater than 0.6) can lead to overbunching of the beam and
therefore a loss in efficiency. One can roughly say, taking always the above
remark into consideration though,that a long interaction region wp and/or a
high E-field maximum (restricted by the maximal heat load on the mirrors)
lead to high electronic efficiencies. For spherical resonators we have due to
energy conservation



4
Eb-Wb=\/§Em'\"i:g—2 (2.4.5)

where Eq, is the field on the mirror.

One immediately sees that if the maximum field on the mirror is kept
constant, Ep-wy, diverges when g — +1.

For spherical mirrors Ep and wp are not independent of each other at a
fixed E-field value on the mirrors. However the two variables can be decoupled
though if we consider ellipsoidal mirrors. The basic idea is to increase the spot
size in the parallel direction (with regard to the B-field) and to decrease the spot
size in the transversal direction, thus increasing the interaction region and the
E-field maximum at the same time. Recall that for spherical mirrors Epwyp, =
EmWm, so that Ep = En-(2/(1+g))1/2 which diverges for g—-1. Similarly the
beam spot size wp2 ~ (1+g/1-g)1/2 diverges for g—+1. Let us for the moment
consider ellipsoidal resonators with infinite mirror radii so that the Huygens-
Fresnel integral equation becomes separable. The E-field is then of the form

E = Eg e-X?/wx? - 22/w,2 (2.4.6)
where wx and w; are the respective spot sizes in the x and z direction.
The flux [IE 12 dxdy is then given by E2wyw, = E2w2 where we have

defined an average spotsize w= \/Wx-wz. The conservation of flux leads to the
relation

Ep = Em- —2e Enp- ’% 2.4.7)

Wb

The interesting quantity, interaction length x E-field, becomes

w
Ep whz = Em '\/"W'Ef WmzWbx (2.4.8)

1
= V2r0Em \/(1 +g20)(1-87)
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One immediately sees that in order to achieve high efficiency it is
advantageous to have large negative gx and large positive g;.

2.5 Asymmetric mirrors

The reason for using asymmetric mirrors lies in the possibility of
deforming the field profile in the beam plane so as to optimize the energy
extraction from the electron beam as is done in conventional gyrotrons [8].
Qualitatively one expects that to yield high efficiency the profile must at first
increase slowly in amplitude,enabling the electrons to bunch properly, then
abruptly decrease after the E-field peak value to prevent the electrons from
regaining energy from the field. By using non-spherical mirrors one can
deform the gaussian field profile in the desired manner. In addition the
resulting variation of the field phase 8(z) may be used or a replacement for
tapering of the B-field.

Numerically the complex electric field (absolute value E(z) and phase 3(z))
are calculated first in the general resonator code to be subsequently used in the
single-mode code with specified beam characteristics. In our study we have
used a beam with a pitch angle = 1.0 (a= 1.56 ) and an energy y=1.137

3.  DESCRIPTION OF RESULTS

As mentioned previously we restrict ourselves to spherical, ellipsoidal and
asymmetric mirror configurations. The maximum value for the electric field
on the mirrors is kept fixed to correspond to a given maximum heat load. We
have considered at first resonators with 4% total diffraction losses. By varying
the mirror shape and keeping the maximum field value on the mirrors fixed
one varies not only the profile but also the value of the electric field maximum
in the beam plane, so that one cannot clearly distinguish the various effects (E-
field maximum, field profile, spot size) on the electronic efficiency from each
other. In a first step we investigate the influence of various mirror
configurations on the electronic efficiency without considering the problem of
output coupling. In a second step mirrors with output coupling slots are
considered. The total efficiency, defined as the product of the electronic and
output coupling efficiencies, is then optimized. The present study is not fully
self-consistent in the sense that we have computed the maximum single-mode
efficiency after optimization with respect to frequency detunning. The question
of mode competition and accessibility of the spectrum mode is not addressed
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here. In addition all efficiencies are quoted as optimized with respect to the
tapering of the background field By(z). In the following figures we therefore plot
the electronic efficiency as function of the frequency detuning Q/w and the
magnetic field tapering AB/B.

31 Stability region

It is well known that for spherical mirrors the resonator becomes unstable
if g—%1 [6]. In geometrical optics terminology the field in stable resonators is
bounded by caustic surfaces [5], whereas for unstable resonators no such
surfaces exist. We have investigated the stability of ellipsoidal and asymmetric
resonators by calculating the diffraction losses of the various resonators
keeping the inner radii fixed. In the ellipsoidal case we find that indeed for -1 <
gx <1 and -1 <g; < 1 the resonator is stable (region of low losses) (Fig. 3).
Resonators with asymmetric mirrors show a somewhat more complicated
stability behaviour. In general asymmetric increases the diffraction losses
(Fig. 4). When the deviation from the underlying spherical surface, given by the
parameter s defined such that g, = g+2s is small one has the familiar stability
condition lgl<1. In general, one can say that the resonator has high losses if
the averaged g;-factor g,=(1/2)(g,*+g,") approaches 1. It is interesting to note
that there are regions where the modes with the lowest losses are no more the
fundamental (q,0,0) modes. In such anomalous regions the diffraction losses
tend to be high. (One such area, visible in (Fig. 4) runs diagonally across the
contour plot in the upper right hand corner region). In such regions, the
properties of the resonator are very sensitive functions of the parameters, and it
appears that they are not of interest for practical use.

3.2 E-field in beam plane

As mentioned previously it is desirable to have a high maximum E-field in
the beam plane. For spherical mirrors the E-field increases with decreasing g.
For asymmetric and ellipsoidal mirrors we expect a similar result. In Fig. 5,
we plot the E-field maximum for asymmetric mirrors. The maximum value is
reached when g—-1. At a fixed value for the g-factor of the underlying
spherical surface one increases the E-field by decreasing the radius of
curvature R;. The deviation 8y=s,-z2 will then become more and more negative.
There is, however, a saturation value for 8y at which the E-field is at a
maximum. For ellipsoidal mirrors (Fig. 6) one has a similar result so that at a
fixed g-factor in one direction one can increase the E-field by decreasing the
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curvature in the other direction. In conclusion one can say that a high E-field
is achieved near the boundary g—-1; the inclusion of ellipticity or asymmetry
increases the value slightly.

3.3 Electronic efficiency

The electronic efficiency, defined as the normalized difference between the
beam energy entering and leaving the cavity ( n=(yp-<y>)/(yo-1) ) will depend on
the mirror shape since the various mirror configurations have different
complex E-field profiles. In the following we take the results for the spherical
mirrors as a reference point and compare the electronic efficiency for
ellipsoidal and asymmetric mirrors therewith. In the numerical calculations
the electron beam parameters are kept fixed at the values yp=1.137 and
B1/B)=1.56. The E-field is fixed to give a maximal heat load of 1.1kW/cm2 on the
mirror.

a) herical mirror

In the case of spherical mirrors one can achieve very high E-field maxima
in the beam plane by going to large negative g-factors but only at the cost of
decreasing the interaction length (Fig. 7). The numerical calculations show
that one indeed achieves a high electronic efficiency near g=-1 due to the
increase in the E-field. As seen from Fig. 8, the scan over the g-factors from -.9
to +.9 shows a maximal efficiency value N=53% at g=-.9. The efficiency then
drops rapidly to 40% near the confocal case g=0.

The following constraints must be taken into consideration :
1) The resonator should be stable, e.g. should not be to close to g=-1.

2) At large negative values for g the losses between TEMyoq and TEM; 0q
modes become comparable [7].

3) If one considers an annular beam with a radius ry, then the variation of
the field profile in the x-direction can become important. The optimum
value for the beam radius for instance in the case of a 200kW gyrotron with
a current of 10A is given by krp=5 [1] e.g. r/A=5/2n. Comparing with the
desired optimum for the spot size as given by wg/A=5 one sees that
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rp=1/6 wo so that the spatial variation of the gaussian field profile in the x-
direction is negligible. In the case of a 1MW gyrotron the realistic value of
rp due to space charge is assumed such that kr,~10-20 so that rp, and wg
become comparable and the variation of the E-field in the x-direction will
decrease the efficiency. By going to lower negative g-factors the spot size
becomes smaller so that the efficiency is furthermore decreased. The
restriction that for annular beams r,<wq therefore imposes a lower limit
on the g-values.

Taking the above comments into consideration makes it reasonable to
restrict the g-factors to values above g=-.7, where the electronic efficiency is
about 44%.

b) Ellipsoidal resonator

As previously mentioned the possibility of using ellipsoidal mirrors lies in
the possibility of increasing the interaction region and at the same time
increasing the E-field in the beam plane by going to large negative gy and large
positive gz. A scan over the values for gx=-.8 to -.1 and g,;=-gx yields indeed a
maximum electronic efficiency of 48% at gy=-.8. The efficiencies are slightly
higher as compared to the corresponding spherical mirrors (g=gx). For
instance the ellipsoidal case with gx=-.7 and g;=+.7 yields 45% as compared to
44% for the spherical case. Numerous other ellipsoidal configurations have
been calculated giving however efficiencies less than the above value of 48%. In
the case of an annular beam one must take a similar constraint on gy into
consideration as mentioned in the previous paragraph, namely that the
resulting spot size in the x-direction should be sufficiently larger than the beam
radius.

¢) Asymmetric mirrors

The calculations show that asymmetric mirrors can increase the
electronic efficiency. However too large an asymmetry leads to unstable
resonators. A good efficiency of around 55% can be achieved by using nearly
spherical mirrors with a large negative underlying g-factor and a slightly
negative surface deviation 8y, thus decreasing the curvature R, on the lower
mirror half. As an illustration Fig. 10 represents a scan over some asymmetric
mirror configurations (corresponding to a diagonal cut in Fig. 4 such that the

averaged g,-factor g,=1/2(g,*+g;") is near -1). The efficiencies lie between 50%
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and 55%. Figure 11 shows asymmetric configurations with a fixed underlying
g-factor g=gy=g,*=-.6 and decreasing g;. As to be expected the efficiency
increase with decreasing g;~. Here again we must take the same constraints as
mentioned in the previous section on spherical mirrors into consideration. As
an example for a realistic value of g=-.6 and g, =-.8 one achieves an efficiency of
42%.

3.4 KEfficiency optimization under the restriction of output coupling through
slots

The previous calculations show that one can reach a high efficiency using
large negative g-factors. As mentioned in [3], one important disadvantage of
large g-factors is that one has poor output coupling through slots. If one
includes such slots the important quantity to be optimized will then be the total
efficiency defined as the product of the electronic and output coupling
efficiencies. The output coupling efficiency cefr is defined by

ceff = power flux through slots/total diffracted power flux.

We have restricted the calculations to resonators with a fixed diffraction
loss of 4% and an output coupling through circular slots. The outer mirror
radius is kept fixed at 70mm and the outer slot radius at 43.5mm. The inner
mirror slot radius is then adjusted for each resonator configuration to yield the
4% diffraction losses. Furthermore, we have kept the distance between the
mirrors fixed at 360mm. The above values have been chosen to match with the
present experimental setup at the CRPP.

The numerical calculations for various mirror configurations (spherical,
ellipsoidal and asymmetric) show that a maximum value of 90% output
coupling efficiency is achieved for spherical mirrors with a g-factor of g=-.3.
Another maxima with an efficiency of 87.5% is located at g=-.75. In general
under the restrictions described earlier the use of ellipsoidal or asymmetric
mirrors decreases the output coupling efficiency.

We have additionally studied two resonators with spherical mirrors that
have much higher diffraction losses (e.g. 10% and 20% losses). The result is
that the output coupling efficiency attains high (around 90%) and more stable
values with respect to varying g-factors over a slightly larger range (see also
comments in 3.5 and Figures 16a and b).
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The optimum for the total efficiency has been sought for in the vicinity of
these two local maxima of the output coupling efficiency by slightly varying the
ellipticity and asymmetry of the mirrors.

The optimization results are summarized in the following sections.
a) Ellipsoidal mirr

The optimum values for the total efficiency are seen to be near the
spherical configurations. Around the value of g=-.3 one has a total efficiency of
35% with an electronic efficiency of 41%. Near g=-.75, the total efficiency of 42%
is higher due to the increase in the electronic efficiency (48%). Figure 14a)
shows the results for the spherical mirrors and Figures 14b) and c) illustrate
the dependency of the efficiencies on the ellipticity at a fixed g-factor in the x-
direction gx=-.3 and gx=-.75 and varying g.

b) A metric_mirror

For asymmetric mirrors the departure from the spherical configuration
decreases the output coupling efficiency but increases the electronic efficiency.
Around gx=-.3 one finds optimum values at g, =-.1 and g, =-.4 where the total
efficiency becomes slightly higher than the value for the spherical
configuration. In the first case where g, =-.1 the interaction region for the
electron beam is slightly increased, thus increasing the electronic efficiency
whereas in the second case the E-field is increased. The other optimum is
achieved at g=-.75 near the spherical configurations at g=-.75. Figures 14d), e),
f) and g) illustrate the influence of asymmetric mirrors on the overall
efficiencies.

3.5 Additional results f ical n

Increasing the maximal permissible heat load increases the E-field in the
beam plane. Figures 15a) and b) show the efficiency plots for such different E-
field values. We note that at the higher values of the E-field the electronic
efficiency can become smaller at large negative g-factors because the electron
beam becomes overbunched due to the increased E-field value.

It is reasonable to expect that for resonators with higher diffraction losses
the output coupling problem becomes less pronounced. Figures 16a) and b)
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illustrate the behaviour of the output coupling and electronic efficiency for
resonators with such high diffraction losses (10% and 20%). In general one
sees that the output coupling reaches efficiencies around 90% over a wider
range in the g-factor as compared to resonators with 4% losses. (In the

calculations the mirror radius is fixed at 70mm and the outer slot radius at
43.5mm.)

By increasing the mirror radius one forces the microwave power through
the slots, thus increasing the output coupling. We have made a scan of the
output coupling efficiency at various values for the mirror radius and outer slot
radius. Increasing the mirror radius indeed gives somewhat better output
coupling efficiencies of up to 93%.

CONCLUSIONS

Resonators with large negative g-factors and non-spherical mirrors yield
good electronic efficiency. The lower limit for the g-factor depends on the
constraints mentioned in 3.1. With realistic values for the g-factor in the range
-.7<g<-.5 yield one can obtain electronic efficiencies between 43% and 45% as
compared to the confocal result of 40%.

The overall picture gained from the output coupling calculations show
that the problem of output coupling is of crucial importance if one wishes to go
to larger negative g-factors (g<-.5) or use ellipsoidal or asymmetric mirrors.
Using circular output coupling slots and the previously specified resonator
parameters a good value for the total efficiency (Niota1=42%) is achieved near the
spherical symmetric configuration with an underlying g-factor of -.75. For
such resonators the balance between output coupling efficiency and electronic
efficiency is at an optimum. By increasing the ellipticity or asymmetry of the
mirrors one can increase the electronic efficiency but at the cost of the output
coupling efficiency.

ACKNOWLEDGEMENT

This work was partly supported by the "Commission pour
I'Encouragement de la Recherche Scientifique” and by the "Fonds National
Suisse de la Recherche Scientifique”.



=17 -

REFERENCES

[11 Bondeson A., Manheimer W.M. and Ott E., Int. J. Infrared and
Millimeter Waves 9, 309 (1984)

[2] Perrenoud A., Tran T.M., Tran M.Q., Rieder C., Schleipen M. and
Bondeson A., Int. J. of Electronics 57, 985 (1984)

[3]1 Perrenoud A., Tran M.Q., Isaak B., Int. J. Infrared and Millimeter
Waves 7, 427 (1986)

[4] Sprangle P., Vomvoridis J.L., and Manheimer W.H., Physical Review A
23, 3127 (1981)

[5] Open Resonators and Open Waveguides, Weinstein, L.A. Golem Series
1969

[6] Diffraction Loss and Selection of Modes in Maser Resonators with
Circular Mirrors, Tingyi Li, The Bell System Technical Journal, 917 (1965)

[71 Conference Digest, 11th Int. Conference on Infrared and Millimeter
Waves, Pisa (1986)

[8] Fliflet AW., Reed M.E., Chu R.R. and Seeley R., Int. J. Electronics 58, 505
(1982)

FI E CAPTI

Fig.1 Resonator configuration with B, the magnetic field in the z-direction,

d the mirror separation,a the mirror radius and 3y(x,z) the deviation
from the underlying spherical surface '

Fig. 2 a) Axonometric representation of a spherical mirror with

R=720mm and a=200mm corresponding to a g-factor of g=+.5 for
d=360mm

b)  Axonometric representation of ellipsoidal mirror corresponding
to gz=+.5, gx=-.5.

c) Axonometric representation of asymmetric mirror
corresponding to g;=+.5, gx-.5

Fig. 3 Contour plot of diffraction losses as function of gx and g, for

ellipsoidal mirrors.

Fig. 4 Contour plot of diffraction losses as function of the g-factor of the

underlaying spherical surface and the deviation parameters s, such
that g, =g+2s,.

Fig.5  Contour plot of E-field maximum in the beam plane for asymmetric

mirrors.

Fig. 6 Contour plot of E-field maximum as function of gx and g, for

ellipsoidal mirrors.

Fig.7 a)andb)

Contour plot of E-field in beam plane for spherical resonators with 4%
diffraction losses (d=500mm). E-field maximum on mirror is
normalized to one.



Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16
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a) and b)
Electronic efficiency contour plots for spherical mirrors

a)and b)
Contour plots of electronic efficiency and E-field maximum for
ellipsoidal mirrors in a scan gy=-g;.

a) and b)

Contour plots of electronic efficiency and E-field maximum beam
plane for asymmetric mirrors in a diagonal scan along unstability
ridge (d=500mm).

Contour plots of electronic efficiency and E-field maximum in beam
plane for asymmetric mirrors (d=300mm).

Contour plots of electronic efficiency for spherical resonators with
output coupling slots
d=360mm, mirror radius = 70mm, outer slot radius = 43.5mm.

a) and b)

Contour plots of electronic efficiency and E-field maximum for
elliptical resonators with output coupling slots d=360mm, g,=0, e.g.
confocal in z-direction.

a) through g)

Electronic output coupling, total efficiency and E-field maximum as
function of the g-factor for spherical, ellipsoidal, asymmetric mirrors
with 4% diffraction losses.

a) and b)
Electronic output coupling and total efficiency and E-field maximum
for spherical mirrors with different maximal heat load as function g

Pmax (brass) = 1.1 kW/cm?2
Pmax (brass) = 1.5 kW/cm2
Pmax (brass) = 1.5 kW/cm2

a) and b)
Electronic output coupling and total efficiency and E-field maximum
for spherical mirrors with 10% and 20% diffraction losses.
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Max E-field Max E-field
Material Conductivity yielding yielding
1.5kW/cm2 1.1kW/cm?2
Copper 5.8107Q-1m1 3.43MV/m 2.94MV/m
Brass 1.4107Q-1m1 2.405MV/m 2.059MV/m
Brass 0.86107Q-1m-1 2.13MV/m 1.78MV/m
(anomalous
conductivity)

Table 1

Maximum permissible electric field on the mirror under the

condition of a maximum permissible heat load
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Ellipsoidal mirrors

Total diffraction losses T(2-way losses)

d = 360 mm
a= 30 mm
A = 2.5 mm
N = a?/ad = 1
Tmin = 0.001
Tmax = 0379

separation of contour lines = 0.01

G
Figure 3



Asymmetric mirrors

Total diffraction losses T (2-way losses)

d = 360 mm
a= 30 mm
A= 2.5 m
N =a%/Ad = 1
Tmin = 0.001
Tnax = 0-807

separation of contour lines = 0.02

0.50




Asymmetric mirrors

normalized E-field in beam plane (maximum field value on mirrors

normalized to 1)

Q,
]

360 mm
a= 30 mm

A= 2.5 mm

Epin = 0.86
Epax = 4.23

separation of contour lines = 0.07

I I I
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Figure 5
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Ellipsoidal mirrors

normalized E~-field in beam plane (maximum field value on mirrors

normalized to 1)

Q
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g = g = -4
max = max = .39
g = g = ".2
max = max = .39

Figure 7a
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Figure 7b
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g = +.3 e-max = 1.4 g = +.4 e-max = 1.2
a = 31 mm a = 33 mm
g = +.7 e-max = 0.9
a =

1. e-max 1.2
73 mm
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Figure 8b
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e-max = 1.9

e-max = 1.6

36 mm

.43
5

= 1.

e-max

e-max = 1.5

Figure 9a



29 mm

Figure 9b
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