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ABSTRACT

The problem of quasilinear diffusion of plasma electrons, reso-
nantly interacting with lower-hybrid waves launched from the exterior,
is examined within a self-consistent one-dimensional homogeneous

model,

An analytical solution is obtained, which allows the derivation
of a simple formula for the plasma current in terms of the parameters
characterizing the spectral distribution of the rf power source. The
major outcome is a dramatic sensitivity of the plasma current to the
presence of a small, high-N" component in the rf power source spec-

tral distribution, in agreement with previous numerical calculations.



1. INTRODUCTION

Since the appearance of the Fisch paper (FISCH, 1978), consider-
able progress has been achieved in the theoretical understanding of
lower-hybrid current drive experiments. In particular, most of the
basic failures of the ‘'classical' Fisch theory (for a review, see
VACLAVIK et al., 1983) have now found a rather satisfactory explana-
tion. However, one point which still remains unresolved concerns the
mechanism by which a consistent population of superthermal electrons
is generated by high-phase velocity waves in a relatively cold target
plasma. Several theories have been proposed in this context (for a
review, see WEGROWE, 1984) among them, some numerical calculations
(SUCCI et al., 1984a, 1984b) have shown that a small, high—N" tail
in the launched spectrum may suffice to account for the observed

values of the plasma current.

In this note, we propose a simple analytical model which clearly
confirms a dramatic sensitivity of the plasma current to the presence
of a small, high-N;, component in the spectral distribution of the rf
power source. A very simple formula, Eq. (30), is obtained, which can
be used for the practical evaluation of the plasma current generated
by the waves. This sensitivity stems from an intense cooperation bet-
ween the low and high-N; portions of the rf spectrum in rising the

level of superthermal electrons.



Few different spectra have been considered, always leading to

good agreement between analytical and numerical results.

2.  BASIC EQUATIONS

Our investigation is based on the following model. The steady-

state electron distribution functions is described by:
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is the quasilinear diffusion term; W(k) being the wave spectrum and

where
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is the one-dimensional Fokker-Planck operator, representing the
electron-electron and electron-ion collisional effects, 2 denoting the

ion charge state and vg = 2031\-‘”;& /lﬂ“m,’\}"tae



The steady-state wave spectral distribution is given by:
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where the dispersion relation of the waves is assumed to be w = coso,

>
© being the angle between the magnetic field and the wave vector k.

The term S(k,0) represents an external source which drives the

waves. For simplicity we assume:

S(k,@) =5, 4(k) S(mse—wseo)) (7)

where S, is a constant and s(k) a shape function satisfying the nor-
malization [ s(k)kzdk = 1. Since we do not address the spatial problem,
we identify the function kzs(k) with the distribution pP(N,) of the

total power:
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¢ being the speed of light.

All quantities throughout Egs. (1-9) are normalized according to

k+k/Ap, t-*t/wpe, VY Ve, £2f n/vte3 , WPW 47fmTe7\D3.



Once a solution is found, the current is evaluated
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In convenient units
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P being the power needed to sustain the current I.

3. WEAK AND STRONG SOURCE REGIMES

On using the procedure indicated in MUSCHIETTI et al.

Egs. (1-9) can be reduced to the following equations:
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where F stands for 2gf £E(viy vy dv; » v = vy and F' = dF/dv.
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A complete knowledge of the functions W and F would, of course,

require the exact solution of Eq. (14); this is a complicated first



order, non-linear equation, and an exact analytical solution seems to
be out of our tools, Nevertheless, we believe that much of the
information we need, can be extracted by doing appropriate
approximations. Again following MUSCHIETTI et al. (1982) we identify

two distinct regimes where Eq. (14) can be linearized:

i) Weak source regime

|
If the condition 2y = TTCOSGO’VIF » -Z%L (15)

holds, Eq. (14) reduces to
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Equation (16) is readily integrated to:
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For the inequality (15) to be fulfilled, we require that
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Or conversely

Flr) 5 E(w) s—%‘%ﬂ-— . (20)

(We assumed ivo/z'll'Cdseo << S A@M) ).

ii) Strong source regime

If 2y Z |ncosogv?F'| « Zvo/2 holds, Eq. (14) reduces to
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whose solution is
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Once more, this solution is valid if -
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4. ANALYTICAL SOLUTION

Since the domains of validity for the weak and strong source
solution do not overlap, a boundary layer may develop and a perturba-
tive approach could be conceived to reconstruct the exact solution.
The first step in this direction consists in requiring the thickness
of this boundary layer be zero, hence reconstructing the full solution
as a oollection of "weak" and "strong" branches (Fy and Fg) con-
tinuously connected. This simple procedure will probably be inaccurate
around the critical region where S = Sc(v), but it is our conviction
(supported by the numerical experience) that the errors introduced
will not affect the values of the current very much, and the correct

order of magnitude will always be obtained.

Let us now apply this idea by using the following spectrum:
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where N,, Ny, AN, N, and p, are free parameters. With this
choice the function s(v) becomes (Ny = c/v)
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where p, will be in general a small number such that s(v < wvp)

«€ s(v > vy). Oonsequently, the weak (strong) source condition will

now read as:
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for v < v < vp.

Suppose now that the weak source approximation holds in the range
[Vi, vp] and the strong source approximation in [Vmr V5] (we shall
justify this hypothesis later on). In this case, we obtain the follow-

ing solution
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This expression already exhibits the basic effect we want to discuss
in connection with the evaluation of the current. Since we know that
for v > vy, Fisch's theory is applicable, i.e. the distribution
function is flat, the crucial quantity which determines the value of

the current is the value of F at v = Vm. In absence of the high-Nj

part of the spectrun we would have the Maxwellian value:
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F(Vmry Po = 0) = 1//2n exp(—vr%/Z), whereas for py # 0, eq. (27)
yields

L
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We can define a "wing gain factor" as
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From (eq. 28) we obtain G = 1 + v/2p Scp, [ exp(+z®/2)dz. For typical
tokamak parameters, S ~ 5 x 10‘3, c ~ 20, so that choosing v; =4 and

vm = 6, for example, we get G ~ 10°p,; a spectacular effect

indeed.

We now come to the justification of our hypothesis that F = Fy
within [v), vy] and F = Fg in [vy, v,]. As for the latter
interval there is no problem since Vp wWill be always high enough to
justify the use of Fisch formula. With regard to the lower interval we
notice that with our choice (24), if the weak source condition is
satisfied at v = v, it will stay so all over the range [vi, Vp]. In

fact, an aysmptotic expansion of Fw(Vv), eq. (18), leads to:

Dim ¢ (r) =—§%f£—~ = klv) .
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No=2.2 ) NM=3’?/ N4=6 J AN‘ 0.8/

n=0s , T=4 , Pd30, #=4 .

The quantity w in abscissa represents the percentage of power con-
tained within Ny and N;. The two dotted-dashed lines represent the
values of the current corresponding to a plateau on the distribution
function, starting from v = ¢/N; (upper line) and v = /N (lower
line), whereas the circles correspond to the numerical results. One
can see that the analytical formula (30) gives an excellent represen-
tation of the transition region between the two plateau levels. The
deviation from the numerical results are easily interpreted. Close to
the upper 'Fisch level' the condition of weak source starts to be
violated (g ~ 5o for w ~2.5 x 10‘2), hence our formula cannot be
applied any longer. It is pleasing to note that there where this
formula becomes inadequate, one can already apply the usual Fisch
formula. The deviations from the numerical results at lower w are
simply due to the lack of resolution of the numerical treatment.
Finally, the dashed line at the bottom is an extrapolation, since the

expression (29) does not hold for Po + 0.

It should be borne in mind that the formula (30) was derived for
the case of a simplified spectrum. For more complex spectra, a more
elaborate collection of "weak" and "strong" pieces of the distribution
function may be required. What we claim is that, when doing so, one

can possibly miss factors but not orders in evaluating the current.
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Finally, we would like to spend few comments on the dimensionali-
ty of the collision operator. Tt is our conviction, supported by the
numerical and analytical results (KARNEY and FISCH, 1979; BERS et al.,
1984), that the inclusion of two—dimensional effects, would once again
bring only factors and not orders. The essential difference is that,
in the presence of two-dimensional effects, the resonant part of the
distribution function cannot be matched to an unperturbed Maxwellian

any longer.

CONCLUSION

In conclusion, we have shown that a simple analytical model,
derived from the one~dimensional quasilinear equations, can account
for a spectacular enhancement of the current generated by LH waves
once the source spectrum contains a small percentage of power at

hig h-Ny .

This model corroborates previous numerical results and also the
idea that such a small, high-N; component could be indeed respon-

sible for the currents observed in the experiments.

We are aware that our model suffers from the limitation due to
the assumed homogeneity in configuration space. However, we hardly see
how such a dramatic effect could be completely cancelled once the

proper spatial features would be taken into account.
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Figures Captions

Fig. 1:

Dimensionless current density versus the fractional power in
the wing for the following parameters: Ng = 2.2, AN = 0.8,
Np = 3.7, N, =6, Sy = 4.4 x 108,

The solid line represent the analytical result, Eq. (30),
and the circles the numerical results. The dashed—dotted
lines represent values correspording to a plateau starting
from £/N, (upper line) and L/Np, (lower line).

The dashed line at the bottom is an extrapolation for

p0->0.
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