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ABSTRACT

A 2-D finite-element evolution Fokker-Planck code, BACCHUS, is
presented. The originally current-drive version and a more recent
bounce-averaged version are discussed in some detail. A 1 l/2-D quasi-
linear code, RUNAWAY, is also described, especially to elucidate the
major difficulties arising when the wave-particle interaction is
included in a self-consistent way. Finally, some very preliminary
information concerning a new 2-D quasi-linear code, presently under

development at CRPP, is given.



1. INTRODUCTION

A good comprehension of the physics of wave-particle interactions
is essential for the interpretation of the present-day rf-heating and
current-drive experiments. It is therefore important to develop accu-
rate numerical models which retain as much physics as possible and have
at the same time an acceptable degree of efficiency. In this respect, a
basic distinction can be made between models which follow the simulta-
neous evolution of the particle distribution function and the wave
spectral distribution (henceforth referred to as "quasi-linear"
models), and those in which only the particle distribution function is
computed ("Fokker-Planck" models). While for the latter a certain
number of standard techniques is available (linear PDE solvers), for
the former no well-established tools seem to have been devised as yet,
Moreover, while for 2-D Fokker-Planck models the computing power
presently available already makes possible the treatment of spatially
inhomogeneous plasmas [1], in the quasi-linear models such an extension

still appears problematic.

This paper is mainly concerned with the description of a 2-D
finite-element Fokker-Planck code, BACCHUS, originally developed for
Lower Hybrid Range of Frequency (LHRF) purposes and recently adapted
for Ion Cyclotron Range of Frequency (ICRF) studies. A 1 1 />-D quasi-
linear code, RUNAWAY, is also described, especially to elucidate the
major difficulties one meets when the wave-particle interaction is
included in a self-consistent way. Profiting from the experience gained

from BACCHUS and RUNAWAY, one can hope to overcome these difficulties.



The effort made in this direction will lead to a new 2-D quasi-linear

code presently under development at CRPP.

2.  BACCHUS; A 2-D FINITE-ELEMENT FOKKER-PLANCK CODE

2.1 The Physical Model

BACCHUS is a code designed to solve the following initial value

problem:
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where f(?,t) represents the test particle distribution function in the
velocity space. Cylindrical coordinates, Vi, Vv, are adopted. In
eq. (1) we utilise the following normalization v - VWiar
t - tv‘lee, f > frvgel, E » EEp, where Ep=mvievee/2e is the
Dreicer field and vee=wpel'-lnA/4nthe3 is the electron-electron
collision frequency. In the r.h.s. of eq. (la), (6£/8t)corr, is a
collision operator describing the interaction between the evolving test
particle distribution function and a background of electrons and ions
of constant temperature. This background acts as a sink of the energy

and momentum gained by the test particles. Since we are mainly



interested in the evolution of the fast electrons, v » vie, the
collision operator is linearized about a Maxwellian. In addition to
the linearization, a minor modification is required to avoid negative
eigenvalues for v < vge (they arise because the linearization
utilizes the hypotheses v » vig). The resulting collision operator is
a fair approximation even for v ~ vie. Because of its simplicity we
use it wherever possible. In the application of BACCHUS to minority
ions, however, it is replaced by a bounce-averaged operator including

the Rosenbluth potentials. This will be described in Section 4.

For the LHRF case, the operator reads :
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and 7 denotes the ion charge state.

The term (8f/6t)iNp-g describes the effect of the inductive field

(8/) = E-Vf @
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where evidently P=E& I

Finally, the term (8f/8t)yavEs represents the effect of the energy

deposition of lower-hybrid and/or electron-cyclotron waves, resulting



from the Cerenkov and the first Doppler resonance respectively. Both

are modelled by diffusion operators:
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The whole problem (1) can thus be reformulated in terms of a linear

diffusion-advection PDE:
—
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3. THE NUMERICAL TREATMENT

The problem represented by eq. (7) is solved by the finite element
method [2]. Following the main lines of this method, we reformulate the

problem in the weak (Galerkin) form:

q
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where g is any test function in a suitable functional space, G, which
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possesses a scalar product <g,h> = f f g(vy Wy ) h(vy vy )dov, where



dyv = v, dvydv, and bﬂis the unbounded domain$ :{4)';“/\)1
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After integration by parts, eq. (8) becomes
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where d\75 represents the directed line element of the boundary ab of
the domain $ . Since only first order derivatives are involved in

eq. (9), the most convenient choice for G is the Sobolev space Hl(b) X

a9).

3.1 Finite Velocity Domain

We search for an approximate solution of eq. (9) for g and f
lying in a finite-dimensional subspace SN of Hl(‘ﬂ) X Hl((@). Since
we use finite elements, we first need to reduce the unbourded domain

to a corresponding bounded one, A,

A={'°‘u,~&| VRRIALY °“’15V"} . 1o

In order to neglect the boundary term in eq. (9) we assume the natural

boundary condition

I(I'Z:fw BV; )-d%, = 0
()

This poses no problem as long as no steady electric field is present:

one just lets V; , V,, V, be "large" enough. Once the E-field is



included the flux at the boundary is not zero (it is precisely the
runaway rate) and the whole problem of finding a steady state solution

of eq. (1) has to be reconsidered. We will comment on this point later.

3.2 Discrete Velocities

The velocity space is discretized by introducing the finite
dimensional subspace SN of Hl(A) X Hl(A). Both the test function g
and the approximate solution fN of eq. (9) are assumed to lie in the

same subspace SN

N
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Substituting the expressions (11) and (12) into eq. (9) we obtain a
system of N ordinary differential equations of first order for the N
expansion coefficients fj(t) :
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We note that the matrix Aiy is hermitian and positive definite,
whereas the matrix Bjj is the sum of hermitian (diffusive) and anti-

hermitian (convective) components.

As basis functions we have chosen the bilinear pyramid functions
&i(vy, vy ) shown in Fig. 1. They are 0 on the boundary of the
support and take the value 1 at the centre. With this choice, each
pivot ¥j ‘'interacts' with at most nine ¥j's, so that the matrices A
and B are sparse with a block tribanded structure. A non—-equidistant

mesh is allowed by the accumulation technique described below.

Given the interval [a,b], we introduce an unnormalized, positive
definite, density weight function W(z). The sequence of the mesh points

{zi;i=1,N}, is then obtained by:
Eiv

Wirdx = W,/N
Z,

¢

with z)=a and zy=b and Wy= jg W(z)dz. The function W is chosen in the

form:

Ww) = €+ g ¢ op[-4 (nea) ]+ o4 (4]

and the same for the v, —axis with the replacement C;»Cj4g, i=1,8.
The standard values assumed throughout the paper, henceforth referred

to as s.n.u. (standard non-uniform), are:



Cl=0.24’ C2=0' C3=004, C4=2.5’ C5=1' C6=0024’ C7=-2.5’ C8=1

C9=Cy, C19=Cy, C11=C3, C15=Cy, C13=C5, C17=0, C;5=1, Cj¢=1

The possibility of adopting non-uniform meshes without losing an
order of accuracy is one of the basic advantages of the finite element

method when compared to the finite difference method. This feature will

be discussed in section 5.

3.3 Time Discretization

The system of ordinary differential equations (13) is solved with
a two-level scheme on a non-equidistant time lattice: {tp}. In matrix

notation:

A(fmihl = B(‘fn'5+-§h-(4-é)) ’ (16)

thur ~tn H

where § is a parameter ranging from 0 (explicit) to 1 (fully implicit).
This scheme is unconditionally stable and of second order in accuracy

if 6 = 1/2. Rearranging the terms in eq. (16), we obtain

Jﬁl'§;+| ) Og’f;- ’ ()

with
(18)
R= A-Bat§ ) 63=A+3At(4-5) )
The time step is dynamically adapted to the time evolution by an auto-

matic control which prevents relative changes of f larger than a given

value, typically 5%.
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3.4 The Method of Solution

Equation (17) represents a set of N = Ng - Ny algebraic
equations for the N unknowns fj, i = 1, N (Ny = number of points
along v; and Ny along v, ), which has to be solved at each time
~ step. The unknown array f; is numerated row by row as indicated in
Fig. 2. The solution can be obtained by a direct Gauss elimination
method which is exact but requires a large amount of operations and
memory space (typically tepy ~ NM?2 and Wepy ~ NM, where N is the
length of the matrix and M its bandwidth). Given the very sparse nature
of the matrices, it is reasonable to consider approximate iterative
procedures. Therefore, an iterative method has also been developed
which is based on the following scheme: The (1+1)-th iteration is

defined by:

(£+4) (8e1) (L) (8) (ler)

A”S' ) 633( ‘HDfD,n:l R

H,'\‘H L

(19)
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where D (down), M (middle) and U (up) indicate three successive rows in
the y-direction and, as a consequence, the three matricesﬂD,M,U are
tridiagonal of the dimension Nx. The iteration cycle is terminated by

the following closure condition:

(0+1) [0)
5 -4 ] € (20)

<

¢ (en)

= 3 Max T m
¢ l)(; l“)+ lﬁ'l



-11 -

On adopting this scheme one reduces the 2-D problem of dimension
Ng * Ny into Ny 1-D problems of dimension Ny and, above all,
one need not store the matrixJQ in "full" format, i.e., including the
zero elements. This is certainly very advantageous from the point of
view of central memory occupation and can sometimes prove profitable
also from the point of view of c.p.u. time. This holds, of course, only
if the scheme (19) converges, which is not guaranteed since the matrix
RM is generally not positive definite (due to the advective terms).
However, due to the time step control the symmetric component of RM
dominates and convergence can be expected, at least for values of the
electric field satisfying the Courant-Levy-Friedrichs condition: E <

AV"/At.

3.5 Diagnostics and Conservation Properties of the Numerical Scheme

It can be shown [3] that due to the identities
N - Nooo
ED I »s;(wa)qg :
t=1 :

the numerical scheme, eq. (13), conserves exactly(*) the density and
the momenta whenever they are physical invariants. However, due to the
presence of the steady electric field, which can convect a macroscopic
quantity away from any finite region of the velocity space in a finite

time (roughly a oollision time evaluated at v = Ve = (ED/E)I/Z),

(*)  wWithin the accuracy of the quadrature scheme by which the matrix
elements are evaluated: in our case a 2x2 gaussian quadrature.
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the system represented by eq. (7) does not exhibit any invariant.
Moreover, even in the absence of the steady electric field, the only
conserved quantity is the particle number since the rf operator and
collision operator conserve neither momentum nor energy. This means

that we have to resort to other diagnostic tools. They are presented in

section 5.

4. FROM THE CURRENT-DRIVE TO AN ICRF CODE

According to the "Olympian" philosophy [4], BACCHUS has been
developed following the criterion of high modularity. This means that
its structure is fairly independent of the details of the physics which
is implemented, so that rapid adaptations are possible with a minor
programming effort. In this spirit, BACCHUS has recently been adapted
to ICRF purposes, as we shall briefly describe. Our starting point is

the local bounce-averaged Fokker-Planck equation [5]:

- o Nuo ( &f Mo
g‘j%e <%°> [< 4,-“0 (g)CZLL.P < ";u (&‘)Q) +‘-‘;-!."‘ S)])(zn
i

om
where <...> = g ... 30 for passing particles

and | B... dé for particles trapped between the turning points A and B ’
A

8 being the poloidal angle; S is a source term modelling neutral beam

injection.  Adopting the coordinate system Vio = vy(6=0),
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V0= Vv, (6=0) and performing the relevant transformations, the r.h.s. of

eq. (21) can be written as:

3 P PR o4 ", 'ﬁ a Ar

. —_— . phd. noCy

o ‘—:0 + <i-|."o)[V° (< 4)'“°> zo* Y;O) S ]) (22)
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where the fluxes I'jy, 'y, '3y are given by:

0 =(ﬁ/2..r1 (-f'!' =+ ?-f + Nno %* ))

lo ‘b'\ruo (23a)
x 'aﬁ o
r‘lo (X-/[‘M’ ( N-.o Mlo (bv ) (ﬂoc ¥ «’10 “0) ) (23b)
a of A A
b N, o +E4,— | €+ &M
= - 0 €
o (Aeg)Tur ( " rM’:lc to ‘W’.Z, ( to Tio o) ! (239)

For passing particles:

<Hio/Wy> = 4K (W) (24)

<du[%oy = 4E(Alm) (25)

)
where m = 4)'“0 /arwai) » € = ¥/R; K and E are the elliptic integrals of

first and second type respectively.

For trapped particles:

<Ay [y = Gom K(m) (26)

<A [Gioy= 4 [ Elm)-klm)t-w)] (27)
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The value of V) at resonance, vy, is:

Y

Nig= Vo (4= Y2 ) (28)

Collecting the expressions (22-28), we see that ed. (21) has also
the form of a linear PDE, so that the numerical treatment outlined in

section 3 can be straightforwardly applied for its solution.

However, in the situations involving velocity space asymmetry,
€.g. current drive, the distribution function must satisfy a further
condition. Specifically, it has to be even in Vjo in the trapped
particle region [5]. This is normally accomplished by solving the
equation in two regions, with the appropriate matching conditions at
the boundary. Here, we adopt a "pragmatic" approach which consists in
solving the equation in the full domain and after each time step

imposing the symmetry

-f-('“'no,‘“l,) - ;;; [ f(""no.“ﬁo)* f(-’\fno,'\uo)] (29)

in the trapped region. There is a plausible physical argument behind
this procedure. In fact, it is equivalent to setting the time step
equal to a bounce period. However, since it would be impractical to
restrict the time step size to a bounce time, the only criterion

adopted is the maximal change of the distribution function.

The results obtained up to now appear physically reasonable, even
though the procedure awaits a comparison with other methods in order to

be justified.
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5. NUMERICAL TESTS

In this section we present some representative results obtained by

running BACCHUS in the following conditions:

1) No E-field, no waves
2) "Small" E-field, no waves
3) "Large" E-field, no waves

4) "Large" E-field, LH waves

For the ICRF version of BACCHUS, a power deposition test is

presented.

5.1 E=0, Dgp = 0

In this case, since no source of energy is present the initial
distribution function (Maxwellian) should not evolve under the action
of the collision operator. However, the discretization procedure is
equivalent to introducing of a source term in the r.h.s. of eq. (1a),
so that the system undergoes a "numerically induced" evolution. As a
global measure of the discretization error we take the deviations of
the parallel and perpendicular kinetic energies from their initial

values:

Sk
§K®

K (t=0) - o SKY 2 kY‘t=°) -4,

"

K (E»0)-Y  §kg

k,{(i»'q) -1,



- 16 -
where 1c is the bulk collision time.

In Fig. 3 we show éKxo, 6Ky° for a uniform (curves 1,2) and
non-uniform (curves 3,4) mesh, with boundary at -10,+10 for vy and
0,10 for vy . In Fig. 4 the quantities, 8Kk, 6Ky°°, are shown.
The quantity h? in abscissa is defined as 1/(Ng=1) (Ny~1).  From
Fig. 3 we observe a uniform h? convergency law which stems from the

fact that the way how the inner products are performed
N N
- . 30
< %IE 7= ZZOO\AQ{J (30)
sl J’-'

is equivalent to the trapezoidal rule. The real approximation error
associated to the numerical treatment is shown in Fig. 4. From this
figure we see that to achieve the h? error decay rate, something like
1000 nodes are needed, which, for the present case, corresponds to a
mesh cell size of about 0.4 in both directions. Moreover, the conver-
gency is from below in agreement with conventional theory. Finally, we
remark the beneficial effect of the mesh accumulation technique (at
lv" |=v1 =1.5 in the present case), which is particularly apparent for

6Ky L]

5.2 EEp, Dpp =0

When a steady electric field is present, eq. (1) does not admit a
steady-state solution. This is due to the runaway electrons (v >vg)
which, after a time =g "'Vee-l . VC3’ go into a free-acceleration

regime in which the collisional drag is no longer able to balance the

action of the electric field. This means that, unless some further
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physical mechanisms are included, the whole electron population will
move into the runaway regime in which the current linearly increases in

time without limit.

However, if the electric field is sufficiently small, E « Ep,
the runaway time scale, 1R, is so large that for times of practical
interest the system can reach a quasi-steady state. In these condi-
tions, the current will saturate at a value proportional to the
strength of the electric field, the constant of proportionality being
the Spitzer-Hirm conductivity. In Figure 5 we show the values of j/E
for the following cases. Curves 1 and 2 refer to a standard non-uniform
mesh with boundary at 10 and 16, respectively, curve 3 to a uniform
mesh with boundary at 10; in all cases E = 0.05. The label SH refers to
the Spitzer-Hirm value. We see that all three curves converge to a
value ~ 1.4 which is roughly 0.7 of the value given by Spitzer-Hirm
(1.96). This is not surprising since our collision operator has been
modified for v ~ vpe and therefore it is not expected to yield a
particularly accurate description of the phenomena which occur in the

thermal region. Thus, this test can be regarded as positive,

From Fig. 5 we notice the benefit arising from the mesh accumula-
tion technique., Even with a 20 x 10 grid we have j = 1.385 x 10~2,
compared with the value j = 1.414 x 10~2 obtained with the 80 x 40
grid. This implies that the mesh accumulation technique vyields
reasonable results even with very coarse grids. This property will be

better appreciated from the results of the next test.
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5.3 E<Ep,Dpp =0

When the electric field becomes larger then some percent of the
Dreicer field the runaway phenomenon becomes dominant. The main physi-
cal quantity of interest is the runaway rate, A, defined as the frac-
tion of the electrons which run away from the bulk population
per unit of time: A = |1’1/n| » N being the electron density. The equation

for the density evolution in the domain A reads

h = EF(nm:=V,) , (31)
Ve,

where F(v,) = I{-(’V'u,"&)'\f]_d'\’l .
o

From eg. (31) we see that to achieve a steady state, n = 0, a source of
particles has to be provided in the r.h.s. of eq. (1a). In BACCHUS such
a source is modelled by the following procedure. At each time step the
density change 8n is computed and the density is renormalized to unity
by adding a Maxwellian distribution of particles of density én. The

runaway rate can then be computed either as

A=A,z |i/n] (32.a)

or as A-—-AFE IEIF(Vz) . (32.b)

These expressions imply that we need a high level of accuracy because

the detailed shape of the distribution function F(vy) is essential.
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In Figure 6 we show a test case with E = 8% and the mesh bounda-
ries at 16; the curve 1 refers to a uniform mesh while for curve 1 a
S.n.u. mesh was used. The label K refers to the value given by Kulsrud
et al. [6]. Both curves converge approximately to A=5x10~" which is
somewhat  higher than the value given by Kulsrud et al.
Ag = 3.177 x 10~*, (This discrepancy is acceptable if we consider
that Ax was obtained with a 75 x 22 uniform v - o mesh). Once again
we remark the important role played by the mesh accumulation technique.
For the 40 x 20 non-uniform mesh we have An = 3.88 x 10™* whereas
with the same number of uniformely spaced nodes the value of A, is
even not positive (A ~ -1 x 107°)1. As a consequence, in order to
get reasonable results with a uniform mesh one needs at least
2000 points, which already overcome the storage capabilities of our
CDC-8005 machine if the Gauss elimination method is adopted. This
limitation disappears on a CRAY-1 machine where grids up to 5000 points
can be used. Incidentally, we remark that on the CRAY the Cc.p.u. time
is reduced by about a factor 7. A typical run on a 40 x 20 mesh takes

about 180 sec on the CYBER-8005 and 25 on the CRAY-1.

Another possibility is to resort to the iterative method described
in section 3.4. The performances of this method are summarized in
Fig. 7, where we plot the ratio of the runaway rates obtained using the
iterative and Gauss methods, Ag/A1 (curve 1), and the corresponding
ratio, tg/ty, of the c.p.u. times (curve 2). The quantity e, in
abscissa represents the closure value for the iteration cycle. A
40 x 20 non-uniform mesh is used and no relaxation is adopted. From

this figure we see that the iterative procedure is cheaper for
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ec < 1073, which is unfortunately not sufficient to achieve the

correct value of A, This is since

AG=

we need to push eo below 10"", which costs about 10 iterations per

quite logical

3.88 x 10 < 10~3! Thus, to obtain a reasonable value of A

time step, resulting in a c.p.u. time considerably higher than that for

the Gauss method.

Even resorting to an over-relaxation technique does not lead to
any significant progress; this is probably related to a bad condition
of the matrix A caused by the advective term (this point should
deserve more theoretical investigation). However, if one is interested
in global quantities, like the current, then values of €c > 103 can
be safely adopted and the iterative procedure proves more convenient

also from the point of view of the c.p.u. costs, as the following table

shows:
£ Uy Uy 2Ky 2Ky | 10*xA |102xtepy|103xtgy,
0. 6675 | 1.475 | 5.470 | 3.577 | 3.88 | 2.65 2.28
0.5 .6704 | 1.473 | 5.502 | 3.586 |-6.82 | 1.02 .445
0.05 | .668 | 1.472 | 5.471 | 3.577 | .45 | 1.33 1.02
0.005 | .668 | 1.472 | 5.471 | 3.576 | .35 | 1.73 2.23

In this table Uy, are the linear moments, tcpy and tgp, are the
C.p.u. time and elapsed time respectively. The first line corresponds
to the values obtained by the Gauss method. Thus, it seems that an
optimal strategy would consist in adopting the iterative method with a
low value of e. until a steady state for the moments is obtained, and
subsequently switching to the Gauss method to recover the correct value

of A,
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It has been shown [7] that the presence of a source of rf waves
can greatly enhance the runaway rates. Here, we present a convergency

study referring to the following case :

[El= 87 )

Oy =

600  , 2= <N, <$Ny=4

° , othwiwise

The results are reported in Fig. 8, where curve 1 refers to a uniform
mesh, curve 2 to a s.n.u. mesh and curve 3 to the same mesh as for 2
but Dy = 0. We see that for both the uniform and non-uniform meshes
no convergency law can be inferred but rather a fluctuation around an
average value of about 3 x 10~° (roughly 10 times higher than the

corresponding value without rf waves) is observed.

This behaviour stems from the poor discretization of the disconti-
nuity in the definition of Dry(vy). In particular, the results are
sensitive to the locations vy, vgR of the boundaries of the mesh
cell containing v; (v, < v; < vg) through a "jittering factor" Fg

given approximately by:

2 : "rk
a} - Q)(F(- ”1/2)/0"(‘)'[% t S 44:0“[),:“(‘\1"’0;.)/(1\1}1-'\5.)1

L

This factor represents the ratio of the plateau heights of the
distribution function for a constant D starting exactly from v, and for

a D linearly increasing from v[, to vp and constant beyond vg,
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respectively. Once this correcting factor is taken into account, the
scatter in the results for the uniform mesh is practically eliminated.
For the non-uniform mesh, however, this is not the case, indicating
that the upper boundary of the spectrum, V,, also plays a role. In
general, all the three points v, Vo, Vo require a special care in
order to obtain a good accuracy. However, since the amplitude of the
fluctuations around the average value is rather small, no optimization

of the mesh accumulation technique has been performed.

5.5 Power Deposition Test

In a steady state all the power deposited by the waves is

dissipated by the collisions, so that the relation

f—gf(g dy = y 8{ coLL i -

must hold. In the limit of small Larmor radius, kyv, /weg € 1, the
integral on l.h.s. of eq. (33) can be performed exactly, so that an
analytical check on (8f/8t)corr, is available. The result is shown in
Fig. (9), where Py and Pc denote the l.h.s. and r.h.s. of eq. (33)
respectively. A 40x40 mesh with boundary at -10,+10 in vy and 0,10

(curve 1) and 0,20 (curve 2) in v, is used.

From this figure we see that a good agreement is achieved up to a
given value, Pgy, of Po after which a significant deviation is
observed in curve 1. This is to be interpreted as a finite-boundary
effect. 1In fact, for Py > Pom the distribution function is
distorted and dragged far out, so that to recover a good agreement an

extension of the boundary (curve 2) in vy is needed.
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6. RUNAWAY; A 1 1/2-D QUASI-LINEAR CODE

In this section we shall discuss the main features of the 1 l/2—D
quasi-linear code RUNAWAY. We shall not present an extensive numerical
study but rather illustrate the basic difficulties inherent to the

self-consistent treatment of the wave-particle interaction.

6.1 The Physical Model

RUNAWAY is devised to solve the evolution equation for the

electron distribution function:

ab - (§) 0 (&), (%),

CoLL
and for the simultaneous evolution of the wave spectral distribution

W(k,t):

W Tw (35)

with the initial conditions f(?,0)=¢(-\7) and W(‘]z,0)=W0, where S is an
external source and ¢ is an arbitrary function which can also model
unstable situations [8]. The normalizations adopted are: k > k/ip,
t > t/wpe, W » WednnT\’p, E > E (4anTh’p)l/2, where Ap is the
electron Debye length. The terms (6£/8t)corr, and (8£/6t)Np-g have
the same meaning as in BACCHUS, with an additional option for
(8£/6t) oL, which can be either the 2-D collision operator already

described in section 1, or its simplified 1-D version (Vedenov):

(24 7) Ve ?/aow“ [N:l-’s ("r“)( + %:/3“‘-:« )]



- 24 -

The essential difference with respect to BACCHUS consists of the
presence of the term (Sf/ét)QL which describes the resonant diffusion

processes due to the Cerenkov (1=0) and the first anomalous Doppler

(1=1) resonances:

|
(36 )m. eZ (%’u i %) Qe (%‘“_ 0%"))( (36)

with

Iy (K [k : y
%~ [ () (45 8 (oW
k,,-;o

and Wy = lwce + Ku/k , wce being the electron cyclotron frequency.

In these expressions the dispersion relation wi=k;/k <« Woe Was
assumed for the magnetized Langmuir waves, so that one has

wko = kKy/k and wyg) = wge.

The factor I' in the r.h.s. of eq. (35) represents the total,

collisional and resonant, wave damping given by:

=2 (4 - Y Zfa) (37)

with
29

Ty K i\ _ e D
Y;é ( lel'l) I! [A'\r( ll) (W' '“1 ‘)4\)1 §8 wkf k.M;‘)

Equations (34-35) describe a rich variety of physical phenomena
which have been treated quite extensively in the literature. A
discussion of these phenomena is beyond the scope of the present paper.
For the present purposes it is sufficient to note that egs. (34-35) are

two coupled integro-differential equations which have to be solved in
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the two-dimensional spaces D, = {vy v ; —<vyt+e,v 20} and Dy =

Xy, k17 k||>0rk12 0}.

7. THE NUMERICAL TREATMENT

7.1 Discretization of the Electron Distribution Function

In order to solve eq. (34) a special semi-discrete finite—element
method has been adopted. More specifically, a solution is sought in the

form:

)((’“'n:ﬂ&,t Z_}t)‘{J )(z“T ('ﬁ,/“(t)) (38)

where ¥j are the usual roof functions. The set of discrete parallel
velocities {v"j; j=1, Ny} covers a finite interval
J={v);V1<vy<Vp}. A non-equidistant mesh is allowed. The reason for
such a choice is the fact that the selection rules represented by the
Dirac distributions only involve the parallel velocities. Thus, one can
reasonably assume the evolution in the perpendicular direction to be
self-similar, and consequently treat it by a set of global functions of

pre-assumed Maxwellian shape.

The advantage of this method is that the 2-D problem is reduced to
a 1-D problem for the 2«Ny unknowns fj, 947 =1, Ny. Apart
from the limitation on the class of functions representable by the

ansatz (38), there are also disadvantages from the computational point
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of view. In fact, the equations governing the evolution of £5(t),
T4(t) will inherit the non-linearity of the ansatz (38) with respect
to Ty. Whether or not this bargain is profitable depends on the
degree of complexity of the operators acting in the perpendicular

direction, as we shall discuss more in detail later on.

The ansatz (38) is substituted into ed. (34) which is in turn
projected onto the two sets of basis functions ¥Yy(vy) and

1/2vf ¥5(vy) to obtain the following set of 0.D.E.:

N . uf )
2 Aijfj = ) (B +ij ))Cj ) (39)

jsl j:l

L] N 0
iA.- | (By+ ) 9, 4o
T )C}J JZH- ) ) ) )

where gjzijj. The explicit expressions for the matrices A, B, C

are given in Ref. [8]; here we only mention that superscript 1 labels
the matrices which are affected by the non-linearity discussed above.
More specifically, they are the matrices representing the anomalous

Doppler and 2-D Fokker-Planck operators.

7.2 Discretization of the Wave Spectral Distribution

The discretization of the wave spectrum is performed using a 2-D

finite element expansion:

M
W (k“) kllt) = Z Wklt) Xk(k"jk'l) . (41)
k=)
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Since the wave equation (35) is algebraic with respect to ii the basis
functions Xk(g) are chosen to be piecewise constants on rectangu-
lar supports of irregular size, covering a finite domain Ax in the
plane (k",kl ). The domain Ax is constructed on the basis of the
discrete sequence {vy4} in such a way as to guarantee a high density

of Cerenkov and Doppler interaction lines: k=1/v| and ky=wge/vy

[3].

The set of basis functions, {Xx}, 1is orthogonal so that by
projecting eq. (35) onto it we obtain the following diagonal system of

O.D.E.

]
W, = RWI: ¥ gk (42)
for the M unknowns Wi, k=1, M.

7.3 Time Discretization

Egs. (39), (40) and (42) are integrated with a synchronous 2-level

scheme. In matrix notation:

f-f ) ()
A‘("lﬁi) =(B +B (WM',{' A ) ‘}mv, , 4

- (o)

Wm = exF( myAt) W * “F( gAt)'i (43c)

Ktuz
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ruuz = T\nwz ( {-Ml/z / %nwz) / At = *’Hl-t”)

where the time level n+1/2 is defined by the interpolation

'fvul/z = 'S:M,‘S + '{nu‘s)

with 0 < 8§ < 1.

This scheme, which is solved by an iterative %technique, has the
advantage to ensure unconditional stability and second order accuracy
(if 6=1/2) with a fairly moderate requirement on alcj;ebraic complexity.
In fact, since all the matrices have a simple B—diagonal structure,

they can be treated by very fast algebraic solvers.

However, owing to the self-consistent treatment of the wave-
particle interaction, the numerical scheme must be able to handle also
truly, i.e. physically, unstable situations. 'Ihisj implies that the
automatic time-step control system must become more severe. For this

reason, in addition to the usual control of the maximum relative

changes of f, g, W a further constraint is imposed on the time step At:

P At < , | (44)

max

where ¢ is the maximum change allowed and Pmaxibilgax{rk}. We would
like to pinpoint how delicate this control is: if sdme wave is excited
by a purely numerical accident (typically a ripplb at high vy pro-
duced by electric field convection), the time evolution can be drasti-

cally slowed down without any physically acceptable reason.
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Nevertheless, apart from any numerical trouble, the system
possesses several time scales in different regions of the velocity

space, so that a fair amount of stiffness has to be expected.

7.4 Method of Solution

The system of O.D.E. (43) is non-linear and must therefore be
solved by an approximation technique. We adopt Picard's successive

iteration method which leads to the following cycle:
(840 ()

(&)
ﬂ§ ) )Lmu ) @f,m;ll 5',‘, ) (45a)
O (t) (8)
A,} %M = 03%”‘”/; O}w ) (45b)
(04) (& (2)
W,H‘l i} @,nﬂ,z. n * Rtl/, ) (45¢)

where the meaning of the symbols follows directly from egs. (43).

As usual, the cycle is closed whenever the maximal deviation,
s(§1+l ,Kl), of the unknown array X = {f,g,W} between two successive
iterations falls below a given threshold es. If this is not the case
after ten iterations the time integration continues, but the next time
step is reduced. At this point we could exhibit a series of tests which
would illustrate the convergency properties of RUNAWAY in some simple
cases like those described in section 5. However, since RUNAWAY was
devised for studying more complex physical phenomena, we find it more
instructive to pass directly to the discussion of the basic problems

encountered when dealing with such phenomena.
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8. TYPICAL NUMERICAL PROBLEMS

In this section we give a brief qualitative account of the perfor-
mances of RUNAWAY in various physical conditions. No rigorous argument
is brought, but rather the conclusions drawn from the experience of
running the code. The main question on RUNAWAY efficiency concerns the
convergence of the iterative scheme, egs. (45). We shall therefore
examine how the various unconventional features included in RUNAWAY can

affect such a scheme.

8.1 The Role of the Wave-Particle Interactions

As long as only the Cerenkov resonance is included, no serious
problem has ever been met: the code is reliable and a steady state is
rapidly achieved. This is comprehensible since the Cerenkov interaction
is represented by a diffusion matrix which is proportional to the wave
amplitude, W. It means that _Bij(Cer) is positive definite provided
W>0, a condition which is always guaranteed since W is not allowed to
decrease below a minimum threshold, Wnoise. Moreover, since a good
resolution is achievable (we can put more than 100 nodes along Vi),
no ripples are generated on the distribution function and no artificial

instability is triggered.

Once the anomalous Doppler interaction is included, the situation
becomes a little more complicated because additional physically
unstable situations can arise in conjunction with the presence of a

steady electric field. Moreover, the corresponding matrices are
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affected by the non-linearity stemming from the ansatz (38).

Particularly critical situations can arise during the development
of the Parail-Pogutse instability [9]. More specifically, overshoots
can appear on the tip of the unstable distribution function when the
anomalous Doppler effect is acting against E-field to push back the
runaway electrons. This problem is partially solved by chopping
dynamically the mesh in such a way as to exclude the "ill" portion of
the distribution function. The careful resort to these expedients is
usually successful, but the operation of the code requires a sort of

assistance which is hardly acceptable in a long-period exploitation.

8.2 Role of the Non-Linearity

To get an idea of the role played by the non-linearity introduced
by the ansatz (38), let us perform a sort of "stability" analysis of
the matrices representing the anomalous Doppler interaction. We can

write:

(M\
g Z_ <k\1 ‘o(Ar,T) kki /

4m=0

(m)
¢y Z_ ‘P e WA )

£,mz=0
O S

The non-linear terms are b;, ~-T, ¢gq ~ 1/T and ¢;; ~-T. Since the

numerical approximation of the advective operators in eq. (34) can lead
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to negative values of both f and g, egs. (39) and (40), we must distin-

guish four cases:

1 £,9>0 (T > 0)

This is a physically meaningful region.

2) £>0,9<0 (T < 0)
The terms b;; and c¢); tend to produce negative diffusion, i.e.
steepening rather than smoothing of the gradients in the course of
time. However, there is also a beneficial effect arising from Coo
which tends to make g positive hence restoring the "healthy" case

1.

3) £<0,9<0 (T > 0)
In this case no "fake diffusion" occurs, but the term Cyo tends to
make g more and more negative so that the temperature increases.
However, due to the 1/T dependence of Cogr this growth is self-

controlled.

4) £<0,g9>0 (T<0)
Reapeating the same arguments as for case 2, a transition towards

case 3 is expected.

If we imagine the evolution of two local values f£i(t), gi(t)
as a trajectory in a plane f, g, we see that once the representative
point P = (f,g) is moved away from the "healthy" region, for example by
the steady electric field, its fate becomes in a sense "aleatory" and
the code can become very inefficient. In order to avoid this type of

problems it is often necessary to set a pedestal on T, T > T, > 0, in
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such a way that the "motion" of the representative point is confined to

the regions 1 and 3.

Up to now the "experiment" with the non-linear ansatz (38), can be
regarded as successful since, even with some difficulty, the code is
able to follow quite complicated physical situations. The reason for
this is very likely the fact that the non-linearity introduced into the

anomalous Doppler operator is relatively moderate.

For the 2-D collision operator the situation is unfortunately much
more critical. The expressions for the coefficients bijm and ci as
functions of T become so complicated that even a qualitative analysis
of the type sketched above seems hardly feasible, unless one takes the
limit of small deviations of T from the equilibrium value 1. From the
empirical point of view, this operator performs well in combination
with the Cerenkov operator, starts to pose some problems with the
inclusion of the anomalous Doppler operator, and it is very unreliable
if the electric field is also included. On the other hand, if we consi-
der recent developments in the lower-hybrid current drive (ramp—-up,
start-up), it is clear that the inclusion of the electric field is

indispensable.

For this reason, after some attempts to improve the code, we have
come to the conclusion that the advantages gained from the non-linear
ansatz are overbalanced by the numerical problems. As a consequence, we
have decided to move in a new direction, as we shall briefly mention in

the concluding section.
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9. CONCLUSIONS

We have presented two codes, BACCHUS and RUNAWAY, for the numeri-

cal investigation of a certain class of wave-particle interactions.

BACCHUS can be regarded as a general and reliable 2-D Fokker-
Planck solver with a flexible structure. It has been used to compute
the enhancement of the runaway rates in the presence of a source of LH
or/and EC waves [10]. More recently, the ICRF version has been used to
investigate problems of particle trapping in ICRF-BEAM heated tokamak
plasmas [11]. This type of studies, together with investigations on
minority ion current drive by ICRF heating are presently being carried

out at JET.

RUNAWAY deals with a much more complex physics, but its structure
is to a large extent tied to an assumption on the shape of the electron
distribution function which is suggested by physics itself. Its perfor-
mance is not uniform, but deteriorates with the increasing complexity
of the weak turbulence processes that need to be described. The possi-
bility of replacing the ansatz (38) with a more conventional expansion
in a series of classical polynomials was investigated. The result of
this analysis indicates that, for situations far from equilibrium, it
is impossible to obtain everywhere positive solutions without resorting
to an unacceptably high number of polynomials. For this reason, we
finally decided to adopt a 2-D finite element method, in which both the
electron and the wave spectral distributions are expanded in a series
of two-dimensional local basis functions. A quasi-linear code based on
this method has been written, and is presently in a very preliminary

testing stage at CRPP.
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FIGURE CAPTIONS
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Bilinear basis function.
The numbering of nodal points.

The deviations of the parallel (1,3) and perpendicular (2,4)
kinetic energies at t=0 from the exact values versus h?. Curves
1, 2 and 3, 4 refer to uniform and non-uniform meshes,
respectively.

The deviations of the parallel (1,3) and perpendicular (2,4)
kinetic energies at t=» from the exact values versus h2. Curves
1, 2 and 3, 4 refer to uniform and non-uniform meshes,
respectively.

Dimensionless conductivity versus h?. Curves 1 and 2 refer to a
non-uniform mesh with boundary at 10 and 16 respectively, curve
3 to a uniform mesh with boundary at 10. The dot-and-dashed

line refers to the Spitzer-Hirm value.

Runaway rate versus h®. Curves 1 and 2 refer to uniform and

non-uniform meshes.

Ratio of the runaway rates obtained using the iterative and
Gauss method (1) and the corresponding ratio of the C.pP.U.
times (2). The quantity ec represents the closure value for
the iteration cycle.

Enhanced runaway rate versus h?. Curves 1 and 2, 3 refer to

uniform and non-uniform meshes, respectively.

Power dissipated by collisions P, versus power deposited by
waves Pg. A 40x40 mesh with boundary at |v"‘= 10 and

v, =10 (curve 1), and v = 20 (curve 2) is used.
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