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ABSTRACT

The coherent optical pumping of a laser is investiqated by means
of semi-classical laser theory with the assumption that either the
pump source or the laser output is multimode. All radiation modes are
allowed to reach saturating levels. A multitude of interesting effects
results from induced population pulsations.

As a particular application we study numerically the optical pum—
ping of a single mode homogeneously broadened FIR laser with a two-
mode pump. We find that at least for symmetric pumping higher FIR

intensities can be obtained with two, instead of one, oump modes.,



I INTRODUCTION

Pulsed optically pumped high power FIR lasers are currently
developed in several laboratories for plasma diagnostic purposes. The
spectrum of FIR radiation collectively scattered from a tokamak-like
plasma contains information on several important plasma parameters
such as the ion temperature, impurity concentration and the magnetic
field. The shape of the spectrally broadened laser line has to be
analysed to extract the desired information. In the case of an initial
laser line of width comparable to the scattered spectrum it is, in
principle, possible to determine the effect of the plasma by deconvo-
lution. In practice, however, it is necessary to select a laser of a
bandwidth considerably smaller than the scattered spectrum. This is
dictated by the very small cross-section of Thomson scatterina and the
associated difficulty of suppressing stray light. The spectrum of
collectively scattered radiation from a typical tokamak plasma has a
halfwidth of 1 to 2 GHz. This has to be compared with the mode spacing
of the FIR laser on the order of 100 MHz. Clearly a single mode laser

is required to fulfill the above condition.

So far the method applied to achieve single-mode FIR operation
has been to pump the FIR laser with a single-mode 0, pulse. Several
methods have been developed and successfully applied to achieve
single-mode operation of a (0, laser. Most of them suffer from one
great drawback: the efficiency of the oscillator and often the first
amplifier is reduced considerably by mode discrimination. This is not

an important consideration in a large system with several amplifying



stages. Due to the homogeneous broadening of the 00, gain line the
total extracted energy in the power amplifiers under fully saturated
conditions is almost independent of the mode structure. This is not
the case in a small system where the low level single mode intensity
produced by the oscillator is insufficient to saturate the amplifier

along its whole length.

The motivation for the investigation reported in this paper is to
establish conditions under which multimode pumping of a FIR laser can
have a greater overall efficiency than single-mode puwping. FIR output
is assumed to be single mode in both cases. The mathematical complexi-
ty of the general multimode problem is, however, quite formidable. We
therefore have restricted our investigations to a proof of principle
by treating only the case of a two-mode pump laser where both the pump

and the FIR intensities are allowed to reach saturating levels.

We have found that the overall efficiency of two-mode puming can
indeed exceed the single mode efficiency under certain conditions

which will be discussed in section 3.

In section 2 we outline the theoretical treatment based on the
density matrix formalism. The population densities are obtained in
terms of matrix continued fractions. In section 3 we present and ana-
lyse the results of numerical computations. Experimental implications,
mainly in connection with the FIR laser resonator, are discussed in

section 4 which is followed by some concluding remarks.



II THEORY

We have applied Lamb's [ 1] laser theory to describe the interac-
tion of a three-level molecular system (neglecting degeneracies) with
two laser fields and a thermal bath. Only recently it has been disco-
vered [2,3j that two-photon Raman type effects are important in opti-
cally-pumped FIR lasers. The theory presented here will connect Panock
and Temkin's work [3] with multimode theories of systems involving
only two levels. Mathematically analogous problems arise in the
context of double optical resonance and radiofrequency spectroscopy

performed with standing wave lasers [4 - 9].

The method of solution is outlined for a general case where both
the FIR and pump fields may be multimode and have arbitrary intensi-
ties. A more detailed analysis is restricted to a special situation
where the pump consists of two modes and the FIR output is single
mode. Although of limited applicability, this approach yields interes-
ting general information on the multimode pumping of FIR lasers ard
can, at the expense of increased complexity, be extended to more com-

plicated configurations.

The classical field is composed of discrete pump and FIR modes.

For simplicity we choose travelling waves according to

[a

E,t) - 4 T E, wxp[ 4 (Kur -0 )] + coe

(1)
e(i/b) = % ?;-" E,..,_ v‘f’[’;(‘,\%- ?-u.&)] + c.<,



where E represents the optical pump field and ¢ the FIR laser field.
The active medium consisting of molecules is described in terms of an
idealized three level model shown in Fig. 1. The polarization induced
by the fields is calculated with the standard density matrix formalism
[10] which is only briefly outlined below. The density matrix ? obeys

the master equation
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where ’5’ represents the convective derivative (3¢ + v 3,)p (v is
the velocity of the molecule along the laser axis z) and 63’/6t|re1

includes incoherent pumping and relaxation of the levels. The Hamilto—
nian contains the unperturbed part Hy and the dipole interaction term

Te (E+8).

With the rotating wave approximation we are allowed to assume

that the amplitudes
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vary slowly compared to the combination frequencies o, + Qmr
vn * vm, and Q + v, For the central frequencies and corres-
ponding wavenumbers (K, @) and (k, v) we can pick one of the pairs

appearing in (1). Inserting (1) and (3) into (2) we find
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where Pi(nio—pii) and  -y,.p are relaxation terms, the
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detunings are denoted by
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and the Rabi flipping parameters by
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In {5) and (6) we have neglected the Doppler shift of the FIR transi-
tion; similarly we can ignore the spatial dependence in (6) for corun—
ning punp modes since usually the residual Doppler shift |Kn - Klv

is very small (note that in a standing wave case this simplification

is not generally allowed).



Let us assume that we have N equidistant pump modes, i.e.
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ard a single mode FIR field oscillating at the frequency v, . The

flipping frequencies (6) reduce to
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where ap = py)Ep/2R and B) = uy; e /2h. Assuming that a, and
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B, do not vary within y we obtain a stationary solution of egs. (4)

as a PFourier series

+ 0o

f;‘.(t)- Z: f,;a&m-) &r(—;”ﬂ-gt) (9)

L -2 -J

where the components pj4(m) satisfy the recursion relations

putm) = Lo T3 & G L[ Do ) e o)

f’u("“) = Lim) 32, 8 - 4 L,}*Q{[_Ed ﬁ“(mwr)- Mﬁ-*('“*T)J

Purbm - B ey
e = bfem R S - Lo [P Pl - B pliem ]
fal™) = il e [Z (f..(m-r-) - Pl 1Y - -p f,‘cm}
Paslm = ik o) [}5 (fu(..)_ A - Z' “ﬁ‘(-%*f)]
priews = b LL o plimap - " ]

(10)

with the complex Lorentzian factors
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This (infinite) linear system of equations has to be solved for the

unknowns p j §(m) .

The assumption of a single mode FIR field leads to equations
involving one-dimensional Fourier series (9) only. No additional com-
plications arise if we assume that the FIR field has the same periodi-

city as the pump, i.e.

.1
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or if the pump is single mode and in (12) we use the FIR mode spacing
Sprr = VmH1 T vm for §. In the case when both the pum is
multimode and several FIR cavity eigenmodes are present simultaneously

eqs. (4) lead to two-dimensional Fourier series
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[ .9 "I\—

which is much more laborious to solve than ea. (10).

The polarization of the medium is given by Tr {8} . With the aid

of (3) and (9) we obtain for the polarization at the FIR frequency
FFiR z ; /4.“ ruevn) cxr(:.-wmst) uP[;(-&;-vt)) +c.¢ (14)

Inserting this into the Maxwell equations in which we make the slowly
varying envelope approximation and integrate over the beat period 51

we find for the FIR intensity
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where the gain is given by
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Bquation (14) contains also beat notes (m # 0) which act as a drive
for new FIR modes separated from the original one by a multiple of §.
A comparison with (12) reveals that the corresponding gain for the FIR

mode m is given by

Grigm = %ﬁu &(/‘%ﬂ’) (17)

When solving for p,3 (m) the presence of several FIR modes has to be
taken into account by using the generalised form of (10). A separate
sumation of FIR mode indices is necessary, too. In the following we
assume that only g, is present. We also simplify the parameter analy-

sis by choosing equal relaxation ratesy =T; = Yige

Our numerical code solves egs. (10) with matrix continued frac-
tions and Gauss elimination. The code reproduces exactly the single
mode results reported by Panock and Temkin [3] as well as results
which were obtained by a simpler numerical approach based on a conti-
nued fraction treatment of the strongly coupled transition 1€»2, but

restricting the FIR intensity to the small signal regime. We have
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tested for symmetries and verified also that phases are not important
in this particular context. Details of the calculational method are

given in the Appendix.

It is worthwhile noting that our treatment can easily be applied
to a range of different schemes. Specifically, in Doppler broadened
systems, the two counterpropagating parts of a single-mode standing
wave, each interacting resonantly with a different set of molecules,
can be interpreted as two separate modes of a travelling wave [11].
With the same oode cascade configurations, saturation effects in
double resonance spectroscopy as also different pump and resonator
systems of optically-pumped cw-FIR lasers can be described. Some of

these schemes are schematically shown in Fig. 2.

IIT NUMERICAL RESULTS

In order to present our results in system—independent units, we

introduce a normalised dimensionless spatial growth parameter defined

by
g = lfil I».(.E.L) (18)

where we have removed the phase factor and normalised with respect to
the equilibrium population nlo of the qground level. The field
strengths ¢ and § as well as the intermode spacing § and the detunings

A4k are also made dimensionless by defining
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where y is the relaxation rate of the levels, assumed to be the same

for all levels. The FIR intensity gain can now be written

2 e
G - ¥ Mg Ny } (20)
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and hence is proportional to g for a constant field amplitude B’

In Fig. 3 we show calculated profiles of the spatial growth para-
meter g for a range of different operating conditions. The four curves
in each graph represent the following arrangements of pump modes: (m
one pump mode on line center, (2) one pump mode offset from line
center by four Lorentzian line widths, (3) symmetric pumping with two
modes mutually separated by eight Lorentzian line widths and (4) asym-
metric two-mode pumping with one mode on line center and the second

one again offset by eight Lorentzian line widths.

The figure is grouped into three columns of three gravhs, accor-
ding to the saturation parameters & and 'é' for the pump and the FIR,
respectively. From top to bottom the pump intensity grows from a small
signal via a saturating level to a strongly saturated case and the

same applies to the FIR intensity, going from left to right.

In the top left graph we notice that for small pum and FIR

signals a high gain can only be obtained by resonant pumping. The qgain
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profiles due to the resonant single mode pump and the asymmetric two
mode pump with one mode on line center are practically identical. The
off-resonant mode only contributes a small bump at its Raman shifted
frequency. The center-line gain for these two cases is considerably
higher than for the two off-resonant cases (2) and (3). For weak pump
intensities the total gain profile is just a superposition of the gain
profiles of the two separate pump modes. Since one off-resonant mode
in this regime results in two gain peaks of equal height, one on line
center and one at the Raman line, the result of pumping with two sym-
metric modes is a profile with three peaks, one at each of the two

respective Raman lines and one, twice as high, on line center.

Since the conditions discussed are prevalent at an early stage in
the pump pulse which is critical for the build-up of the FIR pulse, it
follows that the mode structure of the pump mode has a very important

influence on the development of the FIR pulse.

If the pump intensity is now increased (2nd and 3rd graph of
first column) we notice that the ratio of the gains due to off-reso~
nant and resonant pumping becomes more favorable for off-resonant
pumping. This is due to the fact that saturation is reached more
rapidly with resonant pumping. For @ = 1 just barely visible and for a
= 5 fully developed is the effect of AC Stark splitting of the gain
line. Since the FIR mode structure is fully developed by the time this
condition is reached, Rabi-splitting is undesirable since it shifts
the gain peak away from the position of the FIR mode. The structure

due to Rabi splitting 1is considerably more complicated for
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the multimode cases. Multiple peaks are observed with a separation
which reflects the intermode spacing. This is due to nonlinear effects
resulting from the induced beating of the population densities. Part
of this structure can be explained using a dressed atom formalism

[12]. The small signal FIR gain is generally lower and broader with

multimode pumping.

Moving from left to right in the figure corresponds to increasing
the FIR power. Hereby the top right and center graphs do not corres-
pond to a very realistic case in the context of FIR lasers: saturated
FIR intensities at small signal pump intensities. Due to power broa-
dening the detailed structure observed in the small-signal regime is

ameared out at high FIR intensities.

In a FIR oscillator, as in any laser oscillator which is pumped
long enough to reach steady-state conditions, the FIR intensity will
grow up to a point where the gain is reduced by saturation to a value
which just equals the averaged round trip losses. Significant satura-
tion is only reached for é’ > 1. This indicates that the bottom two
graphs in the rightmost column probably best represent the desirable
operating conditions. While the parameter to be ootimised is the FIR
intensity exiting from the oscillator, which is not related to the
gain in a simple way, we can nevertheless conclude that similar FIR
intensities will result from comparable gain values. The gain values
obtained for the conditions of Figs 3 f and i are indeed quite simi-
lar, but the pump power necessary to achieve this is §2 = 25 times

higher in the bottom graph. Guided by the figure one would obviously

choose to operate the laser with the parameters according to Fig. 3 f.
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If we compare the different pump mode distributions in this
figure, assuming that the FIR mode has developed on line center, we
notice immediately that pumping with two symmetrical modes around the
line center yields the best result. The gain (Fig. 3 f) drops to about
60 % if one of these modes is suppressed, whereas strong saturation
results from pumping on line center with one mode. For asymmetric

two-mode pumping the gain is high, but offset from line center.

At much higher pump intensities (Fig. 3 i) the differences

between the various pump schemes almost disappear.

Fig. 3 clearly demonstrates that the optimisation of an optically
pumped FIR laser is not an easy task. Gain profiles are sensitive
functions of pump and FIR intensities both of which vary continuously
during the pulse. While the small signal behaviour is easily predicta-
ble, many high intensity effects are not yet well understood. Espe-
cially one can anticipate a rather complicated behaviour when several
pup and FIR modes are simultaneously present. A much more detailed
analysis is obviously required. Some encouragement for this is orovi-
ded by our main result that in an interesting operation range two-

mode pumping can be an advantage.

IV FIR RESONATOR CONSIDERATIONS

In order to derive the operating point of a FIR oscillator we

represent the data corresponding to the right hand side of Fig. 3 in a
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different way and include the effect of the oscillator cavity, neglec—
ting spatial effects (radial profiles, pump depletion and FIR gain
along the axis) and dispersion. For the same four arrangements of pump
modes we show in Fig. 4 the normalised density matrix element as a
function of 'é' Since g according to eq. 20 is proportional to the gain
times the field amplitude ¢ (or §) the cavity loss curve in this
representation appears as a straight line through the origin with a
slope proportional to the averaged cavity roundtrip loss. The opera-
ting point of the active resonator is the cross-over point of this

line with one of the curves, that is

- & g : - Xe
EF et

where Q is the quality factor of the cavity and C a constant. The
cavity loss curve shown in Fig. 4 (Q = 40000, C = 41.4) corresponds to
a 4 m long D,O-laser resonator at a wavelength of 385 pm with overall

roundtrip losses of 25 % and a reflectivity of the output coupler of

5 %.

For this particular resonator we can now see from Fig. 4 that the
FIR intensity obtained with symmetric two mode puming is aporoxima-
tely twice as high as with resonant single mode pumping. It has to be
remarked, however, that the total pump energy is also twice as high in
the first case, since we assumed @ = 1 for each pump mode. To allow
for a comparison of single mode and two mode pumwping for a constant
total pump mode energy, we have included in Fig. 4 also a curve repre-
senting single mode pumping with @ = V—Z-' We find that at least for the

resonator chosen the obtainable FIR energy is practically the same for
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single mode pumping and symmetric two-mode pumoing. This suggests that
at least fram the point of view of reproducibility of the FIR output
careful mode control of the pump source is not necessarily required.
The importance of this statement lies in the fact that mode selecting

elements in the cavity usually entail considerable losses.

We have made an investigation similar to the one presented in
Fig. 3 for two off-resonant pump modes separated from the line center
by 16 and 24 linewidths and compared the results to single mode pum-
ping at detunings 16, 20 and 24 linewidths from the line center. Since
higher pump and FIR intensities are necessary to saturate a Raman
transition we have calculated gain spectra for all combinations of &,
§ = 0.01, 1, 5, 10, 15. The results indicate that in this case two

mode pumping is not very attractive.

we find that in the small signal regime (i.e. 3, § << §, ‘Z\VZl ‘)
the total gain is simply a superposition of the two individual gain
contributions (see Fig. 5 a). Since the two Raman freauencies are dif-
ferent one obtains two separate gain peaks, one at each Raman frequen-
cy. Both pump modes also produce a gain peak of equal height on line
center. Their superposition is a gain peak of twice the height which,
at a first glance, looks attractive. However, to operate an off-reso-
nantly pumped FIR laser on line center is very inefficient, since the
line center gain saturates much more rapidly than the Raman gain. For
q = ?3' = 1 the combined gain on line center has already dropped to half
of the Raman gain of a single mode pump at the mid-frequency of the
two modes considered (Fig. 5 b). For § = 5 the gain on line center is

no longer visible on the graph (Fig. 5 ¢).
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At a stage where the intensities are so large that the two
broadened Raman gain lines overlap significantly enough to make two
mode pumping attractive, the position of the gain peak is shifted by a
considerable amount. Since the frequency of the FIR mode which deve-
lopes in the resonator is fixed, the increased gain at a shifted
frequency is useless. This should be contrasted with the symmetric
pumping where the lineshifts are opposite and cancel for i =& =%.
We conclude from this investigation that off-resonant two-mode pumping

could only be advantageous in very specific operating conditions.

An interesting case, especially from the theoretical point of
view, is shown in Fig. 6. For the pump frequencies indicated above we
display the small signal gain profiles for strongly saturating pump
modes. Under these conditions the ac Stark effect is very important.
The line center gain peak is shifted towards negative frequencies,
approximately by the same amount for all three single mode cases
considered and considerably more for the two-mode case (with twice the
total energy). The Raman lines are also shifted, but in the opposite
direction. Apart from these shifts the single mode gain profile is not
greatly affected. Specifically it still contains two peaks only: the
on-line and the Raman gain peaks. This changes considerably with two
mode pumping. Due to the population pulsation effects discussed
earlier, additional gain peaks at the intermode frequencies apoear.
The intermode frequency for the case shown is 8 and the average sepa-
ration of the peaks 8.2. Theoretically two combs of peaks with a sepa—

ration of the mode distance § should appear in the limit y-»0 [12].
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A situation like the one shown is realised experimentally when a
FIR cavity with a relatively long buildup time is pumped with a rapi-
dly rising pump pulse. When the pump pulse has already reached its
maximum power, the FIR pulse is still in the buildup phase and hence
sees this complicated modulated gain profile. Obviously there is now a
strong tendency that multiple FIR modes develop with a mode separation
that reflects the cavity roundtrip time of the pump laser resonator.
The following two qualitative observations which support this idea
have been made in our experiments: (a) with multimode puming mode
beating with a beat frequency corresponding to the pump laser cavity
can be obtained in a low—quality FIR resonator or a superradiant tube,
(b) if the pump pulse is not perfectly tuned to a single mode, single
mode FIR radiation is obtained more readily with a gently rising pump

pulse.

vV CONCLUSIONS

In this paper we have investigated optical pumping of a FIR
resonator with the assumption that either the pump source or the FIR
output is multimode. The general theory has been outlined and discus-
sed. The following simplifying assumptions in the model used have to
be considered when the theory is applied to describe an experimental
situation: (i) the degeneracy of the energy levels has been ignored,
(ii) collisions are only treated in terms of relaxation rates, (iii)
optical transitions such as cascade and refill transitions are igno-

red. However, in the treatment presented, all radiation modes are
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allowed to reach saturating levels, resulting in a multitude of inte-

resting effects.

A particular application is then investigated numericallv: The
optical pumping of a single mode laser with a pump source consisting
of two modes. Certain effects have again been neglected to reduce the
complexity: (i) all relaxation rates considered are assumed to be
equal, (ii) spatial variations in a resonator are neglected (iii), at
equilibrium only the lower level is populated, and (iv) no Doppler

broadening is considered.

We find that at least for symmetric punping higher FIR intensi-
ties can be obtained with two-mode pumping. The reason for this is (i)
that no line splitting occurs due to the pump radiation (the split-
tings due to the two symmetric modes cancel) and (ii) pump saturation
is rather weak because both modes are off-resonant. If this can really
be turned into a great advantage in a experimental situation depends
on the ease with which a multimode pumped FIR laser can be forced to
emit a single mode only. Alternatively, single mode operation of the
FIR laser may not always be required. This, however, represents a new,
more complicated situation. Since extrapolations from the current
model calculations are not readily applicable, investigations of this

kind are planned for a future publication.
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APPENDIX

In this appendix we outline a method to solve the infinite system
of linear equations (10). We then discuss the relative merits of using

matrix continued fractions over other methods.

To reduce the number of unknowns in (10) we substitute the dia-

gonal elements and the last equation for p3) (M) in the two equations

involving py; (m) and p3,(m). This yields
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In these two infinite sets of linear complex algebraic equations for
p21(m) and py3(m) there are only a few inhomogeneous terms for mé E,
The system has a unique solution with the property p,y (m), py3(m) -+ 0
when m #++ «. A proof can be found in Bambini [13, 14] for a problem
of a similar nature. We define a set of complex 2 x 2 matrices and

vectors such that (Al) can be written as

fze:F ) % - ) +1§s étw,or) 29“"1‘)‘ 9_7(5@.\) (A2)

\V;\& re

L)

= (ﬁ;w) s tm €,

We now restrict ourselves to the case of a two-mode pump where E =
{0, 1}. E‘orlml < 2 (A2) is an under—determined linear system (UDLS) of

10 equations and 16 complex unknowns.

For m > 2 (A3) gives:

alm,4) £ew 1) + & (@n,0) Elm) + alm,-4) xfmsd) +

+4em,2) yom2) + fem ) glm) b B, 0) g = O

Taking the complex conjugate of (A2) written for -m where m > 2 we get

the independent equation :
Q_,*GM'A) —{."QMJ\)Q. %,*(.m,o) g_r:*(.m.) + Q'*(""‘,"‘) 5.*@4»4-4) +

+ a&‘(.m,l)&*(.m-l)q—é?.mﬂ) i*(-hm-") + %‘é—mﬁ) ;*(:-"’“') = O
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For convenience we define a set of complex 4 x 4 matrices ﬁ(m), g(m) ’

‘(_;_(m), E(m), E(m) such that using (A3) the last two egquations can be

written as

Apny Xem-) + BomyXem-1) + Lom) Xt Doy Xome ) + E Xerd=0

=) el i o

where )_(Q*V) = ( 4o

This five term recurrence relation can be solved by continued frac-

tions with the following ansatz :

Rew) Xem-?) + Sen) Xemt) = Kem)  for D2 (25)
We replace X(m + 1) and X(m + 2) in (A4) by (AS) written for X(m + 1)
and X(m + 2) and factorise the coefficients of X(m - 2) and X(m - 1).

The results can be compared with equation (A5) which yields the fol-

lowing iteration formula :

&(m) = - /g—@"") éf"’")

(R6)
ég...) = - Mem) [_ﬁ_tu) + Vo) 5&-«"’]
where
-4
Mz [Com v Yem) Soned) + ) Reme)]
Y e = Deny + Eew 3ems D)

Using the fact that all elements of A, B, C, __12_, g(m) are either zero
or of the order of 1/ru2 (except the elements of the diagonal of g(m)

which are of the order of 1) it is easy to show that all elements of
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R and S(m) are of the order of 1/m’. This is consistent with the

requirement that lim X(m) should be zero for a physical solution.
o -vop

If we now assume that :_13-(1( + 1), i(!( + 2), =S=(K + N, _i(K +2) =0
for a sufficiently large K it is easy to see that the relative error
of each element of R(K), S(K), R(K - 1), S(K - 1), ... obtained from
(A6) will be of the order of 1/K2, /K", ... hence decreasing rapidly
towards negligible values. K has to be chosen large enough that the
matrices §(4), 2(4), 5(3), 2(3) resulting from the iterative process
(A6) do not change by more than 10 to 107® when the process is

repeated with a higher number of iteration steps.

Together with the UDLS the equations

R® XM + S@) X = X(3)

(A7)
RW) X@) + o6) XB) = X

form a system of 18 complex equations with 18 unknows, having a unique

solution. If we construct X(m) with (A5) l}’},‘, X(m) = 0, and hence this
a2 —roe

is the unique solution of (A1) and (A2). The final system is solved by

Gauss elimination to obtain p,,(0), p21(=1) and p,, (0).

Further generalisation of our ocontinued fraction solution to
treat the multimode case where E = {0, 1, eeer N1}, and involving
only 4 x 4 matrices (cf ref 15), is possible. However, the iteration
formula (A6) and the final system become significantly more complica-

ted. For a constant truncation order K the computer time increases as

N,
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Our generalisation of continued fractions to solve the five-term
recurrence relation (A4) is always convergent because the form of the
continued fractions have been carefully adapted to the order of the
coefficients in the recurrence relation. We have to point out that
this is not the case for the previous generalisation proposed by
Hambenne and Sargent [ 11]. The lack of convergence of their solution
is apparent in their eq. 69 (HB69). From (HB57) and (HB52) we see that
Cik is of the order of 1/k for j # 0 and of the order of k for
j = 0. If one starts from (HB69) with some high order value of k and
sets rk4y = 0 for i > 0, rx will be of the order of 1, ryk-1 of
the order of 1/k?, ry_p of the order of 1, etc. However, the comou-
ted r] are no longer similar if the starting order is changed to
k + 1. The source of the problem lies in the error provagation.
Although equation (HB69) is mathematically correct, the initial 100 %
error is not attenuated but propagated since the largest coefficient

in the denominator is the coefficient of rj4q.

An alternative numerical method to solve equation (10) is to
transform the system formed by the UDLS and (A4) into a real linear
system A V = b truncated at some high order K where A is a band matrix
of a total width of 25 elements and V a vector composed alternatively
by the real and imaginary parts of x(0), x(1), y(1), x(2), etc. Let us
now compare the direct and iterative methods [ 16] to solve this system

with our matrix continued fractions.

We will first make some camments on the more obvious case of a

three~-term scalar recurrence relation involving the usual continued
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fractions [17]. This algorithm may be thought of as a particular case
of the Thomas algorithm [ 18] which is known to be the most efficient
method to treat linear tridiagonal systems on serial computers. As a
consequence of the large number of zero-elements in the inhamogeneous
term the efficiency is even higher. It is also possible to show that
for high orders k neqligible error propagation occurs [19,20] in
continued fractions when off-diagonal elements are of the order k=2,
Moreover, according to Feldman and Feld [4] or Abramowitz and Stequn
[17] it is possible to construct the solution of the system of order
k + 1 from the solution of the system of order k with very few opera-
tions. This property should also be very useful for matrix continued

fractions if the off-diagonal matrices are regular.

Coming back now to our specific problem, the situation is less
clear. For direct as well as for iterative methods of solutions of the
real system, the number of operations needed to obtain an approximate
solution is proportional to the number of equations and to the sauare
of the total width of the system. Using the same rule for our genera-
lised continued fraction solution we found that for k > 7 continued
fractions were more efficient, reaching a typical factor of 2.5 at k =
100 and 2.8 when k —» =. We attribute this to the use of complex
arithmetics and the economy of the right-hand side computation in

continued fractions (except in the final part of the calculation).

On the other hand, iterative methods offer the advantage to he
able to increase the number of equations and choose the optimum K

simultaneously with the iteration. Another way to increase efficiency
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would be to take advantage of the fact that the coefficient matrices
_5_, E, g, 2, E(m), as well as 3, =:”i(m), contain a certain number of
zeros. A more complicated recurrence relation could be fourd or a
sparse matrix solver could be used [7,8). However, the possibly

resulting small advantage may not be worth the effort.

As a conclusion, when the inhamogeneous part of a linear system
is zero except for a few nearly contiquous terms, continued fraction
solutions appear to be an interesting alternative to the more commonly

used methods.
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Figure captions

Fig. 1 : The three-level, two-mode pump confiquration used in this

paper.

X3

Fig. 2 Equivalent configurations which can be treated with the
two-mode code:

a) optically-pumped FIR laser with ring resonator (no stan—
ding wave).

b) double resonance spectroscopy in a resonator.

c) optically-pumped low-pressure laser

solid line: standing wave in Doppler broadened transition

broken line: travelling wave.

Fig. 3 : Spectral profiles of the spatial growth parameter g (prop.
to the FIR gain) for different pump and FIR amlitudes ¥
and §, respectively. Four different arrangements of pump
modes are compared (see inset Fig. 3a). Horizontal axis
(frequency) from —Zozl‘to 2023'“in each graph., Vertical axis
fram zero to N-10"6, where N is the number in the top left

corner of each graph.

Fig. 4 : Spatial growth parameter g as function of FIR amplitude,
for fixed pump amplitudes. Four punp mode arrangements are
compared. The cavity loss curve appears as straight line.
Its intersection with the curves gives the operating point

of a FIR laser.



- 30 -

Spectral profiles of the spatial growth parameter g for
off-resonant single and two-mode pumping

a) in the small signal regime the gain with two pump modes
is a linear superposition of the two individual gain
contributions.

b) and c¢) show the rapid saturation on line center.

As Fig. 5, but for saturating pump intensities. Gain peaks

at intermode frequency spacing appear with two-mode

punping.



w, FIR
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