JULY 1981 LRP 184/81

EFFECTS OF MAGNETIC FIELD CURVATURE ON ALFVEN

WAVE HEATING OF TOKAMAK PLASMAS

K. Appert, B. Balet, and J. Vaclavik



EFFECTS OF MAGNETIC FIELD CURVATURE ON ALFVEN WAVE HEATING

OF TOKAMAK PLASMAS
K. Appert, B. Balet, and J. Vaclavik

Centre de Recherches en Physique des Plasmas
Association Euratom - Confederation Suisse
Ecole Polytechnique Federale de Lausanne

CH - 1007 Lausanne / Switzerland

ABSTRACT
It is shown that the curvature of magnetic field
lines may enhance the rate of energy absorption of surface
quasi-modes by a few orders of magnitude at the Alfven re-

sonance surfaces located well into the plasma interior.
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It has been argued recently1 that the absorption of surface
quasi-modes (kink-like modes) at the Alfven resonance surface camnot
be efficiently used to heat the interior of tokamak plasmas. The rea-
son given is that the loading resistance of the antenna rapidly de-
creases as the position of the resonance surface is shifted towards
the plasma axis.? These theories, however, are based on simplifying
assumptions. Although the problem is investigated in a cylindrical
geometry the equations used are, to a great extent, equivalent to

those



derived for the case of a slab geometry with straight magnetic field

1ines.3

On the other hand, numerical calculations’ performed using a
complete set of ideal MHD equations in a cylindrical geometry show
that an efficient energy absorption can take place at the innermost
plasma surfacés. The aim of the present letter is to demonstrate that

this discrepancy is due to the curvature of the magnetic field lines,

which was neglected in the previous treatments.

We consider low-frequency small-amplitude oscillations in a cold
current~carrying plasma. The linearized ideal MHD equations are then
appropriate to describe the plasma motion. They can be written in the

form
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where v is the plasma velocity, b and B are the oscillating and equi-
>

librium magnetic fields respectively, E is the electric field and p is

the equilibrium mass density. On introducing the displacement vector

> > >
£, defined by v = 3§/0t, Eqs. (1)-(3) can be reduced to

Hp ———-g = ‘UOVS + [E . chrl(g X ﬁ)]+[cur1(g X ﬁ) . Vﬁ], (4)
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is the perturbed magnetic pressure. We now adopt a cylindrical geo-
metry and assume that the equilibrium quantities are functions of ra-
dius r only. We then have g = BZE + ng. Moreover, we may take the
time and space dependence of E and P in Eqs. (4) and (5) as

explilkz + md0 - (w + iv)t]}, where v » 0,. To proceed further we
introduce a local coordinate system with ¥, ¢ =& x 7, e = _ﬁ/B and
assume IBe/le << 1., On projecting Eq. (4) on T and expanding its

right-hand side up to the first order in Bg/B,, we find

dp 2Bg
pAE = 3 ‘1 11—0'1-: k, B & - (6)
_ . \2 22 _ X
Here, A = (w + iv)° - kyca™s kyB = kB, + m/rBg and cp is the

Alfven speed. Likewise, the projection of Eq. (4) on & and the

subsequent expansion in By/B, yields
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where k; B = m/rB; - kBg. Next, we expand the right-hand side of

Eq.(5) to obtain
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Finally, substituting £, from Eq. (7) into Eqs. (6) and (8), we arrive

- . 3 . '\'
at two coupled first-order equations for the quantities &, and p
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It is worth mentioning that Eqs. (9) and (10) are, in fact, a
particular approximation (cold plasma, small Bg) to the equations
derived earlier® for the case of a general cylindrically-symmetric
equilibrium. For our purpose, however, the former are sufficiently
accurate. If we now dispense with the terms which contain By expli-

citly, Eqs. (9) and (10) are reduced to
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dp _
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These equations are equivalent to those used in Ref. 2 and to the MHD
limit of those used in Ref. 1. They can be obtained directly from the
. . 3 .
equations pertinent to a slab geometry,” and take into account a shear
of magnetic field lines but not their curvature. On the contrary,
Eqs. (9) and (10) contain both. The curvature has an important effect
. {\J 3 . L4
on the behavior of p near the singularity A(ry) = 0. It may easily

n
be shown from Eqs. (9) and (10) that p v &, a ln(r-r,) whereas



Eqs. (11) and (12) imply Er " ln(r—ro) and p v (r-ro)zln(r-ro). Thus,

the curvature makes the equations of plasma motion somewhat '"more sin-
gular". We shall see shortly that this feature strengthens the coupl-
ing of the plasma global motion (surface quasi-modes) to the Alfven

continuum and increases, therefore, the rate of energy absorption.

We now assume that the plasma oscillations are excited by an ide-
alized antenna, consisting of a sheet current of given frequency and
single helicity, which is located at a radius rp, in the vacuum re-

gion between the plasma column and a perfectly conducting wall of ra-

dius ry:

+ -~ -
JA = J (k8 - = 2)6(r-r Jcos(wt)cos(mb+kz).
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The resulting boundary-value problem can then be solved using the
Maxwell equations in the vacuum, the familiar boundary conditions at
the plasma-vacuum interface,§ and Egqs. (9) and (10) or (11) and (12)
in the plasma. For the equilibrium quantities we choose profiles which
are typical for tokamak plasmas: p = po(l—.9x2), BZ=B0 = const. and

By = %)ax(3—3x2+xq), where a is a small parameter, x = r/a and a is
the plasma radius. As for the antenna current we take Jo = aBo/(Zuo).
The equations are integrated numerically by means of the Runge-Kutta
method with an appropriate choice of v/w << 1, Once the solution is
found we calculate the power delivered by the antenna per unit length

of the plasma according to

P = e[y, + & av,/2.



A typical result is shown in Fig. 1 where the power is plotted
versus the position of the resonance surface. The parameters used were
m =1, k = .6/a, a = .1, rp, = l.2a, ry = l.5a, and the frequency
was varied such that the resonance surface moved along the plasma ra-
dius. The line A was obtained using Eqs. (9) and (10), i.e. with the
curvature terms included, whereas the line B was computed by means of
Eqs. (11) and (12), which do not take into account the curvature. It
is easily seen that the curvature has a dramatic effect on the absorb-
ed power. For the inner resonance surfaces the power is enhanced by a
few orders of magnitude in the presence of the curvature. This can be
understood if we invoke the previous argument about the coupling of
the plasma global motion to the Alfven continuum. As shown in Fig. 2
the perturbed magnetic pressure, which is associated with the global
motion, is considerably increased all along the plasma radius in the
case where the curvature terms are included in the calculation. In
this figure the resonance surface is at r = .4a, corresponding to the
frequency w =.9 cp,/a, v/w = 107" and the other parameters used are
the same as for Fig. l. It has been demonstrated recently“ that for a
given equilibrium and fixed value of m the absorbed power has a maxi-
mum at a definite value of k(w) for each resonmance surface. The depen-
dence of such a maximum upon the position of the resonance surface is
shown in Fig. 3 for the case where m = 1, o = ,1. Here again the lines
A and B correspond to the calculations with and without the curvature,
respectively. We notice that the optimal powers are comparable. How-
ever, the position of the optimal surface is appreciably shifted to-

wards the plasma axis when the curvature is taken into account.



In counclusion, we have demonstrated that the curvature of the
magnetic field lines plays a very important role in determining:
1) the rate of energy absorption due to the coupling of surface quasi-
modes to shear Alfven waves, 2) the position of the optimal resonance
surface. The former is enhanced, in general, while the latter is
pushed towards the plasma interior. Both features are favorable for

the Alfven wave heating scheme of tokamak plasmas.

The authors wish to acknowledge the useful discussions with
Dr. R. Gruber, Prof. A. Hasegawa, and Prof, F. Troyon. They also

acknowledge Dr. J.B. Lister for reading the manuscript.

This work has been supported by the Swiss National Science
Foundation, the Ecole Polytechnique Federale de Lausanne and by

Euratom.



REFERENCES

D.W. Ross, G.L. Chen, and S.M. Mahajan, presented at the Fourth
Topical Conference on RF Heating in Plasma, Austin, Texas,

February 9-11, 1981.

R. Keller et al., presented at the Fourth Topical Conference on

RF Heating in Plasma, Austin, Texas, February 9-11, 1981.

L. Chen and A. Hasegawa, Phys. Fluids 17, 1399 (1974).

K. Appert, B. Balet, R. Gruber, F. Troyon, and J. Vaclavik, pre-
sented at the Eighth International Conference on Plasma Physics and
Controlled Nuclear Fusion Research, Brussels, July 1-10, 1980,
IAEA-CN-38/D-1-1.

K. Appert, R. Gruber, and J. Vaclavik, Phys. Fluids 17, 1471 (1974).

B.B. Kadomtsev, in Review of Plasma Physics, edited by M.A. Leon-

tovich (Consultants Bureau, New York, 1966), Vol. 2, p. 153.



FIGURE CAPTIONS

Fig. 1  Absorbed power versus the position of the resonance surface
for m = 1, k = .6/a, a = .1, rp = l.2a, ry = l.5a.

Line A: with the curvature. Line B: without the curvature.

Fig. 2 Radial profile of the perturbed magnetic pressure (plasma
global motion) for the case where the resonante surface is at
r = .4a. w = Cpo/a, viw = 10‘“, and the other parameters
used are the same as in Fig. 1. Line A: with the curvature.

Line B: without the curvature.

Fig. 3 Maximal absorbed power versus the position of the resonance
surface for m = 1, a = .1, rp = l.2a, ry = l.5a.

Line A: with the curvature. Line B: without the curvature.
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