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ABSTRACT

Ideal MHD instabilities grow on a fast time scale given by the Alfvén wave
transit time across the major radius, usually in the microsecond range. These
instabilities are driven by the current and the pressure. In Tokamaks they
lead to a current limitation and a pressure limit. The main results of the
standard large aspect circular cross-section Tokamak theory are presented
(internal and external kinks). The effect of toricity is then demonstrated
with some numerical results. The most important new element is the appearance
of ballooning of modes across magnetic surface and pressure destabilisation
of the long wavelength external kinks. A semi-empirical scaling law which
gives the maximum pressure which can be confined in a Tokamak is presented
with the supporting experimental status.

1.  INTRODUCTION

The range of operation of most toroidal plasma confinement devices is
limited by instabilities. The most dangerous instabilities are macroscopic
and describable by the magnetohydrodynamic model (MHD). The characteristic
time scale for the fastest of these instabilities is the Alfvén transit time
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across the major radius of the plasma R
RPF

T T (MKS units) (1)
This is in the submicrosecond range for typical tokamak equilibria, so fast
that the magnetic field is frozen in the plasma as it moves. This is describ-
able by ideal MHD. When there are no such instabilities on this time scale,
there can still be slower growing instabilities due to the breaking up of the
magnetic field topology on some surfaces. These are the resistive instabili-
ties.

Ideal MHD instabilities are feared because in the past they have been
the cause of the failure of many confinement schemes and because they could
limit the performance of tokamaks. Resistive instabilities can saturate so
that their existence is not in itself a lethal default for a confinement
system even though in their nonlinear stage they may lead to catastrophic
operational limits. _

This lecture is devoted to the ideal MHD stability properties of toka-
maks only. To illustrate the argumentation ample use is made of results ob-
tained in Lausanne because they are readily available to us. In many instan-
ces, results of other groups could equally well serve the argmént.

It may be surprising that after 30 years of intense work in this domain
one does not have yet a fully céherent picture of the ideal MHD stability of
as simple a structure as a tokamak. Much of our present understanding is
based on partial and disconnected bits of information which we tend to

consider as proved because we are used to hear about it.

o5 DESCRIPTION OF THE EQUILIBRIUM

A tokamak equilibrium is characterized by the shape of its surface S,
the vacuum toroidal field B¢, the total toroidal current I, the wvolume
average pressue <p>. These are global, external parameters. To fully specify
the equilibrium, we need to know the pressure profile and the current density
profile, or two other equivalent source functions.

Designating by ¢(r,z) the usual poloidal magnetic flux function and by
T(¢) the poloidal current flux function, the magnetic field and the toroidal
current density are given by

il & gk 5 =-Iar_ .dp
B "yt W xEdy=-T@ N & (2)
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The flux function ¢(r,z) satisfies the GSS equation (1)
A*¢ = J¢ (3)

To specify the equilibrium, we can use either the pair of functions p(¢) and
T(dT/d¢), or p(¢) and q(¢), the safety factor defined by
dr

T
q(¢) = or I‘% ’ (4)

or p(¢) and the surface average toroidal current density dI/d¢ defined by

J.as
a  _d N g
av -dq)gSJd,dS—ger . (5)

The surface integral in (5) is over a meridian cross-section limited by the
magnetic surface ¢. The line integrals in (4) and (5) are along a poloidal
field line on the ¢ surface. The first two choices are very common., We have
found the last choice very convenient.
By substituting (2) into (5), Jy can be expressed directly in terms of
dI/d¢ and dp/dd¢.
§ng{75 % -8
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We need some more definitions: the volume average B and the poloidal Brr
defined as |

: 2p,fpav : 8n/pds
= 2 ! il 2 (7)
/B av bl

3. THE STABILITY CRITERION

The change in potential energy &W arising from a perturbation of the
plasma around its equilibrium position is given by /1/
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The index o refers to the equilibrium quantities. In the plasma



8B = V x (£ x Bo), where { is the displacement from the equilibrium
position. The unit vector ﬁ is normal to the magnetic surface: E = v/ | gq;] .
6A is the perturbation of the vacuum vector potential, with the condition on
the plasma surface

~

nxeA = - B (9)

If there is a conducting shell which limits the vacuum region one must impose

1

that ﬁ x 8A = 0 on it. Minimizing &W while keeping the norm - J d?’::q:;(}lg2
lasma

constant gives the fondamental mode (&, 6A) , and the Rayleigh guotient

f oW | (10)

7 o, Je?

provides the corresponding eigenfrequency. When w? < 0, the equilibrium is
unstable and |w| gives the growthrate of the instability. Instability occurs
whenever there exists a neighbouring equilibrium with lower potential energy,
accessible on the fast time scale (8W < 0).

This technique is the most appropriate for the systematic study of MHD
stability and is implemented in various spectral codes which are of general
use now: PEST /2/, ERATO /3/, its variant GATO /4/ and Degtyarev's code 7574
The main advantage over evolution codes is higher accuracy for a given reso-
lution.

4. FOURIER DECOMPOSITION
We make use of the axisymmetry of the tokamak by expanding the deforma-
tion in a Fourier series in the toroidal angle ¢:

£ \_ T [E\ .ing
(gé)ﬂReI%:O(gé)e (11)

where on the right of (11) the vectors { and 8A depend only on ¢ and a poloi-
dal angle. The different ns do not couple in 6W so that the minimisation can

be done separately for each n, giving each time the fundamental mode for this
n. Bquation (11) gives explicitely the dependence on ¢.

We first consider the case n # 0, since axisymmetric (n =o) stability
has very different properties.

5. STABILITY OF A PRESSURELESS TOKAMAK
Let us look at the stability of a circular cross-section force-free
tokamak (p = 0), starting from the standard large aspect ratio theory as




summarized in J. Wesson's review paper /5/.

There remains one global parameter Ip and one profile information I'
to fix the equilibirum.,

In the large aspect ratio limit R/a » 1 the magnetic surfaces are
circles which can be parametrized with the radius p and the polar angle 0.
Equilibrium quantities have a weak dependence on 0. After Fourier decomposi-
tion of the perturbation in 6, introducing the poloidal mode index m, there
is a small coupling between the different ms which can be treated in a per-
turbative manner.

In the lowest order, equilibrium quantities are independent of 6 and
each mode has a single m. The safety factor on each surface is related to the
average current density <j> = I(¢)/S(¢) by

1 = 73 (11)

The safety factor at the surface
q, = 2na’B (12)
BRI
is used in place of the current I, because it leads to a simpler stability
diagram.

At this order, the plasma can be considered as a straight cylinder, with
the correspondence k = n/R, where k is the axial wavenumber. Higher order
terms in € = a/R are neglected in &W to remain consistent.

J. Wesson has used this reduced 8W to compute the stable operating range
for a class of current profiles

2
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where v = ga/qp -1 (qp is on axis).

The result is shown in Fig. 1. The relevant variables turn out to be
do and gy. The stable region is to the left of the line labeled W and
above gz = 1, the Kruskal-shafranov limit. The line W is essentially
da/do = 2 with some prongs just below integer values of gy or just
below a low rational number. The most dangerous modes near integer values of
ga have n = 1 and m = qy. They are surface kinks and as g, increases
they are more localized near the surface. Below gz = 1 there is a very
global and rigid m = 1, n = 1 kink, growing on the fastest time scale.

For da/do < 2, (dJyp/dp)y = =, while (dJp/dp)y = 0 for
da/do > 2. The W line thus corresponds to the transition to



(dJ@,/dp Ja = 0, which is
necessary to have stability.
With a different current

9% | - profile which has
Sitn | {Sﬁ@eg’ the  (dJ¢/dp)a = 0 for any

Weaker - / da/dpo > 1, one can separate
o the effects of qy/q, and of
Kink \ Shafranov  (dJy/dp)y # 0. As the cur-
? N, e  rent is progressively moved
3 Interna | away from the surface (peaked),
ok ™~ Unstable the W line shifts to the right,
. \a showing that the current
: TK.._; Unstable - gradient at the edge is desta-
bilizing, As long as g remains
i a monotonically  increasing
Kruskal-Shafranov  limit function of p, the optimum pro-
Cnstgble file (largest stable area) con-
0 , >. sists of a constant current
0 ' ¢ : & N g, wie dNplies &  EIEE
q = qgo profile, up to a
radius pp < a determined by
Fig, 1: The ideal MHD stability diagram dayr and then Jp = 0 for
of a pressureless large aspect ratio pb < p < a. V.D. Shafranov
circular cross-section tokamak. /7/ has indeed shown that it

improves the stability and

reduces the width and size of
the prongs. The limit, made of steps along the line da/do = 1, is shown
in Fig. 1, labeled as Shafranov line. There is nothing at this order which
gives a lower bound on q,.

6. TOROIDAL EFFECTS
To our knowledge, there has not been a systematic attempt to derive the

same stability diagram in toroidal geometry without approximations, using for
example spectral codes. We have completed a study which provides some useful
information /8/. In order to identify the toroidal effects, the equilibrium
is specified by choosing for dI/d¢ the same step function used by Shafranov
with the edge rounded off to avoid numerical problems, but nevertheless keep~
ing a current-free region near the surface. The sequence of equilibria with
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four different ratios of qy/q, is shown in Fig. 3a. The calculation has

been done with ERATO and without any conducting shell. Three different aspect
ratios have been examined, R/a = 2.5, 5 and 10,

In all cases a n = 1 unstable kink develops when gy < 2, also in the

range go < 1 which is stable in the large aspect ratio ﬂtheory. An example

B ' ] - of such a mode is shown in

Fig. 2. It is an F equilibrium

with an aspect ratio of 2.5.
The mode is a kink with a large
shear flow on the g = 1 surface
and a strong deformation of the
plasma surface. Note that
da/do = 4.20.

Reeping g < 1 and
raising q between 2 and 3
the n = 1 mode remains unstable

but it becomes weaker growing
and more internal. It is not an
internal kink since it

disappears when a rigid

Fig. 2: An unstable n = 1 free-boundary boundary condition is applied
mode in a pressureless, circular cross- at the plasma surface, thus not
section tokamak which has q, = 0.34 and contradicting the result of
Ay = 1.44. The growthrate normalized to M.N. Bussac at al. /10/ which
1o (1) is lm| = 0.183. The aspect ratio is predicts a threshold in p' for
2.5 and the current profile is shown in this mode. As gz is increased
Fig. 3a as F. The major axis is to the above 3, the mode still seems
left. to be unstable but the

growthrate is in a range where

the numerical noise due to the
discretisation is such that one cannot make a definite statement. Above
da = 4, the growthrate has definitely lost its significance with the
available resolution. The existence of this instability at high values of
gy nevertheless remains an interesting issue to be clarified. These new
regions of instability are added in Fig. 1.



In summary, the stable region is limited by g5 » 1, g3 » 2 and a
line which is at best the Shafranov line and which moves to the left when the
current is redistributed towards the outer region. An important point is that
the n = 1 mode is the most dangerous for the Shafranov current profile but as
current is moved towards the edge, higher n modes may become more dangerous
at some rational values of gy. The detailed shape of the stability boundary
is thus expected to be sensitive to details of the current profile near the
edge but there is a lack of information due to the difficulty of studying
short wavelength modes with spectral codes. Reference 9 contains some useful
information on this problem but at g # 0.

We have not seen the same stability diagram drawn for a non-circular
cross-section tokamak. Numerical stability studies are usually done by moving
along constant qa/q, lines for purely technical reasons (the equilibirum
needs to be computed only once, the change in g being done by changing the
toroidal field at the surface) so that drawing such a diagram from published
data would require extensive cross-plotting. The information is not
sufficient to do this. But from all the cases documented, it appears that the
general behaviour remains the same, at least for weakly non-circular plasmas
such as JET: If qu/d, is too low, bands of instabilities appear just
below integer g corresponding to crossing the prongs in Fig. 1; if this
ratio is too high, as q, drops below 1 before g, reaches 2 and since all
these calculations have been done with 8 # 0 and peaked pressure profiles,
there appears a n = 1 internal kink when g, crosses 1; there is an
intermediate range of qy/gy where stability is achieved down to
da ~ 2. The behaviour in Fig. 1 thus seems to be general. The data in
ref. 9 is typical in this respect.

Nevertheless it is clear that for divertor plasmas, where g = =, or
for strongly non-circular plasmas, either stronly elongated or indented
shapes, the variable gz looses its meaning and it must be replaced by

another expression which has the same dependence on the current. One some-
. times uses a definition qr /11/ which is the g, of an elliptical plasma
having the same elongation and the same constant average current density. But
this is one domain where the information is very scanty. More calculations
are needed to find the equivalent of the condition gz > 2, namely what is
the maximum current which can be carried by a B = 0 plasma as a function of
shape.



T INSTABILITIES DRIVEN BY PRESSURE (B # 0)

In the large aspect ratio expansion, pressure appears at the same order
as toroidal coupling, if one assumes that Bt ~ 1. It means pressure will
start having an influence on stability only if By ~ R/a, the so-called
high-p regime. In this regime, one cannot use the straight cylinder approxi-
mation, as toroidal effects are crucial. In order to demonstrate these new
effects we use again a circular cross-section tokamak with the same flat

current profile discussed in the previous section (Fig. 3). The aspect ratio
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Fig. 3:
a) The shape of the current profile b) Shape of p' = dp/d} used in the

I' = dI/d¢ used in the numerical
study of the effect of finite
aspect ratio on stability.

n=1and n =« modes. The value
of ¢ where p' starts increasing
coincides in the four cases with
the value of ¢ where I' falls to
zero, For the case G, the
ballooning unstable region
between 0.73 and 0.95 is also

shown, s =1 - ¢/baxis.

is fixed at R/a = 5. We impose that the total current as well as its profile
remains constant Iy = pOI/aB¢ = 0,5 as pressure is increased. In the
absence of pressure g = 2.6. For the pressure profile we enforce that it
be constant in the region where I' # 0 and that p' = 0 at the surface
(Fig. 3b). The plasma is thus made of a hard-core in which all the net toroi-
dal current flows and a ring in which flow Pfirsch-Schliiter currents given by
(6) with d1/d¢ = 0.

In a straight geometry this would be stable to very high p. It is not so
in a torus. Figure 4 shows the square of the growthrate of the most unstable
n = 1 mode normalized to the time scale (1) as a function of the pressure,
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measured by By (eq. 10), for
the four equilibria EFGH of
figure 3a. The threshold of
significance is set at
|w2| = 10~*. The problem of the

discretizsation error and the

lu|

reason for the choice of this va-
lue are discussed in ref. (12). A
rapidly growing instability deve-
lops above a critical B1. The
threshold first increases as the
current is concentrated deeper in
the plasma (sequence E,F.G.H),
namely as qo is decreased. But
when go drops below 1 (H), the
forcefree internal kinks are
further destabilized by the pres-
sure and there is no stable
Pr range. This behaviour manifests
itself in the H case by the break
Fig. 4: The square of the growthrate in the curve which is part of a
of the n = 1 kink instability, pedestal just below 10~ which
normalized to the Alfvén transit time extends to g7 = 0.
(1), as function of B; for the four The displacement vector £ in
current and pressure profiles shown the particular meridian plane
in Fig. 3. Calculation made with ERATO where the motion is up-down
(Ref. 8). symmetric is shown in figure 5.
It corresponds to the F equili-
brium shown with a cross x in
figure 4. The mode looks like a rigid m = 1 kink of the central current
carrying region with a complicated pattern in the outer region where p' # 0.
For this case q3 = 3.688 and qo = 1.19. There are two singular surfaces

g = 2 and 3 located in the outer region. If a Fourier expansion of the
displacement vector in the poloidal angle © is done on each ¢ surface, it is
seen that the dominant component is m = 1 in the core, becomes 2 around
g=2,3near g =3 and m = 4 at the surface. This migration of the dominant
poloidal mode index m to remain of the order of q is called <«mode
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ballooning®. It is a very
important mechanism which
couples a large number of
ms.

For n # 1 the local m
follows nqg. Loosely
speaking, the mode adapts
its m to the local ng in
order to extend radially.
In the example shown this
ballooning is clearly a

destabilizing mechanism
which leads to a maximum
value of By, and thus of
B. The trend is clear. It
is best to have the current
as peaked as possible

Fig. 5: The displacement vector of the compatible with the
pressure driven n = 1 instability of an requirement that g, > 1.
F equilibrium at Br = 2.6. It means in figure 1 to

stay near the left edge of
the stable range at q, > 1. The pressure gradient progressively weakens the
stabilizing influence of the net current free region and the n = m = 1 kink
of the central region reappaers as if the plasma boundary were right on the
core. Note that in the outer region there are large Pfirsch-Schliiter parallel
currents which flow in opposite directions on the inside and outside of the
torus with no net toroidal current (dipole distribution). -

As n_increases, the general behaviour is the same but the threshold
moves to lower By. The stability limit for n = » can be computed with the
ballooning mode criterion described below. It is at By = 1.2 for the G
equilibrium, rm.;ch below the n = 1 limit. By moving the point where the
pressure gradient vanishes towards the axis while keeping the location of the
maximum at the same location until it is ballooning stable and enlarging
simultaneously slightly the current channel to keep g, from dropping below
1, it is possible to move the n = » stability limit above the n = 1 limit.
For the equilibrium G the final stable equilibrium has p; = 2.47 or
B = 1.58%, only slightly less than the critical gy shown in Fig. 4.
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This example shows that the pressure destabilisation of the n = 1 kink
does not have the same physical origin than ballooning instabilities since
the n = 1 limit only feels the pressure and not its profile while the
ballooning stability criterion is a local condition on the pressure gra-
dient. We have not yet checked if for the final optimised equilibrium the low
n > 1 modes are also stable.

8. THE BALLOONING CRITERION

In the limit n » » the most dangerous modes are localized radially, but
they nevertheless extend through an ever increasing number of singular sur-
faces. This feature has been nicely shown in stability runs made with the
PEST code /13/ and the theory has since been fully developed. The paper by
J. Greene and M. Chance /14/ provides a good presentation of the problem as
well as the motivitation for the recent attempts to overcome completely the
B limit by shaping the plasma (access to the second stability region) /15/.

Since the most dangerous modes (the last ones to disappear and not the
fastest growing!) are radially localized, stability must be checked surface
by surface through the whole plasma. Near the axis it reduces to the well-
known Mercier criterion /16/. It can be shown that the Mercier criterion on
any magnetic surface is never more stringent than the ballooning criterion on
this surface so that it does not need in principle to be verified indepen-
dently. In practice, the ballooning criterion becomes very difficult to use
near the axis while the Mercier criterion is very easy to use, so that this

last criterion is a good substitute near the magnetic axis.

The ballooning criterion for the stability of the n » = modes can be
written as Min{&Wg(¢)} > 0 on each surface, where 8Wg(¢) can be written
as /17/.

- 2.2
s (4) = Smdx{ = [1 v (52 v)z] 28

Ty ox
rB
5 P
2 2 2 2 (14)
_x 2dpld ( .B°,__T 3 (B w2l
2 Ez‘ Ho d¢[a¢ (P 2“0] qurz v o (2-!&0)
The variable of integration x is a poloidal angle defined by
< T
ax(¢) = §dr—— (15)
0 r Bp

the origin being chosen in the mid-plane, and
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The angle yxo(¢) is a free parameter. The variable X upon which minimisation
is done is related to the normal perturbation component En of the displace-
ment. The extension of the range of integration in x from one period to in-
finity is essential /17/. All coefficients are periodic except v which goes
asymptotically as y. The ¢ derivatives in (14) and (16) are taken along the
normal to the magnetic surface. It is immediate from (14) that ballooning
instabilities are driven by the pressure gradient.

It is known for some time that the ballooning criterion does not always
limit the pressure gradient /15,18,19/. Take any force-free equilibrium,
increase the pressure gradient |p'| locally in a narrow region in ¢. An
unstable band of Ip'l is first encountered which is sometimes followed by
another stable region, called the second region of stability. As long as the
pressure gradient is modified in this way in a sufficiently small region, the
equilibrium is not much modified. It suggests that it should be possible to
reach very high values of g ballooning stable. But the transition from
localized modifications of the pressure and current gradients to a fully
stable high B equilibrium is not so simple. As B increases, the overall
equilibrium is affected, with an outward shift of the magnetic axis.

Attempts have been made to find high B equilibria everyhwere in the
second stability region, or even better to find equilibria in which the
unstable band between the two regions of stability disappears. Reference (15)
is a good presentation of this approach which leads to strongly indented
plasma cross-section (bean shape). The experiment PBX in Princeton has been
built to test this concept.

There is no evidence so far that there is also a second stability region
for the low-n modes, so that wall stabilisation of the low-n modes is an
essential ingredient in this approach to high B operation.

8. A SCALING LAW FOR THE PRESSURE LIMIT

We have seen that pressure destabilizes the n = 1 free boundary modes
and the high n modes (first region of stability). From the many parametric
studies which have been published there are some general trends which émerge
clearly:

As the pressure increases, the line in figure 1 which defines the stabi-
lity limit on the right side swings back to the left and reduces the stable
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range, in the same way as an increase in the current gradient at the edge.
This is seen in all studies in which stability is studied by moving along
constant da/q, lines, by the appearance of new unstable regions for
higher values of g5 and the progressive merging of the existing unstable
bands (clear examples in ref. 9).

The left limit g, = 1 is only affected by the pressure gradient in the
central region. The Mercier criterion on axis may force g, to increase
slightly if the magnetic surfaces are non-circular. But the disappearance of
the unstable region seems to occur mostly by the closing in of the right-hand
stability boundary.

Here is a summary of extensive calculations made in Lausanne with ERATO
to verify these trends, quantify the g limit and try to identify its depen-
dence on the global parameters of the equilibrium. Details can be found in
references 20-23.

The shape of the plasma surface is given by the three parameter formula

r =R+ a cos(0 + ysino)

-1 <0 <m (17)

z =E a sino,

where E is the elongation and y the triangularity.

The profiles are specified by TT' and p'

TT' = t¢
(18)

P' = P1¢ + pyo?

The three parameters t, p;, p, allow to vary I, B and, in a certain range,
dor but the g profile is not always monotonic. It assumes that there is no
stabilizing shell or conductors around the plasma.

The choice of parameters has been governed by the necessity of relevance
so that most of the work has been concentrated on the INTOR reference set of
parameters and on JET, which have essentially the same shape, namely
E=1.6 -1.7 and y = 0.3.

The stability limits for JET in the plane (go, B), for a oconstant
current of 4.8 MA, are shown in figure 6. Stability is down and to the right
of the various curves. The n = 1 limit has the expected behaviour except for
the slow drop with increasing gy. The line labeled M is the Mercier limit
on axis with stability on the right side. The line B is the limit under which
all surfaces are ballooning stable., When it is crossed, high n instabilities
first appear about half-way between the axis and the surface. The Mercier



o e

a1 —t
Fig. 6: The JET stability diagram. 3{ na
The limits labeled n = 1,2,4 are free -
boundary stability limits. M = Mercier

1=48 MA
»:fixed boundary

limit on axis, B = ballooning limit.

08 10 12 1% 16 18 20 q,
line corresponds to high n unstable modes localized near the. axis. It
explains that the B line does not join smoothly with M. The limits for higher
n are shown but they should be viewed with some caution because of the
resolution which may be insufficient. '

By tailoring locally the pressure profile it is possible to bring B
above the top of the n = 1 limit so that, in this case also, the B limit
seems to be set by the n = 1 mode. If one could accept B as the limit much
higher B could be obtained. For g, = 3.75 (hollow q profile!) the B limit
is at 5%.

The calculation has been repeated for different currents, for different
shapes and triangularities but, except for JET and INTOR, not in a systematic
fashion, and the result is a B limit always set by the n = 1 free-boundary
mode (stable to n = » but not checked for intermediate ns). Figure 7 shows

the n = 1 g limit
obtained for various
o S Y r————— currents and three

BACH) ' e

different aspect ratios
20+ ; ; ;
n=1 Free Boundary Stability Limit - with almost identical
i / ) L pl hapes Th
o] P plasma shapes. e
« INTOR . /* normalized current Iy
10 o R/a=3 .:/‘/‘ . is defined as
* JET .
- p I
5 - . I, = s (19)
aB
0 T T T T T T T T where B is the vacuum
0 2 4 6 8

toroidal field in the
: centre of the plasma.
Fig, 7: Dependence of the n = 1 free The simple formula
boundary g limit on the normalized current

Ly for different aspect ratios A = R/a. B(%) = 2.2 I (20)



_16_

is a good fit through all the points. The dependence of the limit on triangu-
larity and elongation at a constant aspect ratio of 4 is shown in figure 8.
The line (20) is also shown and the fit is equally good. The scatter of the
points around the line is in part the result of the limited optimisation
which has been done for the cases not relevant to JET or INTOR, but it must
also reflect a residual dependence on other parameters, for example a
reminiscence of the discontinuities seen at integer values of da in the
B = 0, large aspect ratio stability diagram.

The law (20) does not

B, provide the ultimate limit
g, until we know the limiting
SIS * | current.
v g 4/ = —
+E=16, =030 " In all the documented
34 °E=16,5=045 ,/ " cases we know of, the
GE=16,r=015 ./o/
24 °E=10,5:0.30 + @ limit on the current was
*€:251=030 near g = 2, also for
i .| JBT in spite of its small
L}
0 . Y r aspect ratio and D shape.
. o5 1o b The law (20) seems to hold
up to the maximum current.
Fig. 8: Dependence of the n = 1 free boundary The difficulty of
B limit on the normalized current Iy for calculating the stability

various shapes and the same aspect ratio A = 4. of all configurations

which have very high shear

at the edge or an X-point
as in divertored discharges may explain that the limit is always found at
da = 2. It may mean that the shape has always been chosen such that shear
is not too large at the edge. More numerical work is needed to clear this
point, but experimental information with divertor discharges shows that there
is still a current limitation and it is about where you expect it if you
either "smooth" the surface to define an effective q or define g through the
averaged current density /11/.

9. COMPARISON WITH EXPERIMENTAL DATA

The relation (20) has gained popularity when it was realized that it
gave a good estimate of the highest B achieved in all the devices which have
made a significant effort to increase B with strong auxiliary heating.
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Figure 9 shows the result of a compilation made to see if a law such as (20)
had any relevance to experiments /24/. It only used data published until the
end of 1983, The agreement is surprising and additional results obtained
since have not broken the limit in a decisive manner.

10. NON-UNIQUENESS OF THE LAW
There are alternative interpretations to the law (20). A. Sykes /25/ has
shown by numerical calculations that the ballooning criterion leads to the

BIL,

Fig. 9: Record discharges in the R, Iy

- O 3B plane. R = B/Iy. The values linked by
2 m an arrow are for identical discharges

which have been analysed twice. The two

® PDX X ASDEX horizontal lines at R = 2,0 and 2.5 de-
' & DOUBLET-N  © JFT-2 e ) }
i S TOSCA limited the range of maximum B found in
+ T-1 the numerical computations
0 . L ! L (from Ref. 24).

0] 0.5 1.0 15 2.0

same dependence if the g profile is assumed to increase regqularly from
do = 1 on axis to its value at the surface. Apparently, with his assumed q
profile, shear is sufficient to provide a limit everywhere on the pressure
gradient (no access to the second stability region). The difference is in the
coefficient in front of the current in (20) which is 3.3.

In the calculations made which led to the relation (20), there was no
wall stabilisation. It may very well be that, with a wall, tearing modes are
also destablized by pressure by the same mechanism which destabilizes the
n = 1 kink and that the law is really a tearing mode criterion.

11. AXISYMMETRIC INSTABILITIES

The n = 0 instabilities are positional instabilities., Their properties
are well known /1/ and they are cured by a combination of passive and active
stabilisation, the vacuum vessel and properly connected conductors close to

the plasma providing the stabilisation on the fast time scale and an active
feedback system providing the long term stability. There are no outstanding
physics problems left to be solved comparable to that of the non-axisymmetric
modes.
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