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STUDY OF THE IDEAL MHD STABILITY LIMIT FOR JET

I) INTRODUCTION

The o particle heating power in JET fueled with 50%-50% DT, at

the full field of 3.5 T and a full aperture plasma, can be approxi-
mated! by

Py ~ B2, (1)

where B is the volume averaged B in % and the power P, is in mega-
watts. The objective is to obtain significant a particle heating. An
a-power of 5 to 10 MW for an auxiliary heating power of 25 MW would
appear to be already a very significant result. It would require a B
between 2.2 and 3.2%, corresponding to an energy confinement time
tg = 11 /(25 + g?) (B in %) between 0.7 and 1 second always with
25 MW of heating. Although these values of B seem at first sight
modest since they have been experimentally exceeded in Doublet III?
and they lie far below the limits predicted from ideal MHD stability

considerations3 '

» it is not clear that they can be reached with the
JET parameters. In both the experimental and theoretical studies made
so far, record values of B coincide with record low g values, while
JET is a low current, high q device. Since the required confinement
time would be within reach if there were no degradation from the ohmic
value, the existence of a § limit and how much it is, has become an
important issue. Evenmore, as the dilution effects due to impurities

further enhance the B required to reach the same a-power production.

The goal of this study is to provide input to this problem of a
limiting B, focusing on some well-defined objectives, namely to find,
within the frame of ideal MHD,

a) the highest g that can be reached with the parameters specified
for full performance
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b)  the sensitivity of the g limit to a change of the current

c) the effect of the vacuum vessel on the g limit for the full per-
formance range of parameters.

The only differences between this study and those already published
are: the choice of the class of profiles and the additional con-
straint that the maximum B is found at constant current.

To fully specify an equilibrium, two arbitrary functions of the
magnetic flux ¢ must be given. They can be the pressure p(¢) and the
current flux T(¢) = rBy (r is the radius, By the toroidal field),
or the pressure p and the safety factor q(¢). Specifying the q profile
is very convenient for the ballooning mode analysis and pressure opti-
misation, and it is commonly used without much elaboration on the
difficulty that it leads generally to a non-vanishing current density
at the edge with high probability of free boundary instabilities. Spe-
cifying the derivatives, p' and TT', is more traditional and allows
one to enforce simply the constraint of vanishing current at the
edge. In all but one? of the previous studies, p' and TT' have been
chosen proportional to each other, which implied that the pressure
profile was more peaked than the current profile3 15 It was the
simplest assumption and there was no reason to do otherwise as it was
thought to be good for stability®.

In the present study we also specify the profiles of p' and TT'
but we retain more general parametric forms for the two functions in
order to be able to vary independently the profiles to obtain the
highest stable 8. With hindsight from this study, but also from other
studies we have carried out since the achievement of this work, it has
become clear that it is best to have a narrow current profile and a
wide pressure profile. This explains the difference between the older
results and these new results.

The plan of the paper is as follows: Section II describes the
configuration and the class of profiles over which the optimisation is
carried out. The results are in Section III while Section IV contains
a discussion of the results and of their reliability.
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II) PARAMETRISATION OF THE EQUILIBRIA

The plasma surface is assumed to be profile and current indepen-
dent, and given by the parametric expressions

[a
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R + a cos(0 + 6sing)
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(2)
Ea sino,

N
]
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where -n < 0 < 1 is the running parameter, r and z the horizontal and
vertical coordinates, and R, a, E and 6 the major radius, the horizon-
tal half-width, the elongation and the triangularity respectively. A
good approximation to the boundary shown in the «JET project descrip-
tion EUR5516e», known also as R-5, 1s obtained for

R = 2.96m, a = 1.25m, 6§ = 0.3, E = 1.68. (3)
We shall use these values throughout.

There is no evidence that the detailed plasma shape is important
for stability but this should be considered as still an open question
on which we shall come back in the discussion.

The vessel plays the role of a conducting shell with a time con-
stant much larger than the typical ideal MHD time scale of a micro-
second. Because of its structure consisting of alternating high and
low resistivity sections, it is not truly axisymmetric. On the fast
time scale, it can nevertheless be considered as an axisymmetric per-
fectly conducting shell. For convenience, the shell is represented by
the equations

a
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where 0 is same parameter as in eq. (2).
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where the parameters Ar; and Ar, are the distances between ‘the plasma
and the inside and outside wall in the mid-plane respectively and Az
the plasma-wall distance at the maximum elongation. We have used as
standard values Az = Ar) = 16 cm and Ar, = 20cm.

The most crucial choice is that of the profiles. The Grad-
Shafranov equation for the flux ¢(r,z) is written

zg%—Tg%, (5)

+
<
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-rj = -r

where j is the toroidal current density and T = rBy. We choose the
normalisation such that ¢ = 0 is on the surface. The two source
functions are represented by polynominals

dp Np n
& - rzl=1 Fn
(6)
N
dT _ ¢t n
R0 IZI=1 n’

On the plasma boundary, p' and TT' vanish, so that j = 0, which is
believed to be a necessary condition for stability’. But it is not
certain that one should have identically j = 0 on the boundary rather
than just the flux surface average <j> = 0, since the argument is
based on the lowest order term in the standard Tokamak expansion of
the energy principle in which only flux average quantities appear.
This is still an open question to be studied.

The number of terms in the expansions must be limited for obvious
reasons. Most of the studies reported here have been done with
Nt = 1 and Np = 2. This is the same choice as in the INTOR
studies® which allows useful comparisons. Attempts at introducing more
terms have been generally unsuccessful in terms of B limit. They will
be described in Section IV. With the 3 free parameters ti1, p1 and p,

we can play on the pressure profile while keeping the total current
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I constant and the volume average B = [pdv//B%/2dv constant. A limit
to this choice of parameters becomes obvious at very low B, when the
pressure gradient no longer contributes significantly to the current

density so that there remains in fact only one parameter t; and it is
fixed by the total current. There is no longer any free parameter to
optimise stability, for example by changing the safety factor on axis
Jo- We shall only be confronted with this difficulty at high current
and it is then necessary to increase the number of terms in TT' to
adjust the value of do which appears to be a key parameter for
stability.

Since the stability character of an equilibrium does not depend
on density, we shall always assume it to be a constant po. For con-
venience, the equilibrium solver uses normalized quantities which we
label with an index E:

where B¢ is the vacuum toroidal field at radius R.

III) THE METHOD AND ITS LIMITATIONS

Low-n stability is studied with ERATO’?, a spectral code which
solves the variational form of the linearized ideal MHD equations. The
eigenvalue I'? is related to the growthrate y by the relation

2 _ 202 49
I = YR/ (8)

where Rp is the radius of the magnetic axis and Vp, the Alfvén
velocity at the same radius.

The displacement eigenvector £ is represented as

E = (5111 cos nd + 5r21 sin n®)n

(9)
+ (étl: cos n@+§§ sin n®),
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where n = V¢/|V¢|, & is the toroidal angle, £; is the component of g
tangential to the magnetic surface and the integer n the toroidal
index.

The origin of & is chosen such that the vector (gi, §2t) is
up—down antisymmetric and (g%,gé) up-down symmetric. This is possible
because only up-down symmetric equilibria are considered here.

We only search for the most unstable mode. Since, in all cases of
interest, there is at least one singular surface within the plasma,
the spectrum of eigenfrequencies w? (w is the frequency of the mode)
has a stable continuum part which extends to the marginal point, name-
ly w? = 0. Stability can thus only be marginal. But the discretisation
scheme used in ERATO leads, at least for all Tokamak profiles studied
so far, to a destabilisation of the spectrum, so that a convergence
study of the growthrate of the most unstable mode as a function of
mesh size must in principle be done and, if the equilibrium is stable,
it should converge to the marginal point. Since the marginal point is
a pathological degenerate singular mode, which causes an irregular
convergence, and the numerical accuracy is limited by the numerical
resolution and the power of the computer, we make use of the concept
of o-stability introduced by J.P. Goedbloed and P.H. Sakanakal? with
some additional constraints. For n = 1 an equilibrium is declared
stable if, simultaneously, |I‘2| < 107* with a fixed resolution of
60 x 60 meshcells over the full cross-section, T2 drops rapidly with
increasing resolution and the mode pattern has the structure expected
of a continuum mode with dominant shear motion on singular surfaces.
This last criterion has been used in the past as the sole criterion to
identify a continuum destabilized mode but any weakly growing mode has

a structure which resembles a continuum mode.

The o-stability threshold has been chosen for the following
reasons. Below I'? = 10~ convergence becomes generally irregular, due
either to the fact that the mode belongs to the continuum and the
Plasma is thus stable or to the insufficient definition of the equili-
brium or maybe even to the approach of the limit of accuracy of the
computer which shows when calculating some second derivatives of equi-
librium quantities required as input by ERATO. In cases where a great
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effort has been made to increase the resolution, the growthrate has
decreased further at least as long as gp > 1. At such small growth-
rates, with such highly sheared flow patterns, the validity of the
physical model as well as the assumptions of axisymmetry, no flow and
pressure isotropy, should be questioned. The internal kink at do < 1
is the only documented example where we know!! that the growthrate can
be below this o-threshold. This means the o-stability limit below
do < 1 should be considered optimistic.

For n > 1, resolution should be increased accordingly. For n = 2,
to have the same reliability, we should then use 120 x 120 mesh, which
is an impossibility with present computers. It means that results with
n > 1 should be considered with some caution.

We make use of two different versions of ERATO. They differ in
the way the vacuum potential energy is calculated. The first one’ uses
a Green function formulation and it can handle exactly the case of an
infinite vacuum region. This is the version used in most of the n = 1
calculations and, when not specified, it should be understood that
this version has indeed been used. There is another version in which
the vacuum region around the plasma is dealt in the same way as the
plasma itself!2, This necessitates that a shell be placed around the
plasma to limit the domain. There are definite advantages to this
version as soon as n increases and it is better suited to the case
where there is a shell than the Green function version. We shall
mention explicitely when this version is used, designating it as the
discretized vacuum ERATO (DVERATO). In this version, there is an
option to use a ballooning mode presentation which permits to keep the
same azimuthal discretisation for all n, but the radial resolution
must still increase linearly with n to resolve all singular surfaces
and the resolution of the equilibrium then becomes the 1limiting
factor. But we only have limited experience yet with this option when
there is a vacuum region so that we have not been able to use its full
potential in this problem.

Stability to ballooning modes (n = =) is studied with a one-
dimensional energy principle on a large number of magnetic surfaces

(usually 60 to 100)°. The domain of integration on each surface is
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extended to t=, corresponding to turning an infinite of times around
the surface, in the standard fashion. Practically, the number of turns
is limited by the accuracy of the equilibrium and of the computer. In
most cases, because of the elongation, D shape and small aspect ratio,
unstable modes exhibit strong ballooning on the outside so that a few
turns are sufficient to localize the ballooning unstable region. But
in the vicinity of the magnetic axis or in the regions of low shear,
when the q profile is flat or has a minimum, the largest number of
turns which can be used (100) is not sufficient, as evidenced by the
fact that the Mercier unstable range of magnetic surfaces is sometimes
found ballooning stable, which is known to be impossible. To alleviate
this difficulty, we verify the Mercier criterion on the same set of
magnetic surfaces and assume that, if after so many turns, the
ballooning criterion is not violated, the destabilizing contribution
to the potential energy must come mainly from the asymptotic region,
the sign of the contribution of which is tested by the Mercier
criterion, and thus that the Mercier and ballooning criterion should
give almost the same result. This difficulty is common 1mow1edgel3 and
more acute in configurations with negative shear dq/d¢ < 0, such as in
spheromaks where the same prescription is used",

IV) RESULTS

a) JET Full Performance

The parameters which characterize full performance are
By = 3.5 T and I = 4.8 MA. The corresponding normalized values in
the equilibrium code are

B¢E = 1 and IE = p,OI/T = 0.5822. (10)

A large number of equilibria have been generated which cover densely a
large area in the (p,/p;, t;/P;) plane. The resolution was generally
140/70 radial/vertical mesh cells with a few cases at 200/100. Only
the upper-half cross-section is calculated. In this study, Np = 2
and Nt = 1 so that there is one equilibrium for each point in the

plane (p2/pP1, ti1/P1).
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The standard version of ERATO has been run, without a shell, for

n = 1, using a 60/60 mesh (full cross-section) with radial and azi-
muthal redistribution of the mesh points to resolve the singular sur-
faces and have enough points in the outer region of the plasma near
the plasma surface where the non-orthogonal mesh opens up (see for
example figure 2). Figure 1 shows in the plane (p,/py, t;/p;) the
lines of constant normalized growthrate I', starting from ? = 10~"
which is the o-stability limit. Also shown are lines of constant g on
axis, go, and constant B. These lines are obtained by interpolation
between the values calculated. The highest o-stable g is slightly
above 3% and is reached for g5 ~ 1.1 - 1.15. The shapes of the con—
stant T lines are all similar, with the optimum less pronounced as T
increases, but always located in the range g, ~ 1.1 - 1.15. There is
an obvious difference in behaviour below and above do ~ 1. Below,
the stability limit looks more like a limitation on the current densi-
ty on axis such as would be expected from an internal kink instabili-
ty, while above q, ~ 1, it is a B limit with some gdo dependence.
Figure 2 shows a sequence of unstable modes with increasing growth-
rate, starting with one very close to the o-marginally stable mode.
The 3 equilibria have almost the same q, but different B. As B in-
creases, the mode becomes more global and faster growing, while the
peaking of the tangential component of flow at the singular surfaces
becomes less visible. Because of the high shear at the edge associated
with the D-shape (at the surface ds ~ 6.5 - 7.5), there is a large
number of singular surfaces packed together. Surprisingly, the growth-
rate has been found rather insensitive to the radial resolution in the
outer region, at least for ¢, near the optimum. It means the high
shear at the edge has no stabilizing influence in this case, implying
the mode balloons across the high shear edge and it must be the core
of the plasma which drives the instability.

There remains to verify the other two criteria on the 2 = 10~
line to use this as a o-stability threshold: the mode must look like a
singular mode and r? must decrease rapidly as the number of mesh
points increase. The sequence of modes in figure 2 shows how a
singular mode is approached although it is not as singular as found in
the INTOR study® for the same I'2 of 10~“. Increasing the resolution
decreases I'? and further peaks the mode on singular surfaces.
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The ballooning stability limit B is shown in Fig. 3, together
with the Mercier limit (M) on the axis, the most dangerous point for
that criterion, and the o-stability limit of the n=1 external mode re-
drawn in the plane (dorB) instead of the original plane (P2/P; »
t1/p1).

When B is crossed by increasing B, the first magnetic surface to
became unstable is somewhere between the axis and the surface. As B
increases, the unstable range of magnetic surfaces widens. The exact
limit is obtained already with a few turns indicating a strong
ballooning of the modes. As Jo increases above 2.3, the maximum
value shown in Fig. 3, the ballooning limit still increases and at
do = 3.75, the largest value for which we have been able to generate
an equilibrium, the limit is at B = 5%. Figure 4 shows a sequence of
equilibria lying along the stability boundary B on the unstable side
to show the location of the dangerous regions.

When q, drops below M an unstable range develops around the
axis. It is a second ballooning unstable range which we cannot find
directly with the ballooning code. The modes must be localized inter-
changes. It explains why the M and B limits cross instead of having B
smoothly joining M on the low B side. The two limits are in fact two
ballooning limits in different regions, one with strongly, the other
with weakly ballooning modes.

Figure 5 shows a sequence of n = 1] o-marginal equilibria with
different g,. It shows that shear is good for the stability of this
mode, provided q, remains above 1. The optimal case C, has a
B ~ 3% while on axis Bo ~ 10.6%.

The dependence on gy, of the M, B limits and of the n = 1 free
boundary limit are quite different at Jdo > 1, but they recover each
other at g, < 1, giving the feeling that this region is inaccessible
even though the limit appears soft. This is a point to be discussed

later.

The ballooning limit can be as well above or below the n = 1 free
boundary limit. We have not identified any specific feature of the
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profile related to the n = 1 free boundary limit so that we cannot
manipulate this limit to bring it above the ballooning limit at high
do- But near the optimum on the free boundary limit at
do ~ 1.1-1.15, we can imagine local changes in the pressure pro-—
files, shifting some of the pressure gradient away from the dangerous
region, which push the ballooning limits up and to the left so that
the n = 1 free boundary optimum at 3.1% becomes ballooning stable.

The stability of the n > 1 modes is difficult to determine, as
explained earlier. We have nevertheless tried to determine the trend
and understand the transition from the n = 1 to the n = stability
limit. In these studies, we use the version DVERATO, placing the con-
ducting shell at a distance Az = Ar; = 3.75 m and Ar, = 1.30 m, large
enough that it does not affect the n = 1 limit, thus a fortiori the
higher ns. It is not possible to use the o-stability criterion for the
same resolution 60 x 60 as for n = 1. We do a coarse convergence, tak-—

ing up to 80 x 80 mesh and packing points radially near the surface,
in the high shear region, to resolve the singular surfaces, and we
declare stability when the extrapolation to zero mesh size is below
10~*. At this time r We cannot do better and one cannot overemphasize
too much how careful one should be in using these results, particular-
ly the n = 4. But the great similarity between these results and those
obtained in the INTOR studye, where the situation is better because of
the larger aspect ratio and lower shear, gives some confidence that
the main results are general. They are shown in Fig. 6. The essential
result is that the low n > 1 modes do not give a lower limit on B than
the kink and ballooning together.,

For comparison, the rigid boundary modes n = 1, 2 and 4 are also
shown. It seems that all modes become unstable in a narrow range of
do and B which does not leave much hope of an improvement by a more

clever choice of profiles.

In conclusion the highest value of B at which there is full sta-
bility is at the intersection of the n = 1 and n = « limits and is
Bmax = 2.8%. By a small adjustment of the profile of the pressure it
should be possible to bring the ballooning limit above the highest
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point of the n = 1 limit, and Bmax would then be slightly over 3%.
Note that the scaling law we have proposed16 with the INTOR value of
the coefficient

B = 2.2 — (11)

would give 3%,

b) Variation of the current

We have repeated the calculation for the n = 1 free boundary
limit and for the n = » ballooning limit with different values of the
current. The parameter range has been restricted to the vicinity of
the optimum, around Jdo = 1. The results are shown in Fig. 7. The
threshold of o-stability of the kink is the same for all cases. The
largest current is 9.6 MA. The general behaviour is the same in all
cases and the same as found in our INTOR studys. For 12 MA the n = 1
limit still behaves as expected with a maximum at B = 7.2% but the
ballooning criterion becomes violated over the full range of B
studied, down to B = 5.5%. This case will be discussed later in sec-
tion 4 and is not shown in Fig. 7.

We did not repeat the calculation of the n > 1 modes, because of
the time involved and of the uncertainty attached to such a calcula-
tion which cannot be made with sufficient resolution.

Figure 8 summarizes the results. For each current, two values of
the limiting B are shown: the maximum B stable to n = 1 free-boundary
and Mercier, and the maximum B stable to all n. At low current ;s there
is no doubt that the pressure profile can be modified slightly to
bring the ballooning limit at the level of the n = 1 optimum, but at
the highest current it is by no means certain and we shall discuss it
for the highest current we have tried » 12 MA, in the next section.
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The line drawn through the points in Figure 8 is the Lausanne
scaling law'® with the INTOR coefficient quoted above (eg. 11). There
is a difficulty at high current already mentioned in the introduc-
tion. With the choice of Ny = 1, do falls below one above a cur-
rent of about 4.8 MA at B = 0. As the current is increased above this
value, a new instability region appears at low B. The stable domain
then becomes a band with a high and a low B limit. It is the additio-
nal freedom brought by the p' terms, which can be used to bring g
above 1, that creates the lower stability boundary. This instability
region at low B can be suppressed completely by introducing an addi-
tional term in TT' which keeps q from dropping below one everywhere,
taking for example Ny = 2. But as the current keeps increasing, Nt
should increase further to avoid local minima of q below one somewhere
in the plasma. This is cumbersome and one has to recognize that the
polynominal expressions (6) are inadequate at high current. This dif-
ficulty is purely numerical as previous calculations® have shown that
equilibria at B = 0 can be stable down to ds = 2. This is the reason
why the lower boundary is not shown in figures 7 and 8 and that the
highest current considered is 12 Ma, corresponding to gg ~ 2.4.

c) Wall stabilisation

The vacuum vessel fits the plasma so tightly that the n = 1 free-
boundary mode is fully stabilized. It is not unreasonable to expect
that the ballooning limit M+B is the limit in this case, although we
cannot run the higher ns to verify that they are all stabilized by the
wall. To make effective use of the stabilizing influence of the wall
to increase B, it is necessary to be able to maintain as flat a q pro-
file as possible. As long as do ~ 1, there is no gain with the pro-
files considered here. Our polynominal expressions are not suited to
an optimisation of the pressure profile to the ballooning criterion
alone because of the local character of such an optimisation and the
global character of the polynominals. We have not pursued further this
study.
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V)  DISCUSSION

a) Increase of parameter space

We have not made systematic tries to increase No and Nt in
the source terms (6). But we did spend a substantial effort to study
the case of 12 MA and since the general behaviour is qualitatively the
same at low current we shall describe our attempts in this case.

The starting point was an equilibrium with a B = 7.25% slightly
above the maximum of the n = 1 o-stability line. The equilibrium quan-
tities p, q, dp/d¢, T(AT/d¢) and j are shown in Fig. 9. It is
ballooning unstable. The normalized growthrate squared, I'?, of the
n =1 kink is 2 x 10~* with the standard 60/60 mesh and is not far
from the o-stability limit. The q profile is hollow with G = 1.32
and gpin = 1.16.

The first objective was to introduce one more term in each of the
source terms [6] to try to stabilize this equilibrium while keeping
B = constant. Let us introduce a term ta, keeping t;/p;, Po/P; and I
constants. We find that r'2 (n

1) has a parabolic dependence with the
minimum very close to ty, = 0 so that there is nothing to gain.

Introducing a term p3 has the same effect as t, but the growth-
rate increases much faster as |p3| increases away from the optimum at
P; =~ 0 than with t,, for the same change of q,. This evolution is in
agreement with the evolution described in section 3: for the stability
of the n = 1 free-boundary mode it is best to have g, just above 1
to maximize the average shear; it is best to avoid peaking of the
pressure on axis as much as possible. The case considered is in this
respect very close to the optimum which explains our inability to
improve on the n = 1 limit.

Since the optimum equilibrium for n = 1 is ballooning unstable
let us first repeat the full optimisation with No = 2 and N, = 1
in order to find a fully stable equilibrium. Figure 10 shows the
o-stability limit for the n = 1 kink in the same plane as Fig. 1,
namely tp/p; and p,/p;. The lines of constant B are also visible
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near the limit. Shown also on the graph are two lines corresponding to
the onset of ballooning modes in two different regions of the plasma.
To the left of B2 there is one unstable region as shown in Fig. 9. As
B2 is crossed, the Mercier criterion becomes violated on axis because
of increasing q,. When p,/p; increases, the outside unstable region
located around the maximum of the pressure gradient |p'l shrinks and
disappears as Bl is crossed. But at the same time do keeps increas-
ing, with the g profile becoming more and more as in a screw-pinch, so
that the Mercier and ballooning criteria are violated over the
central region of the plasma. This is the reason there is no point
corresponding to full stability in Fig., 8 for this value of the
current. This is illustrated in Fig. 11 in which the same equilibrium
quantities as in Fig. 9 are shown for these equilibria, identified in
Fig. 10 as E2 to E4. The equilibrium E1 is the one shown in Fig. 9.

Looking at the Mercier and ballooning unstable regions, it is
immediate that the central unstable region can be suppressed by en-—
forcing p' = 0 in the central region. To keep the current profile and
total current unchanged, the loss in current which results from sett—
ing p' = 0 in the center must be compensated by adding the same amount
to -TT'. The loss in B will be very small since the change in pressure
on axis is given by 8paxis = 2[ép'sds, which is small since p'
appears multiplied by s, and integration of this small change over the
small central volume will give a minute change in B, This means that
the limit B1 should be considered the ballooning limit. The n = 1
limit should be unaffected by this reduction which does not change the
current profile.

Above Bl one might also try to reduce the intermediate unstable
range by some small modifications of the profiles. In the equilibria
E1, E2 and E3, the unstable region is located around the maximum of
|p'|. By shaving off the top of the -p' curve and again replacing the
current lost by an equivalent contribution to TT', all these equili-
bria should become ballooning stable. It is noteworthy to remark that
the threshold for the ballooning instability in this region is about
the same for the 3 equilibria, |p'| = 1 to 1.15. In the equilibrium E2
the shaving of the top should lead to an insignificant drop in the B
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of 6.50%. For E1 the shaving at |p'| = 1.15 would lead to a more
important reduction, but since B for that equilibrium is 7.5%, it
should still be around 7%. None of these modifcations are expected to
destabilize the kink n = 1 so that full stability should be possible
at around 7%, the optimum for n = 1. The key is to keep the current
density unaffected as much as possible while making small changes to
the pressure profile.

To shift the pressure gradient outwards from the ballooning
unstable region instead of reducing it, to keep B constant, is a
possibility which has not been tried. It would be necessary in this
case to check the stability of the n = 1 mode. Shifting the pressure
gradient inwards is less effective in terms of keeping B constant.

It is clear from this description that the polynomial expansion
is totally inadequate for these adjustments which must be local. We
have made numerous attempts to add terms in (6) to stabilize the
ballooning modes and find the B limit for full stability without
Success. For the n = 1 mode we do not have a localized criterion so
that we do not know if localized changes could also be done to improve
the B limits.

b) Influence of the shape

The shape has been kept fixed through these calculations. Yet we
know that the representation used is only an approximate convenient
form. How sensitive are the results on the shape, specially on
details?

ERATO does not allow in its present form locally non—-convex
shapes. Also the coordinate system becomes skewed when the shear is
very high. This makes it impossible to study fully this problem. There
is nevertheless some evidence in our calculations which suggest that
details may not be important. With the present shape already, shear is
very large at the edge of the plasma at low current as visible in
Figs. 4 and 5. Many singular surfaces lie close together on the outer
edge already at the nominal 4.8 MA. In principle, the mesh should be
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sufficiently dense to resolve all these surfaces in order to trust the

results. But for the n 1 runs, we have not seen significant diffe—
rences as far as the stability limit is concerned between a rough and
a good resolution of these singular surfaces. It is this remark which
gave us the courage to run higher ns for which we qannot resolve suf-
fiently well all the singular surfaces. We take thls\as circumstantial
evidence that details of the shape which strongly 1hfluence the shear

at the edge are not important.

Another evidence is naturally the agreement bétween the scaling

law (11) and the experimental results, some of which have been
obtained with odd shapes as in DITI. |

VI. CONCLUSIONS

Ideal MHD stability limits the B that can be acmeved The stabi-
lity of free-boundary modes impose a limit on B a# well as that of
internal ballooning modes. Optimisation of the balldomng mode stabi-
lity alone leads to flat q profiles, unlike those that are observed.
1 free-boundary mode stab

Optimisation of the n ility leads to a

q profile with g, near one, namely with the maximum
with the internal kink stability requirement. This op
to the naturally occurring q profile. For this opt
modes (all n) seem to become unstable at about the
The results are, within 10%, in agreement with the
proposed inlé up to the highest current studied of 12

No claim is made that another optimisation with
functions could not lead to higher B with the same

shear compatible

timum corresponds
imum profile all
same value of B.

scaling law (11)

MA.

different source

type of q pro-

files. But it should also be noted that in a stationary purely ohmic

regime there is a constraint between the pressure and
which could result in a lower B limit than that found

current profile,
here.

It might be interesting to examine the implications of these

results on the a heating power one could expect.

The expression (1) for Py has been obtained by

making a number
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of assumptions: the plasma is a pure 1:1 DT mixture, the velocity
distributions are Maxwellian with Ti = Te, the plasma is fully
elongated with a volume of 135 m3 and the average 32, usually denoted
5*2, is 2.6 62. We can compare this last assumption with the values
found after optimisation in the course of this work.

At 4.8 MA, in the range of parameters near the region of maximum
B at 3%, corresponding in Fig. 1 to the region around C2,
((3"‘/[3)2 ~ 2.15. This is 17% below the assumed 2.6 and it leads to a
corresponding reduction in the maximum « power expected,

The corresponding values for the cases of I = 7.2 MA and 9.6 MA
are (6*/(3)2 ~ 1.85 and 1.65. The decrease of B*/B as the current
increases is expected and independent of the optimisation procedure.
It reduces the gain in P, brought by the increase in current, but
only slightly.

Acknowledgments

This work has been performed as an Article 14 Contract for JET.
Throughout the execution of this contract we have enjoyed constant
interaction with the JET theory, in particular with Drs. T. Stringer
and J. Wesson.



References

DU W N =
L]

8.

9.

10.
11.
12.
13.
14.
15.
16.

A. Gibson, JET-Scientific Council 1/5.

Burrett et al., Nucl. Fusion 23 (1983) 536.

L.C. Bernard et al., Nucl. Fusion 20 (1980) 1199,

W. Kerner et al., Nucl. Fusion 21 (1981) 1283.

A.M.M. Todd et al., Nucl. Fusion 19 (1979) 743.

INTOR, Phase IIA, European Contr. EUR FU BRU/XII-132/82/EDV30
(1982) 72.

J. Wesson, Proc. 7th European Conf. on Turbulated Fusion and
Plasma Physis, Vol. 2 (1975) 102.

F. Troyon et al., NET Report, EUR XI1-324/14, Bruxelles

R. Gruber et al., Comp. Phys. Comm. 21 (1981) 323.

J.P. Goedbloed and P.H. Sakanaka, Phys. Fluids 17 (1974) 908.

W. Rerner et al., Phys. Rev. Letters 44 (1980) 536.

R. Gruber et al., Comp. Phys. Comm. 24 (1981) 363.

J. Greene and M. Chance, Nucl. Fusion

P, Gauthier et al., Nucl. Fusion 11 (1983) 1399,

F. Troyon and R. Gruber, LRP 239/84.

F. Troyon et al., Plasma Phys. and Contr. Fusion 26 1A (1984)
209.



Figure Captions

Fig. 1:

Fig. 2

Fig. 3

Fig. 4:

Fig., 5:

Fig. 6:

The n = 1 free-boundary iso-growthrate (I' = const) curves in
the py/p;, t}/P; plane. The labels on the icurves 10‘”, 10"3,
5x10~3 , 102 indicate the corresponding ‘value of r’. The

resolution is 60 x 60 (full cross-section).

Maps of the unstable poloidal flow patterrb in two perpendi-
cular meridian planes, ® = 0 and & = n/2, for 3 equilibria
having the same current and g, = 1.15, with Bs of 3.2, 3.5
and 4.1%, identified in figure 1 as A}, A, and A;.

The ballooning (B) and Mercier (M) limits in the (dorB)
plane. Stability is below B and to the right of M. The
o-limit of the n = 1 free boundary mode (I'? = 10~*) shown in

the figure 1 is redrawn in the same plane for comparison.

Profiles of equilibrium quantities (pressure p, safety fac-
tor g, toroidal current density j) in the equatorial plane.
The radius R is normalized so that it is 1 on axis. The
pressure is normalized to the magnetic pressure on axis B2/2
so that it is very near to the local g. The scale for j is
arbitrary. These equilibria are just ballooning unstable to
show the location of the first surfaces| which become un-
stable. They are identified in Figure 3 as D1 to D3. The
last one, D4, has go = 3.75 which is outside the scale of
Fig. 3. The unstable ranges are shown withjthe label B.

Profiles of equilibrium quantities for a set of nearly
marginal equilibria, shown in Fig. 1 a:é Cl to C5. The
meaning of the symbols is the same as in Fig. 4,

The n = 1, n = 2 and n = 4 free-boundary g-stability limits
for 1 4.8 MA, together with the n = 1,?n = 2 and n = 4
rigid boundary limits. The rigid boundary icases are labeled
with an asterisk.

1]



Figure Captions (cont'd)

Fig. 7:

Fig. 8:

Fig. 9:

Fig. 10:

Fig. 11:

Stability diagrams for increasing value%s of the current:
I = 3.6, 4.8, 6.0, 7.2 and 9.6 MA. The curve labeled 10~* is
the free boundary o-stability limit.

Dependence of the B limit on current. ’Ihé line is given by
ﬁ = 2. 2(uol/aB)

A 12 MA, B = 7.25% equilibrium (E1) ‘
a) Profiles of the source terms p' andi TT' and of the
pressure p and safety factor qi as function of

s = Y(daxis—¥) daxis (¢ = 0 at the‘ surface) showing
the ballooning unstable region.

b) Profiles of p, q and j (arbitrary ¢1n1ts) across the
equatorial plane. The radius R is noﬁ'mahzed to one on
the magnetic axis. ‘

The n = 1 free boundary o-stability ll.imit and Mercier

ballooning limits in the p,/p; and ti/p1 plane for a

constant current of 12 MA. The resolutiofh is 60 x 60 mesh

intervals in the full cross-section. |

Profiles of equilibrium quantities of three 12 MA equili-
bria, identified as E2, E3 and E4 in Figi. 10, showing the
ballooning unstable regions. The correspon{dmg B values are
6.5%, 5.8% and 5.7% respectively.
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