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ABSTRACT

Bounded ion cyclotron waves in a cylindrical partially plasma-
filled cavity are investigated theoretically using an MHD approach.
Both free and forced oscillations are considered. Specific calcula-
tions are made for a plasma containing two ion species, with the os-
cillation frequency in the range between the two ion cyclotron fre-
quencies. The power coupled into the various axial and radial modes

from an external antenna is calculated.



1. INTRODUCTION

Ion cyclotron waves have been extensively studied in the past due
to their application to plasma heating. Experiments conducted at tHe
Princeton laboratory have investigated the absorption of ion cyclotron
waves when propagated into a magnetic beach region (see, for example,
References 1-7). The waves were launched using a Stix c0il® whose
length, for optimum coupling at the plasma densities examined, was
relatively short. Early resultsd ™ indicated that a Faraday shield was
necessary to eliminate undesired coupling between the coil and the
plasma. It was also shown theoretically and experimentallys'7 that
electron inertia may have a dominant influence on ion cyclotron wave
propagation, especially for a plasma of low density and a wave

frequency close to the ion cyclotron frequency.

The present study was motivated by a proposed experimental inves-
tigation9 of the ponderomotive force exerted by a large amplitude ion
cyclotron wave on a plasma containing two ion species.m‘12 This ex-
periment will utilize a plasma having a density much lower than those
examined in previous wave heating studies. The parallel wavelength,
and hence excitation coil length, is correspondingly much longer and
the coupling between coil and plasma significantly different. Wave
modes that are bounded in both the axial and the radial direction are

to be investigated in the experiment.

In Section 2 the theory for ion cyclotron waves in a cylindrical
cavity partially filled with a uniform plasma is outlined. Included in
the theory, in particular, are the effects of finite electron mass and
the presence of a Faraday shield. Both the free and the forced oscil-
lation problems are treated. With the proposed experiment in mind, in
Section 3 the results of specific numerical calculations are pre-
sented. For the free oscillation problem, the dependence of the paral-
lel wavenumber on the plasma parameters is examined. In considering
forced oscillations, the power deposited into the various radial and
axial modes is analyzed, and optimization of power input into a de-
sired mode studied. The radial and axial structures of the wavefields,
for both free and forced modes, are calculated.



2.  THEORY

We shall consider ion cyclotron waves in a uniform cylindrical
plasma column of length L and radius p imbedded in a uniform axial
magnetic field By. The plasma is surrounded by a vacuum region and
by a perfectly conducting cylindrical shell of radius q. The system is
bounded in the axial direction by conducting end walls. For the case
of forced ion cyclotron waves, we consider excitation by an azimuthal
current sheet of radius s located in the vacuum region. The inclusion
of a cylindriecal, axially-conducting Faraday shield of radius u is al-
so considered. A schematic diagram of the resulting partially plasma-

filled cavity is shown in Fig. 1.

Small amplitude waves in the partially ionized plasma column may
be described by the linearized MHD equations, in which we include the
effect due to collisions between the different constituent species,
but neglect pressure and viscous terms. A plasma comprised of more
than one ion species is treated. We shall consider axisymmetric
(m = 0) oscillations having a temporal dependence ~ exp(iwt). After
Fourier analysis in time, Maxwell's equations combine to give for the

perturbation electric field
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where K is the dielectric tensor.

Since the plasma is confined to the region -L/2< z< L/2, solu-
tions of eq. (1) for the electric field components may be expressed in

terms of finite Fourier series.13 We write
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These forms have been chosen to satisfy the boundary conditions at the
end conducting walls, namely,
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We proceed by solving eq. (1) in each of the regions shown in
Fig. 1.

i)  In the plasma : region I

Using the notation of Stix,8 the dielectric tensor for the plasma
may be written as

S -iD 0
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For a fully ionized, collisionless plasma the matrix elements are
given by
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where Ws and uw,g are, respectively, the plasma frequency and cy-
clotron frequency for species s. The elements of the dielectric tensor
for a collisional plasma containing three species (electrons, ions and
neutrals) have been given by Skipping et al.!3 and for a five species

plasma (electrons and two ion and neutral species) by Schliiter and
Sch(irger.“'

Substituting eq. (5) into (1) using (2) then gives
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Considering solutions of eq. (7) - (9) of the form
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yields the following dispersion relation
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This quadratic equation in k*‘i2 therefore yields, for each value of

Ky, two perpendicular wavenumbers given by
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Substituting eq. (2) into (8) and (9) also gives
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Using Maxwell's equation V x E = iwB and eq. (4), we obtain for the

Fourier amplitudes of the perturbation magnetic field components
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ii) In the vacuum region k (k = II - IV) :
The fields in each of the vacuum regions may be obtained by

setting K = I in eq. (1), i.e.,

J : m = 09’ = o) . (17)
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We consider solutions for the electric field Fourier amplitudes of the

form
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which satisfy the vacuum condition, V « E = 0. Substituting eq. (17)

and (18) into eq. (7)-(9) yields the following relationship for the
vacuum wavenumber,
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The magnetic field Fourier amplitudes are then
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The 14 coefficients of the wave amplitudes,

A, AD, CE, DE, FE, GE, k = II, III, IV

are determined by the boundary conditions at the four surfaces, r = p,

u, s, q. At the plasma-vacuum interface, we assume that there are no

surface currents or charges (consistent with the inclusion of finite
electron mass effects in the description of the plasma). The Faraday
shield is assumed to completely eliminate any axial electric field
which may be coupled to the plasma from the antenna, while not affect-
ing the azimuthal electric field. The antenna is treated as a current
sheet flowing in the azimuthal direction only and having no azimuthal
dependence. The imposed current per unit length, 3t , can be expressed

in terms of the following Fourier sine series.
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The cylindrical shell at r = q is assumed to be perfectly conducting

in both the azimuthal and axial directions.

With the above considerations, the appropriate boundary condi-
tions can then be written as follows.
At r=p: E

5? EZ, Be and Bz are continuous,

r =u E., E and B are continuous

8 z z

and E = 0,

z

r=s: E, E and B are continuous
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Substituting the wavefields expressed in eq. (12), (16), (18) and
(20) into the boundary conditions (22) yields the following fourteen

equations for the required coefficients of the wave amplitudes.
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It should be noted that the removal of the Faraday shield may be easi-
ly achieved by setting Ee, EZ, B9 and BZ to be continuous at r = u.
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The fifth and sixth equations of the set (23) are then replaced by

G To(kyu) = DpKy(ku) = C I (ku) - D K, (kou)

Cp I,(keu) + DIK,(ku) = Cp T (kyu) + D K, (k,u)

The set of equations (23) may be written more compactly in matrix

form:

[M] [x] = [8B], (24)

where

[ M] is a14 x 14 complex banded matrix with seven nonzero dia-

gonals,

[ X ] is a 14 x 1 complex column matrix containing the unknown

coefficients of the wave amplitudes,

[ B ] is a 14 x 1 complex column matrix containing the right-

hand side forcing term.

For the free oscillation problem, [ B ] is zero and eq. (24) has

a nontrivial solution if and only if
det [ M] = 0. (25)

Solving the free oscillation problem is therefore an eigenvalue prob-
lem for which one searches for eigenvalues satisfying eq. (25). There
is, in general, for each value of n (and therefore, kyj), an infinite
set of eigenvalues corresponding to the different radial modes of
oscillation of the plasma column. For the special case of a collision-

less plasma, the eigenvalues are all real. One may therefore treat,
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for example, the oscillation frequency w, the plasma density ng, or
the plasma radius p, as the eigenvalue characterizing the oscillation
and hold all other parameters fixed. However, for a collisional
plasma, the eigenvalues are all complex, reflecting the damped
behaviour of the eigenmodes. For this case, it is convenient to treat
w as the complex eigenvalue, its imaginary part characterizing the
damping rate of the oscillation.

For the forced oscillation problem, eq. (24) can be solved to
give the coefficients of the wave amplitudes, and therefore the
oscillation field structure. Of particular importance for this case is
the power coupled from the antenna to the plasma. Collisions in the
plasma will result in a net flow of energy into the plasma. The

complex power input to the plasma-antenna system, averaged over one

period of oscillation, is given by15

<P> LZ [_J-fg dV , (26)

where the integral is calculated over the volume of the antenna. If
the plasma loading of the antenna is modelled by a complex impedance

in series with the impedance of the antenna, then we may also write
the power input as

<P> = ';-_I:{RC'FRP-LUJ(LC*‘LP)}' (27)

where Ry, Lo are the antenna resistance and inductance,
Rp» Lp are the resistive and reactive components of
the plasma loading,

and Ip is the amplitude of the antenna current.

The resistive and reactive components of the power input to the plasma

are, respectively,

2
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For an antenna consisting of a coil wound with v(z) turns per unit
length, then

T2y - L, v(z) . (29)

By substituting the Fourier expansion of the antenna current den-
sity, eq. (21), and the electric field at the antenna, eq. (2), into
(26), the power input to the nth axial mode can be obtained.

L,

2 [
+ m
n . T : omil
<P > = %zTrsJ {MZ' Jn CO(S)SMTZ sm_L_z}dz
-t
.+ n
= TWsL n € (S) . (30)

3.  NUMERICAL EXAMPLES

Using the theory outlined in Section 2, we shall examine both
free and forced ion cyclotron waves in a partially ionized neon plasma

containing two isotopic species, Ne20 and Nezz, in approximately their
natural relative abundance (ny = 90.7% and m = 9.3%, respectively).
The plasma parameters, unless otherwise specified, are as follows:
. - 1nl0 -3
electron density, Ne = 10°° cm

axial magnetic field, Bo =0.3T

ion cyclotron frequencies, wep = 1.447 x 10° rad st

(230.4 kHz)
wey = 1.316 x 10° rad s-!
(209.4 KkHz)
plasma radius, p=2.5cm

conducting shell radius, g =20 cm

plasma length, L=54m
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and for the case of forced oscillation,

antenna radius, s =6 cm

(31)
Faraday shield radius, u = 5 cm

The above set of parameters have been chosen to model those expected
in the LMP deviceg, presently under construction at the CRPP, in which
the ponderomotive force exerted by a large amplitude ion cyclotron
wave on a plasma with two ion species is to be investigated. The plas-
ma formed in this device will be weakly ionized (percentage ionization
~ 0.1%) and cold (T; ~ 0.1 eV, Tg ~ 2-5 eV). Therefore the domi-
nant dissipative mechanism for a wave of frequency sufficiently far

from each of the ion cyclotron frequencies (that is,
k L
Jw-w | » k, Vih (32)

where vgh is the ion thermal speed of species i) is ion-neutral col-
lisions. The approach adopted to treat the effect of collisions is
outlined in Appendix A. Since the main objective of the present study
is to investigate forced ion cyclotron waves, for reason of simplici-
ty of the calculations the presence of collisions is neglected for the
free oscillation problem (w and ko are real). For the calculation of
the forced oscillations, ion-neutral collisions are assumed to be the

sole dissipative mechanism, with an

effective ion-neutral collision frequency, vip = 5.8 kHz.

3.1 Free ion cyclotron waves

Before examining specific examples of the bounded free oscilla-
tion problem we first consider the relationship between the parallel
and perpendicular wavenumbers given by the plasma dispersion relation,
eq. (13). (This relationship is independent of the nature of the plas-
ma boundaries, however, the boundary conditions will determine the
discrete values of wavenumbers that are allowable.) We consider oscil-
lations having a frequency between the two ion cyclotron frequencies,
w = 1,372 x 10° rad s-1.
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In Fig. 2 is plotted the curve calculated from the dispersion
relation. This graph clearly shows the two branches corresponding to
the fast (magnetoacoustic) and slow (ion cyclotron) waves. We shall
confine the present study to the latter branch, and will be interested
in parallel wavenumbers of the order of unity. It can be noted from
Fig. 2 that under these conditions one of the perpendicular
wavenumbers has a much larger amplitude than the other. The larger
perpendicular wavenumber, denoted by kj;1, is always real for the

plasma under consideration.

We now consider a plasma column of radius p, but unbounded in the
axial direction. The plasma is separated from a conducting shell of
radius q by a vacuum region. In Fig. 3, 4 and 5 are shown graphs of
the parallel wavenumber, ky, as a function of the wave frequency, w,
the electron density, ng, and the plasma radius, p, respectively.
Where not specified, the plasma parameters are the same as for
Fig. 2. In each of Fig. 3 - 5 are displayed curves for the lowest four
radial modes, i.e., £ = 1,2,3,4. The radial mode number is approxima-
tely related to the dominant perpendicular wavenumber through the re-
lation (see Appendix B)

- 33
kLl P ) dl ' (33)

where ay is the 2th zero of the J, Bessel function.

Figure 3 shows that, for the present parameter values, the wave
resonance at the cyclotron frequency of the minority species (i.e.,
Ne??) is very sharp, and that for most frequencies in the range bet-
ween the two cyclotron frequencies the wave is propagating (i.e., Ky
is real). For a given fixed frequency the magnitude of the axial wave-
number increases with increasing radial mode number: waves of higher

radial mode number propagate with smaller axial wavelengths.

For a fixed wave frequency, Fig. 4 demonstrates the strong depen-
dence of the parallel wavenumber on the radius of the plasma column.
As shown in Appendix B, ky is approximately inversely proportional
to the plasma radius: a plasma column of small radius can support a

propagating ion cyclotron wave having a short axial wavelength.
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The axial wavelength of an ion cyclotron wave propagating with a
given frequency in a plasma column of fixed radius is independent of
the density of the plasma over a wide range of density (see Appen-
dix B). For the plasma parameters used in the present study, Fig. 5
shows that the axial wavenumber is constant for 2 x 107 < Ne
< 2 x1ot! cm'3, i.e. 4 decades in density. For lower density, the
wavenumber increases as the density approaches that corresponding to
the plasma cutoff P = 0 (i.e., ng = 6 x 10° em= ). The wavenumber
also increases for higher densities, so that the axial wavelength is
significantly shorter in the density regime of previous experi-

mentsl‘7'16.

If the axial boundary conditions at z = * L/2 are imposed, only
discrete values of axial wavenumber are allowable. Each eigenmode of
the cavity is then characterized by an axial mode number, n (related

to k) by eq. (11)), in addition to the radial mode number, % .

For the parameters given in (31), graphical determination of the
frequencies of oscillation for the lowest order eigenmodes is shown in

Fig. 6. A table of values, obtained numerically, is given in Table 1.

If an eigenfrequency midway between the two ion cyclotron fre-
quencies is desired (to satisfy (32) and therefore minimize ion cyclo-
tron damping of the wave), Fig. 6 shows that a good choice of eigen-
mode is the (n = 4, £ = 1) mode. This mode has an eigenfrequency
w = 1,381 x 10° rad s-!. (For the experiment to be conducted on the
LMP device, this mode also has the advantages of a field structure
with a simple radial dependence and an axial dependence that is con-
venient for diagnostic access.) Radial and axial profiles of the am-
plitude of the electric and magnetic field components for this eigen-
mode are shown in Fig. 7. The amplitude of the fields have been norma-
lized to provide an axial electric field of 10 Vm~! on the plasma axis
at the axial antinodes. It can be seen that this mode is almost purely
linearly polarized, with the dominant electric field component being
the radial component. The inclusion of the effect of electron inertia
in the calculations is seen to produce a non-negligible component of
electric field in the axial direction: |Ez|max~ 0.026|Er|max . (The
axial electric field is short-circuited by the electrons if they are

assumed to have zero mass.)
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For a given set of plasma parameters, the eigenfrequency for a
selected mode is fixed. If it is required to change this frequency
(for example, to study the influence on nonlinear effects of the dif-
ference of the frequency and the cyclotron frequency of one of the
plasma speciesg) one or more of the plasma parameters must be
changed. For the set of parameters given in (31), Fig. 5 shows that a
change in the electron density will not produce a significant change
in the eigenfrequency. The eigenfrequency may be altered by changing
the radius of the plasma, as indicated by Fig. 4, however experimen-
tally, this may not be easy to do. Changing the strength of the axial
magnetic field By produces a change in the cyclotron frequencies in
addition to a change in the eigenfrequencies in such a manner that the
ratio (wpj - ‘”)/wci remains approximately constant: it is there-
fore not possible to set the eigenfrequency arbitrarily close to a
cyclotron frequency without drastically affecting the nature of the
plasma. An effective change of the eigenfrequency may be achieved,
however, by altering the isotopic concentration of the plasma. Fi-
gure 8 shows a plot of the eigenfrequency of the (n = 4, ¢ = 1) mode
as a function of the percentage concentration of the Ne?? species., The
value calculated for the natural concentration is marked by a dot on
the curve. It can be seen that by decreasing the percentage concentra-
tion of the Ne?? species the eigenfrequency can be made to approach

the cyclotron frequency for this ion species.

3.2 Forced ion cyclotron waves

We now consider forced oscillation of the bounded plasma column
by means of an oscillating azimuthal current in the vacuum region, as
described in section 2. If plasma dissipative effects are sufficiently
small, exciting the column with a frequency close to one of the eigen-~
frequencies will result in large internal wavefields and substantial
resistive power coupling from the antenna to the plasma. In this sec-
tion, we shall concentrate our attention on the excitation of the
(hn=4,2 = 1) mode.
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An appropriate choice for the antenna is one that closely appro-
ximates the axial structure of the desired mode. It should be noted
that with an external antenna there is no geometrically determined
control of the radial structure of the mode that is preferentially ex-
cited: control is obtained by tuning the oscillation frequency to
match that of the required mode. We shall consider an antenna which

consists of four separate coils and has a current distribution given
by

Iv for -3b . a ¢ 2 ¢ -3b 4+ a
00 > 2 2 2
b.a ¢ 2 ¢ b + a
2 2 2 2
T
3 (z) = - Iv for -h-g._szs-é.,.&
°0° 2 2 2 2
3b . & ¢z ¢ 3b . a
2 2 2 2
0 otherwise, (34)

with a coil width, a, and separation, b, given by

a = A/4
b = 2/2

67.5 cm
135 cm

where X is the periodicity 1length of the antenna structure

(2x=L=5.4m). A schematic diagram of the antenna is given in Fig. 9.

The Fourier spectrum of the antenna current (and therefore also

of the vacuum wavefield excited by this antenna), given by eq. (21),
is

J';= %Iovo sin('%}) Sin(".‘§1r) cos(’.‘g) cos('_\;}_) (35)

and is shown in Fig. 10(a) for mode numbers up to n = 55, Due to the
symmetry of the antenna, contributions to the antenna current exist
from only every eight axial mode. However, it can be seen Ffrom

Fig. 10(a) that there is a substantial contribution to the current
from these higher order components.
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Choosing a value for the coil current turns per unit length,
Igvo) and using eq. (30) and (35), the power coupled from the an-

tenna to each of the axial modes may be calculated. We shall consider
I - 3 -1
Mo = 2.963 x 10° Am

corresponding for the LMP exeriment to a current of 80 A and coils

with 25 turns per 67.5 cm.

Figure 11 shows the dependence on frequency of the resistive and
reactive components of the power coupled from the antenna to the n = 4
mode. A strong peak is observed at the frequency of oscillation that
equals the eigenfrequency for the (n = 4, £ = 1) mode. A much weaker
peak, corresponding to resonant excitation of the (n = 4, % = 2) mode,
is observed at a lower value of frequency. The resonance peaks for the

higher order radial modes are not discernible.

It should be noted that the maximum power input to the plasma of
Pr = 0.74 watts, which occurs at the resonance freqeuncy of the
(n = 4, 2 = 1) mode, corresponds to a plasma resistance of Rp =
0.23 m2. This is much less than the resistance that is typical for the
antenna being considered (R, of the order of 0.1 Q). Hence, in an
experimental situation, most of the generator power is expected to be
dissipated in the antenna resistance. In fact, for an antenna having a
resistance of R, = 0.3 @, 960 watts is dissipated in the antenna if
the assumed current of 80 A is flowing. In addition, the change in re-
active power due to the presence of the plasma is much less than the
vacuum reactive power. For the antenna being considered, the vacuum
inductance is L, = 45.5 yH corresponding to a reactive power at a
frequency of w = 1.381 x 10° rad s=! of 2.01 x 10° watts.

Figure 10(b) shows the resistive power inmput to the different
axial modes for a driving frequency fixed at the eigenfrequency for
the (n = 4, ¢ = 1) mode, w = 1.381 x 10° rad s~!. It can be seen from
this plot that nearly all of the power (99.1%) is deposited in the
n = 4 mode: there is only a weak coupling at this frequency between
the antenna and plasma for the non-zero higher order Fourier compo-
nents of the antenna current. Thus, Fig. 10(b) and 11 show that by
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tuning the driving frequency, very selective excitation of the desired

(n =4, 2 = 1) mode may be obtained.

Radial and axial profiles of the electric and magnetic field com-
ponents for excitation at a frequency w = 1.381 x 10° rad s=' are
plotted in Fig. 12. These fields were obtained by summing the contri-
butions from the first 100 axial modes, i.e., 1< n< 100. The effect
of a Faraday shield was not included. For the parameters chosen for
the present study, the field components g, By and B, are essen-
tially the vacuum field of the antenna: there is negligible modifica-
tion to these components due to the presence of the plasma. The re-
maining three field components Ery E; and By, which are zero in
the absence of a plasma, can be seen to exhibit radial and axial
structure very similar to the (n = 4, 2 = 1) eigenmode (c.f. Fig. 7).
This shows that this mode is selectively excited. In the plasma region
(0 < r <p), the major component of the electric field is the radial
component, which reaches a maximum value of |Er| = 344 Vm~! near the

mid-radius position.

Figure 13 shows the effect on the wavefields of the presence of a
Faraday shield. In this figure is plotted the radial profiles of the
electric and magnetic field components. It can be seen that the shield
has a negligible effect on the wavefields in the plasma region, but
eliminates the radial and axial components of the electric field in
the vacuum region between the shield and the conducting wall. The
shield can therefore act to decouple the axial electric field of a
non-ideal antenna from the plasma. It should be noted that the pre-
sence of a Faraday shield does not affect the power coupled to the

plasma from the idealized antenna considered in this paper.

The power coupled to the plasma will depend on the distance of
the antenna from the plasma surface. To obtain the maximum power
coupling the antenna is required to be placed as near as possible to
the plasma. Experimentally, there is a lower limitation on the plasma-
antenna spacing due to the possibility of undesired effects (e.qg.,
breakdown, corona) and perhaps the necessity of a Faraday shield. To
evaluate a compromise between these competing considerations, in

Fig. 14 is plotted the resistive power coupled to the plasma at the
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(n = 4, 2 = 1) resonance frequency as a function of the position of
the antenna. There is a smooth, monotonic decrease in power as the an-
tenna is moved away from the plasma due to the influence of the con-
ducting wall on the wavefields in the cavity. For an antenna radius of
s = 6 cm chosen for the calculations shown in the previous figures,
the power coupled to the plasma is 85% of the value obtained if the

antenna were situated at the plasma boundary, p = 2.5 cm.

We have considered so far a cavity which has a length equal to an
integer times the periodicity length of the antenna, namely, L = 2 2,
To determine the effect of some mismatch between the antenna periodi-
city and the cavity length, calculations have been made for a cavity
of reduced length, L = 4.75 m, while maintaining the same antenna di-
mensions: that is, L = 1.76 A. (These calculations have been motivated
by the fact that the length of the region of homogeneous magnetic
field in the LMP device is less than twice the desired periodicity
length of the antenna set by radial access between the magnetic field
coils.) Altering the length of the cavity changes the Fourier spectrum
of ky, given by eq. (11). From Fig. 6 it can be seen that if we
still consider the (n = 4, £ = 1) mode, decreasing the value of L will
result in an increase in the eigenfrequency for this mode. For
L = 4.75 m, we obtain w = 1.393 x 10° rad s! (c.f. w = 1.381 x 10°
rad s-! for L = 5.4 m). Retaining the same antenna dimensions as was
used for the previous calculations means that the Fourier spectrum of
the antenna current will now contain more non-zero components. The
spectrum is graphically displayed in Fig. 15(a). Due to the mismatch
between the antenna periodicity and the cavity length, all even values
of axial mode number are now non-zero. The resistive power input to
the different axial modes at the resonance frequency for the (n = 4,
2 = 1) mode is plotted in Fig. 15(b). It can be observed that decreas-
ing the cavity length does not significantly reduce the selectivity of
the antenna: almost all of the power (97.1%) is deposited in the n = 4
mode. Comparing Fig. 15(b) with Fig. 10(b) also shows that decreasing
the cavity length does not result in a significant reduction in the
total power input to the plasma. In Fig. 16 is plotted the radial and
axial profiles of the amplitude of the electric field for this forced
mode. Comparing these curves with those of Fig. 12(a) shows that the

general characteristics of the wavefields are preserved if the cavity
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length is decreased. Only a small decrease in the magnitude of the ra-
dial and axial components of the electric field in the plasma region

is observed.

4.  CONCLUSIONS

Calculations made for ion cyclotron waves in a plasma containing
two ion species show that for low density and a frequency approximate-
ly midway between the two ion cyclotron frequencies, the axial wave-
length is much longer than has been examined in experiments to date.
For the low density regime considered in this paper, the power input
to the plasma, assuming a reasonable valye for the collisional damping
rate, is small: the power dissipated in the antenna resistance would,
in an experimental situation, be much larger. However, the wavefields
associated with the ion cyclotron mode excited by the antenna are of
the same order of magnitude as the vacuum wavefields. The present cal-
culations have shown that with a judicious choice of antenna design
and excitation frequency a very pure bounded mode may be excited. This
preferential excitation does not appear to be very sensitive on the

length of the plasma cavity.
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APPENDIX A

Inclusion of collisions in the theory for ion cyclotron

waves in a plasma containing two ion species.

In general, the linearized equation of motion for each plasma

species may be written as

“lwmghg v, s ge%[§+nx&]—vy;"z &b . (A.1)
tys
where -1 for electrons
€ = 0 neutrals
1 single ionized ions.

The viscous stress term V'T__Ts relates the momentum transfer due to
the self-collision of particles of species s, while the rate of momen-

tum transfer from species s to species t is given by

Fe = Mg Ng Vs (Vs - Ve )
To evaluate the relative importance of the various types of
collisions, we first note that for an ion cyclotron wave the dominant

fluid velocity is in the perpendicular direction, with

vyl ~ Eid _wes . (A.2)
Bo (“Qs"u)

The dominant component of the viscous stress term is then due to per-

pendicular momentum transfer across the equilibrium magnetic field

lines. Therefore we have17
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v T ~ P s Q_YEL
=S YO

, (A.3)

where nf is the perpendicular viscosity coefficient given by (for
wglg > 1):

for ions

'rz" = 0-31 n;
L .
(w,; T;)

-23
194 x 107 n T, T,

L

-3
o
11

I 3
-4 x 107 A2 T,

Ti = 3
n,; ,V\A
for electrons
e
¢ = 0-70 ’7o
7?; PV Y
(Wee Te)
e -23
N, = 185 x 10 n, Te Te
5§ — ¥
T = 2:66x10 Te*

ne ,nA
(A.4)

The collision frequencies for momentum transfer between ions and

electronsls, ions and neutralslg, and electrons and neutrals?’ are

given by

= 3/2 -

1499 x |o-9ni T, fn A

<

Le

in 96-9 n_ Q, (;i)lz

<

<
u

3 "1
on 1-48 x 10 n_ QD Te , (A.5)
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where A is the ion mass number and Op is the cross-section for

momentum transfer between the ions and neutrals corresponding to an
incident ion energy of 5 kT3 21

Taking as an example a partially ionized plasma with a single ion
species having parameters

Ne2? plasma p = 2.5 cm
n. = n = 109 -3 B = 3 kG

1 e 0
n = 10'3 op-3 w/wm ., = 0.95

n ci

- - -1

T, = 0.1V |EL | = 100 V m
T = 1 eV

e
T ~ 0 (A.6)

n

we obtain

~ 6.7 x 103 ms-!

v, |
-1k
‘v | ~ 330 m s}
-€e.L
Ilnx ' ~ 0,
and
- . 1 _ =12 =2
w,T.= 24,4 ; n, = 1.97 x 10 Nsm
wt = 1.47 x 10° 3 n® = 1.94 x 10-'? Nem—2.

The collision frequencies for momentum transfer have values

V. = 9.5 Hz
ie

v, = 5.8 x 10° Hz
in

v = 1.1 x 105 Hz.

en
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It should be noted that since " > nj and vij, € w, the neutrals

do not effectively couple into the wave motion.

The ratio of the corresponding momentum transfer rates is there-
fore

. ¢ -3
v.m L 0L ! = 1-6x10
a
in P mini \’in

-10
AR ~ I+6 x 10
Pin
-3
Pie o 16 x0
Pin

(A.7)

The dominant collisional mechanism for this plasma, which has para-

meters characteristic of those of interest in the present study, is

therefore ion-neutral collisions.

Under these conditions, the equation of motion for the ions in a

plasma containing two ion species may be written as

(A.8)

L - ?

“lwm v, s e[g"}’a".Bo]'maV.:nY;
¢z 2

where vjn 1is the total ion-neutral collision frequency for

collisions between ion species i and both of the neutral fluids, that
is,

Vip = \)inl + \)inzo
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For ion species with approximately the same mass and temperature, the
total ion-neutral collision frequency has the same value. Equation
(A.8) can then be rewritten as

“lwm. V. e [E + \_/Lxl_3°] , (A.9)

{ =0

m; = m, (l ¢ LY_.:n) , (A.10)
w

The effect of ion-neutral collisions can therefore be taken into
account by replacing the ion mass for each ion species by the above

complex ion mass in the elements of the dielectric tensor listed in
eq. (6).
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APPENDIX B

Approximate ion cyclotron wave relationships

The dispersion relation for a hydromagnetic wave in a uniform,

magnetized plasma can be written, by re-arranging eq. (13), in the
form

K- 4 - ..(A+0’)kz,{(;[|- 4 P ks, ++o>.9‘(k;-a>)]’*}
[}

4
20 (d»«d’)’k,.;' (B.1)
J = 1,2
2 2 i
If k, » & 3}%]" , (8.2)
4

the two perpendicular wavenumbers are then related to the parallel
wavenumber through the relations

(zf -k ) (B.3a)

z-
.
~

1b . . (B.3b)

Since lPI > for the cases of interest in the present study, we have
that ‘kLa|I» |k1d' According to the nomenclature adopted in eq. (14)

(see Fig. 2), k,, = k,; for the slow wave, while kia® kjp for the
fast wave. We shall confine our attention to the slow wave (ion

cyclotron) branch.

The inequalities (B.2) are satisfied over a wide range of parameters.

From eq. (B.3a) we therefore have, to a good approximation,
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k = J(l - ’_<_u) . (B.4)

It should be noted, however, that the inequalities (B.2) are clearly
not satisfied if & = 0. This occurs for a plasma containing two ion
species when the wave frequency equals the ion-ion hybrid frequency,

wIIH, which is given by?2

2
w = W, W, BiWey + Biwe (B.5)
IIN B, we, + Ba Weq

where ) - n;
PJ ;e
Under the conditions
2 4
A= 0 lﬂ‘(klj-d’)l«lfkql ) (B.6)

eq. (B.1) becomes, for the ion cyclotron wave,
ke = 2 (- ki) (8.7)
P

Therefore at the ion-ion hybrid resonance the parallel wavenumber,
while still being finite, has a value different from that given by

eq. (B.4). However, if the difference in mass of the two ion species
is small, i.e., We, = Wg, s then

s ~ 0 at W= oW (B.8)

and the conditions (B.6) are only satisfied then in a very narrow fre-

quency band around the ion-ion hybrid frequency. For this band,



- 30 -

eq. (B.4) gives the value kﬁ = 0 and hence close to the more accurate
value determined by eq. (B.7). Therefore (B.4) may be used to calcu-
late the parallel wavenumber to a good approximation throughout the

entire frequency regime of interest.

An approximate radial boundary condition at the plasma-vacuum
interface can be obtained by examining the wavefields for the
parameter range under consideration. From eq. (18) and (20), in the

vacuum region

n 2 n
b . —_ok(l-vko)e (B.9)
e w l kz r
]
Now
2 2
(- _k_o) : w S (B.10)
2 2 Cl n’-

since the free space wavelength is much greater than the wavelength in
the plasma. (For the parameters lised in (31), the square of the par-
allel plasma refractive index is qf = 2.6 x 10°.) Condition (B.10) is
equivalent to assuming that the vacuum displacement current may be
neglected in the vacuum region and yields, from eq. (B.9),

bn (vacuum) =~ 0 . (B.11)

-]

Now, in the plasma region,

w

be (/) = —i{(ku"k.uesu)Al J-‘(k“r)

+ (ku v k 62) A: ‘Tn(knr‘) .

42 73

Substituting from eq. (15) and (B.3)

b:(r) ) -é kn{% Ar:‘Tl(k.up) * A:J';(kuf‘)}
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However, since e"'/em.': 0, from eq. (12) and (16) the requirement that
n
the fields in the plasma are finite implies that AZ/AH = 0. Hence
[ ]

[ 8

bo(r) = AT T (k,r) (6.12)

-
w

x~

Continuity of the magnetic field component across the plasma-vacuum
interface (since there exists no surface currents) then yields the
approximate boundary condition

J',(k“p) = 0

*3

or k“ P s y) , (B.13)

where ap is the 2th zero of the Ji Bessel function. The subscript
2 denotes here the radial mode number.

Now, from eq. (6), 4 and P may be approximated, for frequencies

in the vicinity of the ion cyclotron frequency, by

2

4 = w (! + ‘:’_:9) (B.14a)
c?* n?
2 w‘

P = w (l - _E’.") , (B.14b)
c? w?

where, for a plasma containing two ion species,

2

- =}
a’ [Z e g (wg - w') '] ' (8.15)
j

j:l m
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We shall assume that the ions of the minority species have the hea-
viest mass (as in the case of naturally occuring Ne??  and Nezz), S0

that 22 is positive, and also that the inequality

q 2
£ %o
ot p?

is well satisfied (as is the case for the parameters listed in (31)).

The relationship between the parallel wavenumber and the electron
density, given by eq. (B.4), can be considered in four different den-

sity regimes.

1) very low density: w? g w oe

Since P~ 0 for this region, kﬁ is very large. This is a manifes-

tation of the plasma cutoff 8.

II) Low density : w? <<wf)e < 2
For this region g = wr
z;a
2
P~ - Wpe
c
2 ;6 2 k3 2
and = -8k ) (B.16)
" Lt 2 2
4 Woe P

-1

Therefore, ¥ o n
I e
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III)  moderate density : 2 « wie 4

2
For this region 4 = w Wee
c* n*
2
0:’ 2 = E.)Pe ’
c?
2 2 2 2
and k, = -4 k, =« & de . (B.17)
P ntop

Therefore, kﬁ is independent of n_.

1Vv) high density : ‘*’pez > kilc2
2 2 2
Here, k= 4 = w Wee | (B.18)
ct n?

Therefore, kf is proportional to ng.

It can be noted that the 1last inequality may be written as
Ay > 8, where § = c/wpe is the collisionless skin depth. Thus finite
electron inertia effects do not play a significant role in the wave
behaviour (and therefore, E, = 0) if the wave scale length in the

radial direction is much greater than the collisionless skin depth.

Each of the regions I to I¥ can be identified in Fig. 5. In par-
ticular, for the parameters listed in (31), we have
2 2 2
28 € wpe® & K P,

and therefore k, is independant of Ng. In addition, eq. (B.17)

shows that ky is inversely proportional to p, as is verified by
Fig. 4.
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1.

2.

3.

4.

5.

8.

Schematic diagram of the partially plasma-filled cavity.

Relationship between the parallel and perpendicular wave-
numbers for a plasma with parameters given in (31) and a
frequency of v = 1.372 x 10° rad s-!. The dashed curves give

the asymptotic limits for the slow wave branch.

Parallel wavenumber, ky, as a function of the wave fre-
quency, w, for the ion cyclotron wave in the viecinity of the
ion cyclotron frequencies of the two ion species plasma.

Curves are shown for the lowest four radial modes.,

Parallel wavenumber, ky, as a function of the plasma ra-

dius, p, for the lowest four radial modes.

Parallel wavenumber, k;, as a function of the electron

density, ng, for the lowest four radial modes.

Enlargement of a section of Fig. 3 illustrating graphical

determination of the oscillation frequencies for the lowest
order eigenmodes.

Radial and axial profiles of the amplitude of (a) the elec—
tric field, and (b) the magnetic field components for the
(n =4, 2% = 1) eigenmode. The radial plots are shown at the
respective axial antinodes of the fields, while the axial
plots are shown at the radial position of maximum field

amplitude. The amplitude of the fields are normalized to
provide an axial electric field of 10 Vm~! on the plasma

axis at the axial antinodes.

Eigenfrequency for the (n = 4, 2 = 1) mode as a function of

the percentage concentration of the Ne2° species. The value

calculated for the natural concentration is marked by a dot
on the curve.
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Figure captions (cont'd)

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

9.

10.

1.

12.

13.

14.

15.

Schematic diagram of the antenna structure assumed for the

forced oscillation calculations.

Fourier spectrum of (a) the antenna current and (b) the re-
sistive power input to the plasma at a driving frequency of
w = 1.381 x 10° rad s-!.

Frequency dependence of the resistive and reactive power in-

put to the plasma for the n = 4 mode.

Radial and axial profiles of the amplitude of (a) the elec-

tric field, and (b) the magnetic field components for forced
oscillation at a driving frequency of w = 1.381 x 10° rad
s, The fields are shown at the positions of maximum field

amplitude.

Radial profiles of the amplitude of the electric and magne-
tic field components for forced oscillation at a driving
frequency of w = 1.381 x 10° rad s~ with the inclusion of a

Faraday shield.

Resistive power input to the plasma at a driving frequency
of w = 1.381 x 10° rad s-! as a function of the radial posi-
tion of the antenna. The value obtained for the antenna ra-
dius used in the previous calculations is indicated by a
dot.

Fourier spectrum of (a) the antenna current, and (b) the re-
sistive power input to the plasma at a driving frequency of

© = 1.393 x 10° rad s-! for a reduced cavity length of
L = 4.75 m.

Radial and axial profiles of the amplitude of the electric

field components for forced oscillation at a driving fre-
quency of w = 1.393 x 10° rad s-!

length of L = 4.75 m.

for a reduced cavity
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w (x 10°% rad s‘l)

L >
1 2 3 4

1 1.3288 1.3279 1.3277 1.3277
2 1.3344 1.3291 1.3283 1.3280
3 1.3524 1.3316 1.3293 1.3285
4 1.3809 1.3365 1.3309 1.3293
5 1.4016 1.3461 1.3334 1.3305
6 1.4145 1.3609 1.3375 1.3322
Table 1: Eigenfrequencies for the lowest order modes

calculated for the parameters given in (31).
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