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Abstract - An energy principle is constructed for an axisymmetric
system such that its variation with respect to an artificial time
parameter t is demonstrated to yield the components of the
magnetohydrodynamic (MHD) force ?‘=3x§-‘¥7p—pM(v-$)§ when V is only
toroidal. An accelerated steepest descent method is applied to the
Fourier moments of these MHD forces in an inverse flux coordinate
representation to reach a minimum energy state that corresponds to an
MHD equilibrium with isothermal toroidal rﬁass flow. Applications to a
JET Tokamak configuration show the outward displacement of the
pressuwre surfaces away from the flux surfaces induced by the plasma
rotation. For fixed global and peak values of the total plasma energy
content (thermal pressure plus directed flow), however, the position

of the magnetic axis does not shift with the rotation.



1. INTRODUCTION

The application of unbalanced high power neutral beam injection
in Tokamaks for the purposes of heating the plasma induces also a bulk
mass flow. Toroidal plasma rotation velocities of up to 2x10’cm/s have
been measured in the ISX-B and PDX Tokamaks (ISLER et al., 1983; BRAU
et al., 1983). Poloidal rotation velocities have also been detected in
the PDX device with on-axis and off-axis neutral beam injection. The
magnetic pumping effect of a plasma moving across a spatially varying

magnetic field, however, rapidly damps these poloidal flows.

The effects of mass flows on the magnetohydrodynamic (MHD) plasma
equilibria in fusion confinement devices have not been extensively
investigated. Tokamak MHD equilibria with toroidal plasma rotation
have been calculated analytically by MASCHKE and PERRIN (1980) and
numerically using finite element methods (KERNER and JANDL, 1984;
SEMENZATO et al., 1984; ELSAESSER and HEIMSOTH, 1986). SEMENZATO et
al. (1984) have also generated MHD equilibria with cambined toroidal

and poloidal mass flows.

In this article, we shall develop an energy principle and
demonstrate that its variation reproduces the cylindrical MHD force
camponents in covariant representation for an axisymmetric plasma with
isothermal toroidal mass flow. The positive definite nature of this
energy principle guarantees that the minimum energy state corresponds
to an MHD equilibrium. An accelerated steepest descent procedure is
applied to advance the Fourier amplitudes of the inverse coordinates
R(p,9) and Z(p,0), and of a poloidal angle renormalisation parameter

Ap,0) until a minimum in the energy is reached (HIRSHMAN and WHITSON,



1983; HIRSHMAN and LEE, 1986). Also, an improved finite differencing
scheme in the radial coordinate p is employed that is particularly
useful for treating and eliminating convergence difficulties near the

magnetic axis (HIRSHMAN et al., 1986).

It should be mentioned that LAO (1984) has formulated a
variational moments method to solve this problem that differs
significantly fram our approach in two important aspects. First, the
variational principle he employs is not positive definite and second,

he uses a direct Jacobian inversion technique to solve the problem.

The representation of the magnetic field and the coordinate
system is discussed in Section 2. In Section 3, we present the force
balance relation in isothermal toroidally rotating axisymmetric
plasmas and the profiles that have to be prescribed to obtain MHD
equilibria. The definitions of beta (B) are provided in Section 4. In
Section 5, we construct an energy principle and derive the force
camponents that result fram its variation with respect to an
artificial time parameter. We also demonstrate how two of these
camponents correspond to cylindrical MHD forces in covariant
representation. The MHD force balance components in magnetic flux
coordinates are investigated in Section 6. An application to the Joint
European Torus (JET) is presented in Section 7. Finally, in Section 8,

the summary and the conclusions are discussed.



2. THE MAGNETIC FIELD

In a magnetic flux coordinate system (p,6,¢), it is assuned that
a coordinate 0<p<1 exists such that the magnetic field satisfies the
condition §°$p=0. This, together with the Maxwell equation VeB=0 and
axisymmetry implies that the magnetic field in contravariant

representation can be written as

B = %({) x?? + %(E-V‘Q\‘ag x'\-;e 5 (1)

where it is convenient to identify the coordinate 0<¢<2n with the
geometric toroidal angle, so that the Jacobian vg of the
transformation fram the cylindrical to the flux coordinates acquires

the simple form
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The coordinate 0<6<2n represents the poloidal angle. In a magnetic
flux coordinate system (p,%(M in which the magnetic field lines are

straight,
- - - -—h =
B=VdxVy+VIxVG 3)

where 2n¢ and 2n® correspond to the poloidal and toroidal magnetic
fluxes, respectively. The particular angle 6, that makes the field
lines straight is related to any arbitrary poloidal angle 6 by the

relation
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where A is a periodic renormalisation parameter (HIRSHMAN and WHITSON,

1983).
3. FORCE BALANCE

The MHD force balance relation for an isothermal toroidally

rotating axisymmetric plasma reduces to

'F:-— Vg-\-JX 3 (5)

after we have set its component along the magnetic field lines to 0
and we have applied the Chm's Law vV x (\7 x ﬁ) = 0. The subscript
indicates that the derivative of p with respect to p is to be
evaluated at fixed R and the plasna pressure 1is given by the

expression

_ B\
P9,R) = M(3)| H(Q) h( R),

(6)
where M(p) is the mass function, the prime indicates the derivative of

a flux surface quantity with respect to p, T is the adiabatic index

(or ratio of specific heats) which we take to be 5/3,
h (3,R) = exp [ U(9)R?]

and



Higl= Chig,R)) = || 4009 exp[U(QIRE] ,

where U(p) = 0.25Mi92(p)/T(p) represents the plasma flow function,
Mj is the ion species atomic mass, T is the plasma temperature, and

Q=zV . 'V.¢> is the toroidal angular rotation frequency.

Note that in the static limit [U(p)=0], H(p)=V'(p) is the

differential volume profile, nameiy

v ¥
(?\ = 2% 8\d9 ,[Z}: . (9)

\

The profiles that must be prescribed to generate flux-conserving
isothermal toroidally rotating Tokamak MHD equilibria are M(p), ®(p),
the rotational transfom 1(p)=¥'/®', and U(p). These functions also
have the property that they are conserved in the energy minimisation
scheme that is described in Section 5. The adiabatic conservation of
mass between neighbouring flux surfaces is what makes the prescription
of M(p) as the input profile more advantageous than that of the
function P(p)z=M(p) [&'(p)/H(p)]l that caracterise the previous

formulations of this problem.
4. BETA DEFINITIONS

The plasma beta associated with the thermal pressure is defined

to be

/5 = SS dj:de ‘13 f(f, R) : §
P (( de do q 5‘37(2}%\\ (10)




and the plasma beta associated with the rotational energy density is
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where pfy. is the mass density. Thus the total beta is

p= o Pr

The peak values of beta that are calculated are approximately given by

_ P©) exp § VO [Rg(oV? |
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where R;(0) and By(0) are the mm0 Fourier amplitudes of R and B at the

magnetic axis, respectively, and

/5(0\ = /3/%\(‘3\ + /‘;Q(O) . (15)



5. ENERGY PRINCIPLE VARIATION

We construct the energy W as

o R

We then proceed to vary W, which is positive-definite for Tr>1, with

respect to an artificial time paraneter t to obtain
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where we have used 3h/dt=( ab/aR)l'l and we have defined I'Q.-‘:aR/at. Because
the derivative of h with respect to R in equation (17) is evaluated at

fixed p, we have that
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In addition, noting that we can express
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we can obtain, after an integration by parts, that
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where the residual forces are given by
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where B¢E§-$¢. It is straightforward to demonstrate that equations
(22) and (23) correspond to the YqRV¢xVZ and the vgRVR<Y¢ camponents

of the force balance relation (5), respectively.
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The last termm in equation (21) corresponds to the contribution
from the plasma-vacuum interface. For the fixed boundary calculations
we are interested in developing in this work, this term vanishes.

Thus, by expansions in Fourier series, we can express equation (21) as

_»{u-m ZSAV[F (g\R (g)+F2 9)2 (?\‘*E (q\k(gﬂ

20

-2 de Eﬁo(ﬂgo(?) 5 (25)

- where dV=V'(p)dp,
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and Rplp), Zmlp), and Aplp) are the Fourier amplitudes of

R(p,9), Z(p,0) and A(p,9), respectively.
The path of steepest descent corresponds to

(29)
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However, the convergence of these equations can be accelerated with a
second-order Richardson scheme consisting of a set of non-linear
coupled ordinary differential equations with the addition of
constraints to minimise the spectral width. Further details about the
numerical procedure can be found in HIRSHMAN and WHITSON (1983),

HIRSHMAN and LEE (1986), and HIRSHMAN et al. (1986).
6. FORCE BAIANCE IN FLUX COORDINATES

The radial component of force balance is obtained by taking the

dot product of /g?GXW; with equation (5),

A —2\ (3-99)(B-V6)+ ;3 (399 B7), e
where using Ampére's Law, the toroidal current density is

(33)

}v@:m Y;

and the poloidal current density is

Ve =- $ (34)
Moty 3%

fram which we derive the relation
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where Bp, By, and By constitute the camponents of the magnetic

field in the covariant representation.
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The perpendicular camponent of force balance results from the dot

product of /g(ﬁx?p)/B2 with equation (5),

= (a0 =— A Wy (36)
it NE Ao v- S

which demonstrates that F\=—¢'F, . An equilibriun that is achieved by

minimizing the cylindrical MHD forces can be diagnosed by analysing

whether it satisfies the criteria szo and F£=0.

7. NUMERICAL RESULTS

We have developed the computer code ATRIME (Axisymmetric
Toroidally Rotating Isothermal Moments Bquilibrium) to descend the
energy of a rotating Tokamak piasna to its minimum state. It consists
basically of an axisymmetric version of the WMEC code (HIRSHMAN et
al., 1986) with the cylindrical MHD force components appropriately
modified to account for plasma mass flow as expressed in equations

(22) and (23).

The effects of isothermal toroidal plasma rotation on MHD
equilibria are investigated for a standard JET Tokamak configuration.

The plasma boundary is parameterised by

R = Ry + @ cos(0+85n®),
Z = EQ.S'U'I S )

where Ry=2.96m, a=1.25m, E=1.68 and 6=0.3 (TROYON et al., 1984;

(37)

SEMENZATO et al., 1984). A Fourier series is found for this boundary
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curve using a scheme that minimises the spectral width and thus the
harmonic content of the series but yet accurately and economically
represents the curve (HIRSHMAN and MEIER, 1985). The Fourier

amplitudes Ry and 7y that result are

Ry (1)=2.7675, %9 (1)=0,
Ry (1)=1.254, 2,(1)=2.0582,

Ry (1)=1.943x107}, Z, (1)=3.683x10"2,

Ry (1)=-3.39x1073, Z23(1)=-4.375x10"2,

R, (1)=3.0x10"°, 2, (1)=8.36x10-3,
Rs(1)=-8.9x107", 75(1)=-1.3x10"3, (38)

The dimensions of these amplitudes are expressed in metres. The
sequences of JET equilibria we generate in this study all have 41 flux

surfaces and 8 poloidal modes. The mass function profile is given by

M(g) = My (1- S)Z | N

,

the rotational transform profile is expressed as

'1(9\)= i"“‘%? 3 (40)

and the toroidal flux function is written as

@(‘33-‘: —%9 X (41)

Typically an equilibrium calculation takes 15s on a CRAY-1 camputer.
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First, we generate a static JET equilibrium with B=Bp=5.5% and
p(0)=pp(0)=15.8% by choosing My=0.0685. The flux swrfaces and the
pressure surfaces for this equilibrium are shown in Fig. 1. Next, we
generate a toroidally rotating JET equilibrium by choosing the plasma

rotation profile as

U(?\ = g/{) = 0,023, (42)

and My=0.065 to obtain a case with the same total B=Bp+Br and
B(0)=pp(0)+pR(0) as in the static example. The specific values are
3p=4.5%, BR=1%, Bp(0)=12.9%, and BRr(0)=2.9%. This choice for
U(p) oconstitutes a case in which the profile of the square of the
rotational angular frequency coincides with the temperature profile.
The Mach number at the magnetic axis (defined as 2R;(0)vU,) is 0.95.
The flux surfaces and the pressure surfaces for this equilibrium are
shown in Fig. 2. The pressure surfaces in this case are displaced
outwards away from the axis of symmetry compared with the flux
surfaces as is expected. The position of the magnetic axis, however,
does ‘not significantly change when we compare the static example with
the rotating example. We find that Ry(0)=3.122m, and calculations with
0<Up<0.023 give approximately the same answer. Consequently, we
conclude that the position of the magnetic axis is roughly invariant
with plasma rotation provided that the total plasma energy content, as
reflected by the values of g and B(0), does not change. Previous
analytic and numerical studies (MASCHKE and PERRIN, 1980; KERNER and
" JANDL, 1984; SEMENZATO et al., 1984) have reported an outward
displacement of the magnetic axis with plasma rotation. Those
calculations were carried out by prescribing and fixing the P(p) v

profile (rather than the mass function) as the value of U; is varied.



- 15 -

with that prescription, however, not only does Br increment with
increasing Uyr but so does Bp (and thus g). GQonsequently, the
shift of the magnetic axis induced by the plasma rotation that was

found is misleading.

Finally, we present a calculation of a JET equilibrium with a
very peaked U(p) profile. This corresponds to a case in which the Q(p)

profile is more peaked than the T(p) profile. The form chosen is

U (9)3 UO (i - 954:‘ 0.023 (i-— 9\)4 , @

with M;=0.065. The Mach number on axis is 0.95 and the values of
B(0)=15.8%, Bp(0)=12.9% and BRr(0)=2.9% are the same as in the
constant U(p) example previously presented. The global values are
Bp=4.9%, Br=0.4% and as a result B=5.3%. The flux surfaces and the
pressure surfaces for this case are shown in Fig. 3. An outward shift
of the pressure surfaces with respect to the flux surfaces, though not
as significant as in the constant U(p) example, is also evident in
this figure. The position of the magnetic axis is Ry(0)=3.124m which
indicates that its shift is actually more sensitive to the value of
B(0) than that of B. This is confirmed by undertaking a calculation
that yields the same p=5.5% as the constant U(p) case but has

B(0)=16.3% to obtain Ry(0)=3.127m,

8. SUMMARY AND CONCLUSIONS

We have constructed the energy principle

W=fffd3x[B2/2p0+p(p,R)/(I‘—I)] where the pressure function is given by



- 16 -

p(p ,R)=M(p)[2"(p) JTexp[U(p)R?]/<exp[U(p)R?]>T and we have
demonstrated that its variation with respect to an artificial time
parameter t yields the camponents of the MHD force '§=3x§-Vp—pM(?l-$ )\7
when V has only a toroidal ocamponent in the contravariant
representation. The magnetohydrodynamic equilibrium state for an
axisymmetric plasma with isothermal toroidal mass flow is achieved
when these MHD forces simultaneously vanish. To reach the minimum
energy state that corresponds to an equilibrium, a set of nonlinear
coupled ordinary differential equations for the Fourier amplitudes of
the inverse coordinates R(p,9) and Z(p,8), and the periodic poloidal
angle renormalisation parameter A(p,6) in terms of the Fourier
amplitudes of the MHD forces are solved using an accelerated steepest
descent method. To obtain fixed boundary rotating equilibria, the
surface functions that are conserved during the iteration procedure,
M(p), U(p), 1(p) and &(p) and the Fourier amplitudes of R and Z at the

plasma boundary must be prescribed.

Numerical toroidally rotating MHD equilibria for the JET Tokamak
configuration are obtained with this method. Our investigations show
that for fixed peak and global values of the total plasma beta, (0)
and B, that the pressure surfaces shift away from the major axis with
respect to the flux surfaces as a function of the plasma rotation, but
that the position of the magnetic axis remains roughly invariant. Our
calculations also show that the displacement of the magnetic axis is
actually more sensitive to the peak value of the total B rather than
its global value and that the shift of the pressure surfaces depends

more strongly on BR than Bgr(0).
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FIGURE CAPTIONS

Fig. 1.-The toroidal magnetic flux surfaces (solid contours) and the
pressure surfaces (dashed contours) for a static JET MHD equilibrium

with Bp=5.5% and Bp(0)=15.8%.

Fig. 2.-The toroidal magnetic flux surfaces (solid contours) and the
pressure surfaces (dashed contours) for a toroidally rotating JET MHD
equilibrium with Bp=4.5%, Bp(0)=12.9%, Br=1%, Br(0)=2.9%, and
Mach number of 0.95 at the magnetic axis calculated with a flat U(p)

profile.

Fig. 3.-The toroidal magnetic flux surfaces (solid contours) and the
pressure surfaces (dashed contours) for a toroidally rotating JET MHD
equilibriun with Bp=4.9%, Bp(0)=12.9%, Pr=0.4%, BR(0)=2.9%,
and Mach nunber of 0.95 at the magnetic axis calculated with a peaked

U(p) profile.
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