September 1981 LRP 187/81

MHD THEORY OF ALFVEN WAVE HEATING IN TOKAMAKS

K. Appert, B. Balet, R. Gruber, F. Troyon,

T. Tsunematsu and J. Vaclavik




MID THEORY OF ALFVEN WAVE HEATING IN TOKAMAKS

K. Appert, B, Balet, R. Gruber, F. Troyon, T. Tsunematsu*

and J. Vaclavik

EURATOM-Switzerland Fusion Association,
Centre de Recherches en Physique des Plasmas,
Ecole Polytechnique Fédérale de Lausanne,

CH-1007 Lausanne, Switzerland

*Present address: Japan Atomic Energy Research Institute,

Tokai-Mura, Naka-Gun, Japan

ABSTRACT

The heating of toroidal plasmas by resonant absorption of Alfven
waves is considered in the framework of ideal MHD. A theory is
developed which closely parallels that of ideal MHD stability.
Computations are performed using the numerical methods known from
stability theory. It is shown that the overall picture of Alfven wave
heating in a torus with circular cross-section does not fundamentally
differ from that in a cylinder. This type of plasma may be efficiently
heated internally when a surface quasi-mode is excited. In contrast,
plasmas with elongated cross-sections are shown to suffer from edge
heating due to substantial linear mode-coupling. Alfven wave heating

of two specific tokamaks, TCA and JET, is discussed.




1. INTRODUCTION

Radio-frequency plasma heating by resonant absorption of Alfven

waves has been proposed as early as 1965 by Dolgopolov and Stepanov

1. It seems showever, that this first proposal was ignored by the

radio-frequency community. It was only in 1973 - 74 when the papers by

3 4

Jankovich 2, Grossmann and Tataronis and Hasegawa and Chen

appeared that experiments started to be planned.

Until now, this heating scheme has been tested experimentally on

pinch- and stellarator-like devices °-1!9 and it has been found that

energy may easily be deposited in the plasma by this method. In some

stellarator experiments 9'10, however, there has been an indication of

enhanced transport due to the RF heating. At present, it is not yet
clear whether this enhanced transport was just due to a bad choice of
parameters or whether it is an unavoidable side-effect of this heating
scheme. To answer this question many more experiments need to be

performed, especially on Tokamaks.

The position of the theoretical development of Alfven wave

heating is quite similar to that of the experiments. There is general
agreement on the basic physical picture but disagreement concerning
the choice of parameters required to optimize the heating scheme. It
is agreed that for efficient heating, the energy cannot be directly
coupled from the antenna to the shear Alfven wave but that a
compressional collective mode has to be excited first. This collective
mode, whose frequency must lie in the Alfven continuum, may be the
b,11,12

remnant of a surface wave mode or of a fast magnetosonic

cavity mode 3. At present, the respective merit of these two




11,13

excitation methods is unclear. So also is the physics of the

shear Alfven waves, which appears to be sensitive to minor effects *
such as those due to finite values of w/wei 15'16, or Larmor radius
17118 and effects due to the geometry like toroidicity 19, helicity or

elongation.

In this paper we attempt to assess the effects of toroidicity and
elongation (or ellipticity) in axisymmetric equilibria in the
framework of ideal MHD. Apart from quantitative changes with respect
to cylindrical geometry, toroidicity and ellipticity bring qualitative
changes due to the coupling they induce between waves with different
poloidal wave numbers. It should be noted that these waves have their
resonant surface at different minor radii. It may happen, therefore,
that energy which was intended to be absorbed on a surface halfway
inside the plasma is coupled into a surface near the plasma edge. It
has, in fact, frequently been conjectured that it may be impossible to
heat the interior of toroidal plasmas with Alfven waves. The extent to
which the effects due to toroidicity and ellipticity modify the
favorable results obtained with cylindrical models ‘2'!® therefore
needs to be investigated. A preliminary answer to the question

concerning the effect of toroidicity has been given in Ref. 19.

The plan of the paper is as follows. In Section 2 we derive the
basic equations and express them in a form which can be handled by a
numerical method used in MHD stability calculations. Section 3
contains a discussion of the properties of the computational model of
resonant absorption. In Section 4, toroidal and elongation effects of
Alfven wave heating are systematically investigated. Using this

general background, in Section 5 we investigate the heating




possibilities in two specific tokamaks, TCA and JET. Finally, the

conclusions of the present study are drawn in Section 6.

Two appendices are also included. Appendix A contains information
on the equilibria and antennae used in the computations. The
dimensionless units and the coordinate systems are also defined
there. Appendix B contains the Green's function formalism used to

obtain the solution for the vacuum magnetic field used in the main

text.




2. THEORY

2.1 Basic Equations

We consider the excitation of small amplitude waves in a
perfectly conducting toroidal plasma. Specifically, we imagine the
plasma to be surrounded by a vacuum region (V1), an infinitely thin

current-carrying antenna, then by a second vacuum region (V1) and

finally by a perfectly conducting shell, see Fig. 1.

Given a time-varying current density

’J’ = §(A) VA x v (1)

on an antenna surface defined by
ARy = 0 (2)

where B(X,t) is an arbitrarily chosen potential, we wish to determine
the time-varying magnetic field E;(?,t) in the vacuum region as well
as the plasma displacement, E(Y,t). We would also like to determine

the power emitted by the antenna,
= 3
'P:~§T~de. (3)

—-lp
Here E is the electric field at the antenna. Finally, it is important

to know where in the plasma the enerqy is deposited.




In this problem the plasma motion is governed by the well-known

linearized ideal MHD equations 2°.

§ FE/ = FE) = ~9p-BurotB-Exrct B ()
where p and E;are the perturbed pressure and magnetic field,

p=- é;.gff%.. ka,cklké? ; E;:: rvf;[ g’x E;,] ; (5)
respectively. The equilibrium is described by the mass density, py,

-
the pressure, pg, and the magnetic field, Bg. The field equations in

the vacuum regions are simply
~p
dov B, =0 rot B, =0 (6)
Equations (4)-(6) must be supplemented by the matching conditions on
the plasma-vacuum interface and on the antenna, and by the boundary

conditions at the perfectly conducting shell.

The two matching conditions on the plasma-vacuum interface are 2°

F‘l‘ é:'-é:go.a) (7)
7B = (B-v)(R.-E), (8)

if we assume, for simplicity, that there is no equilibrium surface
current flowing along the interface. Eq. (7) represents the
first-order pressure balance while Eq. (8) follows from the continuity

- - -»>
of the tangential component of the electric field, E - B,xag/éf, in



the coordinate system of the moving plasma. (For details see Kadomtsev

20)

In Eq. (8) we have denoted by H;
We will use the same notation for the

the outer normal unit vector on the

unperturbed plasma surface.

outer normal unit vectors on the antenna and on the shell, n, and

-y .
Nng, respectively.

The matching conditions on the antenna may be obtained from

-
Ampére's law using Eq. (1) and from div B, = 0 :
- -
= x v
]]rx "o f& ? i
oty
Bv}l = 0. (10)

The double bracket indicates a jump across the antenna when

passing from the inside to the outside.

Finally, the boundary condition at the conducting shell follows

- =4 s
form ng x £ = 0 and is

"’.B:,=0, (11)

S

The power emitted by the antenna may be obtained by insertion of

Eq. (1) into (3). After a partial integration, the use of Faraday's

law and the evaluation of the Dirac delta function 8(A) it becomes

P=—f(3 'B’:dé*: (12)

Qa



The integral in Eq. (12) is a surface integral along the antenna. We
will wuse the corresponding notation for integrals along the

plasma-vacuum interface and along the shell, fpdEB and [oddy,

respectively. Note that Ny do, = dGs.
a dog a

The equations (4) through (11) form a closed set. For a given
antenna current potential, B, one can, in principle, determine g(?,t),
§V(?,t) and P(t). In practice, this is a formidable task because the
right hand side of Eq. (4) is a complicated operator in general

toroidal geometry. Even the vacuum problem, Eq. (6), is not easy to

solve.

For axisymmetric systems, however, efficient numerical methods
have been developed for the purpose of ideal MHD stability

calculations. In these studies the eigenvalue problem originating from

qu (4),
- L P
wg § = FD), w

supplemented by Eq. (5) through (8) and (11) is treated by the finite
element method. The same method can be directly applied to our heating
problem. In fact, we can even envisage the use of complete sections of
our stability code ERATO 21 for the new Alfven heating code. All that
is required is to reformulate the vacuum problem 22 including the
additional matching conditions on the antenna, Eq. (9) and (10), and
to calculate the power, Eq. (12).

Details of the axisymmmetric equilibria and antennae used in the

calculations presented in this paper are given in Appendix A.




2.2 Weak Variational Form of the Equation of Motion

The link between the ERATO stability calculations and the heating
problem is most obvious in Galerkin's weak variational form of Eq. (4)
through (11). We will therefore derive it here in terms of £ and the

magnetic potential & defined by

-
B = v& . (14)

\4

Let M(X) be an arbitrary test function associated with E(Y,t).

Following Kadomtsev 2% we can then show that
—)32? 3 > = 3
e dXx diop B[xme] B [ xo]dx
J?'Z;t € J{F n+BeLl -‘Z g
=j(‘o+B By do (15)
v

Here V may be any plasma volume limited by a magnetic surface 8V. The
surface element is denoted by dg, where Eb * d¢ = 0 has been used in

the derivations of Eq. (15).

If we specialize Eq. (15) to the entire plasma volume, Vp, the
right hand side, denoted by C, may be expressed in terms of the vacuum
field. Using the pressure balance relation (7) we obtain after a

partial integration
=_Jf[(é:.§v)jz‘":dg‘; =J @(a.v)”.dé;;, (16)
P

In the stability calculations, the expression (16) is the starting

point for the numerical determination of the vacuum contribution 22
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In those calculations a Green's function method is used to express the

potential ¢ on the plasma surface as a functional of its normal

derivative 8¢/anp.

For the present case, ¢ has two sources:
- - -y / 2 po g
B(%) = fP(;z(xf, XYUVEY A+ BRDY .

The first term results from 8¢/anp on the plasma surface or rather
from the displacement of the plasma surface, given by Eq. (8). This
term is identical to the one in the stability calculations and may be
regarded as the potential ¢ resulting from an internal source. The
quantity & is then the potential associated with an external
source, namely the current imposed on the antenna. Note that
Hb . V¢E(xp) = 0. The explicit expressions for Q and ¢ are

derived in Appendix B, Eq. (B20) and (B22) respectively.

With the help of Eq. (8) and (17), the vacuum contribution to the

weak form (15) (with V = Vp) may finally be written as
> Y, - s - 5 -
Cﬂf A%, %) (B V)ECR, )G (B V) (7)o

P &G BT

(18)

2.3 Discretization

The weak form (15) with the contribution (18) corresponds to the
strong variational form wused as a starting point for the

discretization of the stability problem 21, The discretization

procedure is described in detail in Ref. 21 and will therefore not be
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repeated here. The result is merely cited. Assume that the
approximation to E(¥,t) is defined by n discrete values £;(t). In
addition, let n; and @;(t) denote the discrete values

corresponding to n(X) and @E(ip,t). The discretized version of the

weak form is then

R A AT "

AB

-y
where n; have arbitrary values. The matrices A,B and C are the

discrete forms of the bilinear integral operators in Egs. (15) and

3 =
(18). A and B are available in ERATO 2!.

Using the arbitrariness of nj we find
. - e, e .

which is the discrete form of Eq. (4) including the solution of Eq.
(6) and all the boundary conditions (7) through (11). Eq. (20) allows
one to determine numerically the plasma response, g(f,t) to an

external driving current associated with the term Cij®j-

2.4 Epergy and Power

Once the wave structure E is known, there remains the problem of
determining the absorbed power. Moreover, we would like to obtain a
complete picture of energy conservation in the system. This picture
will enable us to check the computer code, and also provide us with

some physical insights.
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There is an obvious way to obtain energy conservation laws from a

20

weak variational form 20, If we put W = 3£/3t in Eq. (15) we find

2 [kevy+ won] = -g{/‘/‘? A¢ (21)

Here K and W are the kinetic and potential energy of the plasma
contained in a volume V limited by an arbitrary magnetic surface 68V.
The expression on the right hand side is the work done by the plasma
against the total pressure,1 = p + E’ . EB. Alternatively, this
expression can be interpreted as an energy flux through the magnetic

surface 6V and can be used to determine the radial energy deposition

profile.

If we specialize Eq. (21) to the entire plasma volume we obtain
. . ; —
Ko + Wp =[5§ V- de, (22)

which corresponds to the weak form (15) combined with (16). An

alternative form of Eq. (22) is

kP+V{{,+V;/VI =f éE V@J

(23)
o >

~t

where WVI= [ (¢p-¢) vo . d&b is the change of the magnetic

field enmergy in the vacuum due to the internal source a@/aﬁb on the

plasma boundary.

The numerical counterpart of Eq. (23) is obtained from (19) by

choosing nj = &; and can be written as
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a1, S .
€ (zfz B‘:féj_ Z.é; chf'j): _éb- Czj ij. (24)
The term "%giAijEi includes therefore Wo + W I,

Finally, we may write Eq. (22) in the form

. o -

41 --[[8]véag.

KP+ b dtzf(vé) J ¢ ) vd-df (25)
Virk ?

In contrast to Eq. (23), the total vacuum magnetic energy is included

on the left hand side of the above equation. The right hand side must

therefore be identified with the power delivered by the antenna,

P

0

-f([éj] V& di | (26)
Q

With the use of Egs. (9) and (14) it can easily be shown that the

relationship (26) is identical to (12) as required.

The explicit evaluation of the power, P, is achieved by the same
Green's function method as was used to derive relation (17). We show

in Appendix B, Eq. (B23), that
R (R = jp Z(R, ) (B V) EGh, D)ol + Y (Ry, ()

By analogy with Eq. (17), we may call the first term on the right hand
side the “"internal" part of Ty, ¢ Vo(Xy) and (%) the
"external"part, since \pE(S?a) is identically zero when the antenna
current vanishes. The kernel Z(Xg, >'<'p) and the potential yp are

defined by identification of Eq. (27) with Eq. (B23).
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By comparison of Egs. (23) and (26), using (27), we find that
_[@E Vé'dﬁi = P+£[§B \LE(%>dG;> (28)
a relation which is useful for checking the computer code.

2.5 Steady State Solution

With Egs. (20) and (26) we apparently now have all that is
required for the treatment of the Alfvén wave heating problem. One
approach is to impose a current on the antenna, « sin wt, having a
frequency in the Alfven range and then solve the system of ordinary
differential equations in time by using, say, a Runge-Kutta method. At
each timestep we could evaluate the power at the antenna, using Eq.
(26), and we would find that energy flows at a constant rate from the

antenna to the resonant surfaces where it would accumulate in ever

diminishing thin layers !°.

This approach provides one with a good physical insight into the
resonant absorption, but is a very computer time consuming procedure;
for the two-dimensional problem at hand it is, moreover, a
prohibitively expensive procedure. Since it is not of fundamental
importance we avoid computing the complete time evolution, but ask
merely for the constant power input from the antenna and where it is

deposited in the plasma.

Here we can make use of an important property of resonant

absorption: the flux of energy into a resonant layer is independent of

whether or not it is absorbed there 2. The inclusion of an arbitrary,
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but sufficiently small, dissipative term in Eq. (20) therefore does
not affect the power calculated. The dissipative system tends towards
a stationary state having a temporal dependence exp(i w t). For our

present calculations, it is sufficient only to know this state.

The equation to be solved then becomes

(~w2-\-2[vco>B£j§$ = Al-j_gj +C£j ®; (29)

which is a linear algebraic equation for the complex £j. Here w
denotes the pump frequency and v is the artificial damping rate. Using

the complex solution for &; we obtain the time-averaged complex

power at the antenna

’P=-%f{[@ﬂ v&"* dg | (30)

Q

The star indicated a complex conjugate. The real and imaginary parts

of P in Eq. (30) represent the resistive and the reactive powers,

respectively.
We will express results in terms of

p=®&P /TR, (31)

which is the resistive power due to a unit current (see Appendix A)

per unit length of the torus (major radius R), and in terms of
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Qeod = W P/ &P (32)

p

which is an important quantity for the experimentalist. Note that Q is
not the cavity Q but simply the ratio of reactive to resistive loading
impedance of the antenna as a function of the pump frequency. We also
calculate the resistive part of the energy flux through a magnetic

surface 6V:

do (33)

For a check of the computer code, the radial derivative of §
perpendicular to 8V, may be compared to the energy absorbed on a given

magnetic surface,

D=7(”—R—f§>°l§¢lzdo‘. (34)
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3. PROPERTIES OF THE COMPUTATIONAL MODEL OF RESONANCE ABSORPTION

Although the present investigation concentrates on the physics of
resonant absorption of Alfven waves, it.is also necessary to discuss
in some detail the properties of the computational model that is
used. A comprehensive description of the "code physics" greatly

facilitates the comprehension of the "real physics" to be presented in

following sections.

Resonant absorption in a cold plasma is, in general, connected
with the existence of a continuous spectrum. In particular, it is
known that the ideal MHD eigenvalue problem for axisymmetric plasmas,
eq.(13), leads to a continuous spectrum of shear Alfven waves :2'27,
The physical reason for the continuous spectrum is the following. In a
diffuse equilibrium, which for simplicity we assume to be cylindrical,
the Alfven velocity is constant on a magnetic surface and varies from
one surface to the next. The frequency associated with an azimuthal

wave number m and a longitudinal wave length 27 / k is

Gy le) = <g509+k50a>/§,//2 (35)

Since the mass density pg and field By depend on p, the cylindrical
radial coordinate, wp also depends on p. For tokamak equilibria and
for most choices of m and k of interest for heating, wp is a
monotonically increasing function of p. A wave motion having specific
values of w, m and k must therefore be confined to a narrow reqgion
around the so-called resonant surface,pg, where w = wA(pS).

Conversely, a wave must exist for each pg within the plasma whose
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frequency is given by ® = wp(pg). Shear Alfven waves therefore

have a continuous spectrum.

We wish to determine how this continuous spectrum changes if the
eigenvalues problem, E£q. (13), is discretized in space. Obviously the
spatial discretization must lead to an approximation such that the
continuous spectrum becomes discrete. In fact, the number of discrete
frequencies in the "continuum" is related to the number of spatial
grid points. If at some radial position p the width of the grid is Ap,

one can easily determine that the spacing, Aw, between ad jacent

frequencies of the "continuum" is

Aw = (day /dg)ag . (36)

It should be noted that we shall consider not the system
described by Eq. (20), but rather a "dissipative" system, Eq. (29).
The damping coefficient is for all modes the same and equal to v. The
numerical problem therefore resembles a system of coupled oscillators
with eigenfrequencies having different real parts but a common damping
coefficient. Imagine now that such a system is to be excited with a
given pump frequency w, such that wj < w < wj4r, where wj and

wj4] denote two adjacent eigenfrequencies of the system.

Let us first discuss the case where v << wip1-wi = Aw. If o
is chosen close enough to the eigenfrequency wj, i.e. w-wij<< v,
the oscillator which has an eigenfrequency wi is resonantly excited
and the dissipated energy is proportional to 1/v. If on the other hand

w lies midway between wj and wj,1, none of the oscillators is in

resonance and only a small amount of energy proportional to v is
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dissipated. These two situations obviously have nothing in common with
the excitation of a continuous spectrum. On the contrary, the

eigenfrequencies of the system behave as discrete eigenfrequencies.

However, the situation is quite different in the opposite limit
for which v >> Aw. In this case the resonances at ad jacent
eigenfrequencies overlap and many oscillators respond simultaneously
to the pump: a "continuum" is excited and "resonant absorption" takes

place. For v within certain limits, the amount of dissipated energy is

independent of v.

The above comments may be illustrated by a calculation concerning
TCA, the Lausanne tokamak. At this stage we do not try to model the
experimental equilibrium as precisely as possible by using a numerical
equilibrium code, but are content with the analytical Solov'ev
equilibrium described by Eq. (A1). In dimensionless units the only
free parameters of this equilibrium are the ellipticity, e, the
inverse aspect ratio, a/R, and the safety factor on axis, qq (see
Appendix A). With ¢ = 0, a/R = .275 and qop = 1 we obtain an almost
circular plasma with a flat q profile where q assumes the value of 1.4
on the boundary. The plasma B has a value of 6.4% on the axis. For the
antenna and the conducting shell we also choose an almost circular
cross-section, their radii being assigned in units of plasma radii,
values of ay = 1.6 and ag = 2.0, respectively (see Eq. (A3)). The

excitation current, as described by Eq. (Aé), is of single helicity, n

Results of computations that made use of the modified ERATO code

are now described. For the first set of calculations we used a grid
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with 42 equal intervals in s and 15 in x (0 < w < w), where s and ¥

are the radial and azimuthal coordinates, respectively (see Appendix

A).

From the spectral version of ERATO two adjacent eigenvalues were
found, w = 1.0292 and w = 1.0413. These eigenvalues are associated
with eigenfunctions peaking around s = 0.5. The heating version of
ERATO was then used to calculate the absorbed power, P, defined by
Eq. (31), as a function of the artificial damping rate. Calculations
were made once with a pump frequency equal to the eigenfrequency w =
1.0292 and again with a frequency w = 1.0333 lying between the two

eigenfrequencies. The results are displayed in Fig. 2.

For v << Aw = .012, we indeed find that P= 1/v if an eigenmode is
excited (curve a). We also find, as expected, that p = v for an
excitation frequency between the two eigenfrequencies (curve b). The
astonishing fact is that both frequencies lead to the same absorbed
power for values of v as small as v ~ Aw. This implies that the
simultaneous excitation of two modes is sufficient to simulate a
continuum. It is also pleasing to note that the value obtained for P
is insensitive to v for v > Aw. This behaviour is typical of resonant

absorption.

We may further confirm our ideas by studying the effect of
different grid spacing. A grid consisting of 80 equal intervals
implies a frequency gap of Aw = .006 at the resonant surface of the
pump frequency, w = 1.0333. The results given by curve ¢ indicate that
a lower value of v, which yields the required solution, may be chosen,

corresponding to the lower value of Aw. These calculations have been
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made with 29 azimuthal intervals. A mesh size of 80 x 29 is the

maximum that can be handled by our computer.

Much can still be gained by a judicious choice for the radial
mesh spacing. As long as only a few resonant surfaces contribute to
the total resonant absorption we may opt for a mesh having unequal
spacing, concentrating mesh points around the resonant surfaces. The
benefit resulting from this modification is demonstrated by curve d.
Here a 42 x 15-mesh has been used as was for cases a and b. The radial
mesh points have been concentrated around the resonant surface, s =
0.5, implying a local frequency gap of Aw = .003. The result, which
shows an insensitivity on the artificial damping rate for v as small
as 3 x 10—“, seems to contradict the simple conclusions we have made
above. The contradiction is , however, only apparent. In case d, the
pump frequency coincides, to 3 significant figures, with an
eigenfrequency. For this reason the power, p, at first increases with
decreasing v and only starts to decrease when v becomes smaller than

the mismatch in frequency between the pump and the eigenmode.

From Fig. 2 we conclude that the correct results is obtained if
the artificial damping rate, v, is not smaller than the frequency
spacing at the resonant surface. There is, unfortunately, an inherent
problem for toroidal equilibria or for equilibria with non-circular
cross-section. In general, a pump excites several resonant surfaces on
which different amounts of energy are absorbed. Manipulation of the
local spacing of mesh points can then become a difficult and
un-rewarding task. We have therefore used a standard mesh consisting
of 60 x 25 irregular intervals for most of our calculations and

checked the results occasionally by changing the value of v.
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The results of such a check concerning a numerical equilibrium of
TCA is displayed in Fig. 3 and 4. Fig. 3 shows the mode structure,
(&g, EX), in the poloidal plane ¢ = 0 excited by two superposed
helical antennae (m = 1, n = 2). The pump frequency is w = .94. Figs.
3(a) and (b) were obtained with v = .008 and v = .074, respectively.
In Fig. 4 the corresponding resistive energy flux S, defined in Eq.
(33), is shown. As expected, the principle effect of a high value of v
is to smear out the main resonance (m = 1, n = 2) at the s = .5
surface. The overall resonant absorption power, p = S(s=1), is quite
insensitive to v, the difference between the two cases considered here
being of the order of 3%. The reactive power, Im P, differs by 15%. In
view of the complicated mode structures displayed in Fig. 3, these
results are pleasing. It should be noted, however, that only a few
check runs might not always be sufficient. For example, in a study of
TCA, pronounced peaks in the resistive power as a function of the pump
frequency were found, which were eventually discovered to be of

numerical origin.

At this point, the origin of the modes appearing near the plasma
surface and the poor excitation of the mode (m = -1, n = 2) are not

discussed. These are due to toroidal effects and will be discussed

later.

The results of this section show that v has to meet certain
conditions determined by the spatial discretization. Check runs
provide confidence in the numerical scheme. It should be expected,
however, that for very complicated mode structures a substantial
number of grid points are necessary to avoid features of purely

numerical origin.
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4. GEOMETRICAL EFFECTS ON ALFVEN WAVE HEATING

4.1 Toroidicity

We now turn to a systematic study of toroidal effects. In a
torus, the toroidal field By varies, to lowest approximation, as
[1 + (s/R)cos x]-} on a magnetic surface having a radial coordinate,
s. The angular dependence causes a linear coupling between modes
« exp(imx) and modes « exp[i(m+1)x]. In its simplest form this
coupling is illustrated in Fig. 5. The equilibrium and antenna
parameters are the same as for Fig. 2. For Fig. 5, the dominant plasma
response, i.e. the poloidal displacement

& (8, ¢)= fé (/.S))()cosn94+§q(é,x).sch n ¢
x ’ x X (37)

has been Fourier-analysed. Here £y and Exa are a symmetric
and an anti-symmetric function of y, respectively. The separation into
EXS and Ey8 1is required by ERATO in order to exploit the

"up-down-symmetry". A displacement of this form may be decomposed into

gx (6,X,¢)=Z §:’"M) cos(my + ndb) , (38)

Mz - o0
where

/

v

rrfr(f’ wsmy - £ sinmx)dx  mzo
'§”ﬁn o X x (39)
= 9
% LT s
Ez%dj’ Jit Cj}: m=0 .

In Fig. 5, the real parts of the dominant Fourier components,
ReExmaZ, are shown near the resonant surface of the (n = 2, m = 1)
mode, excited with a frequency w = .95 and using a damping rate of v =
.02. The m = 1 component is dominant as is expected. There is,

however, a contribution of 30% from the m = 2 component. The other
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neighbour of m = 1, namely m = 0, is represented with 18%. The m = 3
component appears with an 8% contribution. These fractions are high in
the view of the fact that the inverse aspect ratio of the considered
resonant surface at s = 0.37 is rather small; its value is
approximately sa/R = 0.1. It could therefore be expected that surfaces
with greater aspect ratios, i.e. surfaces near to the plasma edge,

would be composed of even more complicated mixtures of poloidal

components.

Before we study such complicated structures, let us ensure that
the simple idea of toroidal coupling concerning small inverse aspect
ratios is correct. It is to be expected that the contributions from
the nearest neighbours of m = 1, i.e. the components m = 0 and m = 2,
should linearly disappear, as a/R tends to zero. In addition, more

distant components should depend on higher powers of a/R,

specifically, gxm’Z « (a/RIM-1.

These ideas are tested on a family of equilibria which contains
the equilibrium used for Fig. 5. If we wish to study the influence of
only the inverse aspect ratio, a/R, on the resonant Alfven waves, a
family of toroidal equilibria must be chosen which have identical
toroidal current, i.e., apart from a/R effects, identical magnetic

field pitch. For the same reason, the pitch of the antenna must be

constant.

For the calculations of Fig. 5, values of gg =1, n =2 and a/R =
0.275 were chosen. This equilibrium is therefore a member of the

family of equilibria defined by na/R = 0.55 and ngyg = 2. Since we
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intend to study the limit a/R = 0.55/n—0, we choose n > 2. This is
achieved by adding, for each integral increase in n, a new section to

the torus, allowing each time one more wavelength to fit into the

torus.

Figure 6 shows the dependence on a/R of three quantities. The

first quantity,

m

A = max @gxm’z/rriax Ke §;’2 , (40)

is shown for different m numbers. The values of iy, for a/R = .275
are simply the ratios between the maxima of the components m # 1 and
the component m = 1 in Fig. 5. The second quantity, sp, is the
radial coordinate of the resonant surface. The last quantity, p, is
the resistive power per unit length of the torus, defined by Eq. (31),

delivered by the antenna.

From Fig. 6 it can be seen that Ay and A, depend linearly on the
inverse aspect ratio for a/R < 0.2. It is also observed that A3 is
proportional to (a/R)? in this range. These findings are consistent
with the simple picture of toroidal coupling. For a/R > 0.2, however,
these dependencies become weaker, consistent with the fact that the
resonant surface is pushed towards the centre for increasing values of
a/R. The inverse aspect ratio of the resonant surface, sra/R,
therefore does not grow linearly with a/R but has a weaker
dependence. The quadratic dependence of the resistive power on the
inverse aspect ratio appears to be related to the change in the
position of the resonant surface. We can, in fact, recover

approximately the value of p obtained for the cylindrical equilibrium
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if the pump frequency w is increased in such a manner that Sp
regains its value obtained in the cylindrical model.

We now turn our attention to a complicated but by no means
unusual mode structure which has been calculated for a Solov'ev
equilibrium with a/R = .333 and circular cross-section. The minor
radii of the antenna and the shell are given by ay = 1.1 and ag =
1.2, respectively. The antenna current is of single helicity m = 1, n
= 6,

The appearance of a large number of resonant surfaces, due to the
plasma toroidicity, can be understood from an inspection of the Alfven
spectrum in the cylindrical limit. This limit is obtained from Eq.
(35) when the cylindrical radial coordinate p is replaced by s, and

Boz, Bos and k are replaced by By, <Bpy> and n/R,

respectively. We then have

ey s) = (B /RGN n+m/ges)) .

Equation (41) takes the particularly simple form, wAR/a =N+ m, on

the axis, since in our units By(0) = pg(0) = q(0) = a = 1.

In Fig. 7 the Alfven frequencies, defined by Eq. (41), are
plotted for m numbers ranging from 2 down to -5. The pump frequency,
w = 7.4 a/R, is indicated by a horizontal line. The points of
intersection with the Alfven frequencies indicate that at least seven
Alfven modes of different helicity can, in principle, be resonant with
the pump. To determine whether they are coupled to the pump or not,
the dominant Fourier components, ngm,6L of the actual plasma
response have been calculated. A plot of these components shows that

all the modes are coupled to the pump, which raises the question
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of whether or not the heating scheme is spoiled by their presence. A
partial answer to this question is obtained from the plot of the
resistive part of the energy flux, S. At least for this equilibrium,
and with the excitation parameters chosen, the energy flux curve
strongly resembles that which is obtained using cylindrical geometry.
The heating scheme is therefore not spoiled by the influence of
toroidicity.

Some additional remarks concerning Fig. 7 are worth noting. As we
have seen in Fig. 5, the dominant Fourier component is accompanied by
components of other m numbers. In the same way all the dominant
components in Fig. 7 are accompanied by other components. For this
reason each mode m # 1 has a certain content of the m = 1 mode, and is
therefore accessible to the antenna which imposes m = 1. Figure 7
shows that all the resonant surfaces are shifted towards the centre
with respect to their position in the cylindrical model. The most
striking toroidal effect, however, is the fact that the resonant
surfaces corresponding to m = 0 through m = -5 in the cylindriecal
model, are not dominated by their intrinsic angular dependence but by
a wave number decreased by one, i.e. m = -1 through -6. Finally, we
note from Fig. 7 that if, for a particular equilibrium, surfaces with
higher m numbers should pose a problem their number may be limited by
choosing an antenna with smaller values of n and m. This last remark
is especially valid for an antenna intended to be used in a diagnostic

application for the measurement of the poloidal magnetic field and the

safety factor 29,

In studies of Alfven wave heating using a ecylindrical model
12'28, it has been found that most efficient coupling to surfaces deep
in the plasma can be achieved when a surface quasi-mode (kink-like

mode) is excited. It remains to be determined if this is also true
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for toroidal geometry. Some preliminary results which show that this
is indeed the case have been given elsewhere 19 A much clearer indi-

cation is given by the analysis of the results presented in Fig. 8.

In Fig. 8, contours of the absorbed power, p, and Q factor in the
plane of varying n and w are presented. The plots on the left side
were calculated for the Solov'ev equilibrium used for Fig. 2. The same
minor radii of antenna and shell are used. The poloidal wavenumber of
the antenna is m = 1. The plots on the right side have been obtained
with a cylindrical model having the same magnetic field pitch. The
wavenumber k in the cylindrical model is given by k = n/R. For each
value of n, or k, the pump frequency has been scaled by the
corresponding Alfven frequency on the axis, wp(0) = (n + m)a/R. The
choice of the frequency coordinate (w - wp(0))/wa(0) has the
advantage that excitation parameters w and k leading to the same
resonant surface,pg, in cylindrical geometry lie on approximately
straight vertical 1lines. Moreover, these lines are approximately
equidistant  in  log(w-wp(0))/wp(0) for  equidistant resonant
surfaces. The frequency coordinate, therefore, can be directly
interpreted as the radial coordinate of the excited resonant surface.
This behaviour remains more or less true even for the dominantly

excited resonant surface in the toroidal case.

The most striking feature of Fig. 8 is the fact that there is no
qualitative difference between the two models. The broad maximum of P,
which we interpret as the resonance with the surface quasi-mode, has
approximately the same position in the (n,w)-plane and is oriented in
the same direction. There is , however, a 50% discrepancy in height.

This difference manifests itself also in the Q values which, on the
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average, are a factor 2 greater for the torus compared to the

cylinder.

To investigate this discrepancy, an attempt was made to simulate
the torus more accurately by other cylindrical models. It was found
that the currentless cylinder gives the height of the resonance
exactly, but fails to predict correctly the coordinates n and w of the
maximum. In other words, it was found that in a family of Solov'ev
equilibria, the maxima of p is independent of a/R, if qo = 1 for each
member of the family. In this case the limit a/R *» 0 leads to the
currentless cylinder. The constancy of ppax has been verified in the
range 0.15 < a/R < 0.333; a variation of at most 10% has been found.
The failure to predict the value of w, or alternatively pg, is
understandable in view of the results of our cylindrical studies 28
which showed that the curvature of the magnetic field lines in current
-carrying cylindrical plasmas has a strong influence on the position

of the resonance with the surface quasi-mode.

The results of this section appear to indicate that toroidal ef-
fects do not play an important role in Alfven wave heating. This is,
however, a premature conclusion. It should be remembered that
idealized antennae of single helicity have been used for all the
calculations presented in this section, and that experimentally it is
difficult, if not impossible, to construct such antennse. A problem
related to antenna design has been encountered in the application of

our code to TCA, the discussion of which is given in Section 5.1.

4.2 Ellipticity

By wusing the Solov'ev equilibrium, Eq. (A1), for different
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ellipticity parameters, e, we can perform a systematic study of the
influence of ellipticity on Alfven wave heating. There are two main
differencies between toroidal and elliptic coupling. The elliptic
geometry implies that the equilibrium quantities vary according to
1 - ecos2x in the poloidal direction. In contrast to toroidal
coupling, ellipticity therefore couples modes =exp[i(mt2)x] to the
basic mode, exp(imyx). An even more important difference lies in the
magnitude of the "small" parameter. Whereas a/R in the toroidal case
is seldom greater than 0.4, plasmas with an elongation of 2, i.e. £ =

1, can easily be envisaged.

In order to separate elliptical and toroidal effects, a large
aspect ratio torus has been considered for our study, a/R = 0.0055,
together with a (m = 1, n = 100) excitation. A value for the safety
factor on axis of 0.02 has been chosen yielding nqyp = 2 as was the
case for the investigation of toroidal effects, the results of which
were presented in Fig. 6. The antenna and the shell are also elliptic

with the same ellipticity as the plasma. Their relative dimensions are

given by ag = 1.6 and ag = 2.0.

The average values of the Fourier components of the plasma

response, defined by

' .
< §;nn(> = J l}:’n | ds, (42)

have been calculated for this configuration. In Fig. 9 are plotted the

ratios, xM", defined by

SR QP V2 AT A DI
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The introduction of the average, Eq. (42), is necessary since it was
not possible to distinguish any simple dependency of the local
Exm’”(s) when the ellipticity was varied within reasonable bounds,
say 0<e<.6. The ellipticity appears to be very efficient
mode-coupling mechanism as can be seen from Fig. 9. These results also

show that the coupling is indeed from m tom * 2.

Due to this efficient coupling, ellipticity may have a
detrimental effect on the heating scheme. In Fig. 10, the radial
profile of the resistive energy flux, S, is plotted for different
values of e. This graph shows evidence of an edge heating problem. We
see that for a modest ellipticity of e = 0.25, 7% of the energy is
deposited in the immediate neighbourhood of the plasma edge. For an
ellipticity of the order of 0.5, which is approximately that of JET,
25% of the energy is deposited near the edge. For even higher

ellipticities, more than 50% of the energy goes to the plasma edge.

There is a rather clear conclusion to this study concerning the
influence of elongation on Alfven wave heating: circular plasmas are
the best. Plasmas of JET-like shapes are marginal. Detailed

optimization studies for such plasmas are necessary.

In this section, toroidicity has been studied in detail and
ellipticity to some extent. The effects due to triangularity,
rectangularity, etc. could also be investigated. All these more
complex geometrical features would certainly involve new types of
coupling. We have, however, already seen that for the case of
ellipticity it was difficult to distinguish clear features. It is

therefore more appropriate to consider now particular applications of
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the heating scheme rather than to discuss in general more complex

geometries.

5. APPLICATIONS

5.1 TCA (Tokamak Chauffage Alfven, Lausanne)

To model this particular tokamak, we consider a numerical
equilibrium which is characterized by a fairly circular, slightly
triangular cross-section, as in Fig. 3, with an inverse aspect ratio
of a/R = .29. The safety factor assumes the value of 1.16 on the axis
and increases to 3.36 on the boundary, with 8 = 5 x 10-3 and Bpol =
0.48. A double-helical antenna with n = 2 and m = *1 is considered.

The antenna and shell radii are given by ag = 1.18 and ag = 1.59,

respectively.

The mode structures presented in Fig. 3 and 4 have been obtained
for this equilibrium with a pump frequency of w = .94. The innermost
surface (s = .5) which is strongly excited is the (n = 2, m= 1)
surface. The next surface (s = .77) is that cdrresponding to(n=2,m
= 0) in the cylindrical limit. However, as has been concluded from
Fig. 7, the resonant surface does not exhibit its intrinsic anqular
dependence, but rather a dependence m = -1. Since it is therefore
directly excited by the antenna, the question arises as to why its
excitation is so poor. Near to the plasma edge, surfaces with negative
m-numbers are excited. Due to this excitation, substantial edge

heating is expected.
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In Fig. 11, we demonstrate that the edge heating is connected
with the excitation of the (n = 2, m = -1) mode. Shown in this figure
are the radial profiles of the resistive energy flux resulting from
four different  antenna  structures, S+1, S.1, St1i° and
Si1tb. Also shown is the sum of the first two fluxes, Sy +
S_1. The four structures are the following: S,q is the flux
obtained with an antenna of single (n = 2, m = 1) helicity, S_q with
an antenna of single (n = 2, m =-1) helicity. S¢1i° is obtained
with two superposed helices which are phased in such a manner that the
maximum poleoidal currents lie inside and outside of the torus (IS =
2, I# = 0 in Eq. (6)), i.e. the plasma is squeezed between the
inside and the outside of the torus. Finally St1tb is obtained
with two helices (IS = 0, I8 = 2) phased in such a manner that the
plasma is squeezed between the top and the bottom of the torus.
Without toroidal effects these two double-helices should excite the
plasma in exactly the same way and the resulting flux should be just
the sum of the two fluxes S_q and S,q. Fig. 11 shows, however,
that this is not the case. We see that the flux Si1i° is
dominantly absorbed on the (n = 2, m = 0) surface, whereas Si1tb
is dominantly absorbed on the (n = 2, m = 1) surface. The heating near
the plasma edge 1is, however, present for both these antenna
configurations. As can be seen from the plot of S.1, the edge
heating is clearly connected with the excitation of the (n = 2, m=-1)
mode.

This finding seems to contradict our previous conclusion that
toroidal effects do not influence Alfven wave heating significantly.
It should be noted, however, that an antenna of single helicity as
considered in Section 4.1 excites basically one mode. Since we aim at

placing the dominant resonant surface as near as possible to the axis,



- 34 -

the inverse aspect ratio of this surface is small and hence toroidal
effects are small. In contrast an antenna of double helicity excites
in general two modes, one of which is inevitably located somewhat
nearer to the edge where toroidal effects are more important. We
therefore conclude from the above discussion that an optimal antenna

for TCA would be one of single helicity.

5.2 JET

For the study concerning JET, a numerical equilibrium with the
following characteristics is considered: inverse aspect ratio 0.4,
ellipticity 0.68, slight triangularitiy (see Fig. 12), q = 1.37 on

the axis and q = 6 on the boundary, B = 1% and Bpol = 47. Antenna

and shell dimensions are given by a = 1.1 and ag = 1.2,
respectively. The antenna currents are of single helicity m = 1,
1<n<10.

The plasma response for an n = 4 excitation is shown in Fig. 12.
One can distinguish the innermost surface as that corresponding to the
mode excited primarily by the antenna, namely n = 4, m = 1. Further
out there exists a multitude of modes, as was also observed in Fig.
7. Under the influence of ellipticity and triangularity, however, they
have lost their unique character. Unlike the situation in Fig. 7, it

is therefore impossible for the present example to provide a clear

classification of these modes.

Due to the fine structure exhibited in Fig. 12, people with some
numerical experience may suggest that the mesh used for this

calculation (60x25) is too coarse to describe correctly the depicted
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plasma response. Check runs with different artificial damping rates,
v, have indeed revealed the limitations of the mesh. By varying the
mesh size up to (80x29), as well as the distribution of mesh points,
we estimate that at least three times more radial points would be
needed to obtain reliable results. On the other hand, we gained the

impression that the code could nevertheless be used for a correct

assessment of Alfven wave heating on JET.

Forty computer runs were made in order to obtain information for
a contour plot as was constructed for Fig. 8. Knowing the energy
deposition profile, D(s) defined by Eq. (34), the mean "radius" <s> at

which the energy is absorbed was calculated, i.e.

<y =fDdds/jDols, (44)

In all the runs, <s> was never smaller than 0.47, the best penetration
being obtained with an (n = 2) antenna. For this run, the basic (n =
2, m = 1) surface appeared at s = .23, The fact that <s> = .47
demonstrates that there is substantial heating near the edge even for
this case. Overall, the results are rather disappointing. They can,
however, easily be explained by the coupling of the antenna to modes
near the surface due to the ellipticity and the triangularity of the
JET equilibrium. It seems therefore to be difficult to heat JET with
Alfven waves. If, however, for some reason the cross-section of JET
would become more circular, Alfven wave heating should be

reconsidered.
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6. CONCLUSIONS

In the framework of ideal MHD, a theory of Alfven wave heating
has been formulated which closely parallels the 6§W-formulation of
ideal MHD stability theory. In this way, the toroidal stability codes,
which have involved a tremendous effort over the last decade, can be
simply modified for the purpose of Alfven wave heating studies. The
main modification consists of the introduction of a driving antenna in
the vacuum adjacent to the plasma. We have shown that in ideal MHD the
problem of Alfven wave heating can be reduced to the problem of

solving a set of linear algebric equations for the discretized plasma

displacement, Eq. (29).

The unavoidable limitation in grid size set by finite computer
memory has led us to discuss the numerical scheme in some detail. To
obtain confidence in the numerical results, we have undertaken an
investigation of the properties of the discretized continuous spectra
which play an essential role in our calculations. Physical arguments

have been advanced to explain these properties.

The results of a systematic study of torcidal effects on Alfven
wave heating have then been presented. We have found that although the
mode structures may become very complicated in a toroidal plasma, the
power emitted by an antenna of single helicity may still be absorbed
in the interior of the plasma. This is contrary to some pessimistie
conjectures which have been made in the past. The best heating
efficiency is obtained when the pump excites resonantly a surface
quasi-mode (kink-like mode), a feature of Alfven wave heating which is

well known from slab and cylindrical models. It has been shown that,
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even quantitatively, quite correct results can be obtained from a
cylindrical model. In an application to the Lausanne tokamak,TCA,
where an antenna of double helicity is used, a toroidal effect on the
power deposition profile, namely a certain amount of edge heating, has
been found. This phenomenon has been explained by toroidal coupling of
the second antenna-excited mode to modes near the plasma edge. It has

been concluded that antennae of single helicity should be used for

Alfven wave heating.

A short investigation of the influence of ellipticity has yielded
the clear result that elliptic coupling of the basically excited mode
to modes near the plasma edge is important and has disastrous
consequences. We have found that an ellipticity of 0.5 is sufficient
to couple 25% of the energy to regions near the plasma edge. This
result has been confirmed in an application of our code to JET using a
numerical equilibrium of elongated cross-section. It was found to be
impossible to deposit the bulk of the energy in the inner part of the

plasma cross-section.

The present investigation, together with the corresponding
studies for cylindrical geometry 12'28, provide us with a clear
picture of the geometrical effects on Alfven wave heating in
tokamaks. It is therefore, in our opinion, reasonable to base the next
step of the investigation, the kinetic theory 7130131 o cylindrical

rather than on toroidal geometry.
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APPENDIX A Equilibria, Antennae and ERATO coordinates

For the studies of the fundamental dependencies on toroidicity

and elongation we use the simple axisymmetric equilibrium of Solov'ev

23124 yhich can be defined analytically by the poloidal flux function

(1+€) Bro[ rtat  (r-RY)*
TR ]

Y(V;Z> = 'EW (1+ £52

(A1)

Here r and z denote the radial coordinate measured form the main axis
of the torus and the vertical coordinate measured from the midplane,
respectively. Byg is the value of the toroidal magnetic field on the
magnétic axis, qg is the safety factor on the axis, R is the radial
position of the axis, a is a length characterizing the plasma width

and € is a dimensionless parameter which measures the ellipticity of

the cross-section.

The main characteristic features of the equilibrium are the

profiles of the toroidal magnetic field and of the toroidal current,

which are as Br « 1/r and jT = r respectively. Further details

can be found elsewhere 21124,

In the numerical calculations it is convenient to use
dimensionless quantities. The units of length, time and magnetic field
are chosen to be a, a/cAo and Byo respectively; the Alfven
velocity, cpg, is the value on the magnetic axis. Using these units,

Solov'ev's equilibrium is determined by 3 parameters: inverse aspect

ratio, a/R, ellipticity, e, and safety factor, qg -

The flat and rather unrealistic current profiles inherent in
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Solo'ev's equilibrium necessitates the use of a numerical equilibrium
code 2° for studies concerning specific machines such as TCA and JET.

In this case we measure a/R in the plane which includes by the

magnetic axis.

The mass density, normalized to the density on the axis, has the

profile

o= 1-03 ¥/ ¥Yrure - (A2)

In the present work, density profiles different from Eq. (A2) have not
been considered since their influence on Alfven wave heating may be

adequately investigated using eylindrical models.

For the definition of the antenna and the conducting shell
geometry, a coordinate system (p,0,4) is used, where p denotes the
distance from the magnetic axis, 6 is the poloidal angle and ¢ is the
toroidal angle (see Fig. 1). In this coordinate system a general
antenna geometry would be defined by A(p,8) = constant. We make,
however, a special choice for the antenna as well as for the shell. We

define the antenna and the shell geometry in relation to the plasma

surface, pp(e);

antennas: 0 = 9 - o 9P(9) = A(f, 6);
(A3)
shell : 0= ¢ -« QP(G).

The quantities ay, ag are input parameters subject to the

requirement that 1 < ag < o,
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Having chosen the antenna geometry we may now prescribe the
antenna current by defining the potential B. The choice of B is not
entirely free since the axisymmetric nature of the problem has been

used in the ERATO code. The most general form for B, compatible with
ERATO is

('37 (_?) 9) ¢) = b’& (f) 6) 60$l?¢ + ba (g} Q) s ;Q¢ (A4)

where bg(p,6) and by(p,8) are a symmetric and an antisymmetric
function of 6, respectively. We do not, however, use the freedom

offered by Eq. (A4), but restrict both bg and ba to be independent

-of p and harmonic functions of 9:

(30(6) ¢) = - %é"ﬂ [Iéwsme (osn¢ + I“a’nmésc'nngbj, (A5)

In order to understand the physical significance of IS and 12

we first write down the toroidal component of the surface current

density, VAxVBgy, defined by Eq. (1).

J,= 0A/3¢ aBr [(Iﬁ- I*) sén(m9+n4>)+(Id+I°)sM(m9-n<#)J. (A6)

n !

$ lvAl 4
Here we interpret J¢ as being harmonically distributed surface
currents flowing in two sets of helical conducting sheets. The current

per sheet or "wire", I, may we obtained from an integral the short way

around the torus:

I=2—1-n§13¢(a(€. (A7)
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With

dl = IVAI( )J_?dg, (AB)

&1

one easily finds that
aB 3 a
1= 2 (10510,

In the dimensionless units used for the numerical calculation,
aBrg is Jjust the unit of current. We will use either IS = I8 =z 1

which corresponds to a wunit current per wire in a (m,n)~helical

antenna or we wuse IS = 0, I8 = 2

corresponding to the

superposition of an (m,n)- and a (-m,n)-~helical antenna with the same

unit current per wire.

In ERATO 21, the plasma equation of motion, Eq. (13), is not
written in the orthogonal coordinate system (p,8,4) which has been

used above in the definition of the antenna. For numerical and

physical reasons a non-orthogonal coordinate system (s,x,$) has been

chosen. The radial coordinate, s, is defined by

= (Y Fr ) (o

The coordinate s labels the magnetic surfaces and becomes the radial

cylindrical coordinate p when the inverse aspect ratio a/R of the

torus approaches zero.

The coordinate x, corresponding to the poloidal angle, 6, is

chosen in such a way that it engenders a simple form of the operator
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Bo ¢ V, the gradient along the equilibrium field;

B-V o< 3/3x + g(sya/d¢ , (A11)

where q(s) is the safety factor. The coordinate x ranges from -v to =,

x = 0 being defined by the outward direction perpendicular to the axis

of symmetry of the torus. In the large aspect ratio limit, x also

tends towards the corresponding cylindrical coordinate, 6.

The coordinate ¢ is the wusual toroidal angle which is an

ignorable coordinate for axisymmetric equilibria as considered

ERATO. ERATO treats only single toroidal Fourier modes, exp(ing).

Finally, it is assumed in ERATO that the equilibrium has an

additional symmetry plane defined by the magnetic axis: the "up-down

symmetry". Therefore, only the upper poloidal plane has to be treated

numerically, the displacement vectors & obeying certain symmetry

conditions across the symmetry plane.
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APPENDIX B The vacuum field

The magnetic potential, &, defined by Eq. (14), obeys Laplace's

equation,

AP = o0, (B1)

which follows from Eq. (6). The matching and boundary conditions (8)

through (11) written in terms of the potential are
a'V@'(%)=(§O-V)(;'f)I§; = EP, (B2)
[21,

ﬂﬁa'V@L =0 (B4)

(B3)

1
Ty
Pt
A
i
—»
[
~J

and n, s VeGK) = 0. (85)

Here Ep is the "internal" source of & and By the "external"

source.

We do not need the solution ¢ throughout the entire vacuum
region, but only certain relations between & and n « V¢ on the plasma
boundary and on the antenna, as in Eq. (17) and (27). Harmonic
functions can in fact be expressed in terms of their values on the
boundary, 6V, of a domain, V, in which they are regular 26 1n

particular, for a point x lying on the boundary one can prove with the

help of Green's formula that
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& (%)= -347-2_’[ [ BYV'GER R - (R R 7' $zn] 5 (B6)
14

where do’is the outer normal and
G, Xy= 1/1%-%'], (B7)

On applying Eq. (B6) to the vacuum region Vi between the plasma and
the antenna (see Fig. 1), one obtains an equation for @(xp) on the
plasma surface and a second equation for ®(x5_) on the inside of the
antenna. Likewise, on applying Eq. (B6) to region Vil one obtains
®(xa+), the potential on the outside of the antenna, and &(xg) on
the shell.After elimination of @&(xg,) in Ffavour of &(xg) =
® (xa-) using Eq. (B3) and (B4), a system of 4 integral equations is

obtained for the functions oy = Q(xp), ¢g = 8(xg),

Ea= Ng * V&(xg) and &g = 0(xg):
(DPP~2i)§P- (Deq -21) &+ Epa =q = Epp Zp, (B8)
DaP‘i’p' BBt Eane = Ep =, (89
(Due-20)&, - E, Z. -(D,-21) &, = (21- ) Ba, (B10)

Dad,- EuZa- Disd =~ Dy Ba. (811)

Here,f is the unit operator, and the integral operators Dyv and

Eyys, where u = p,a,s and v = p,a,s, are defined by
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D &, -—---%f[clso‘?:’)— BRI V'GK, %) dS @12)

and
E/‘WE,‘V=Z-;;. G R VB, dg ' (B13)

The term proportional to &(x,) in (B12) has been introduced for

convenience in the numerical treatment of the integral equations 22
It may easily be evaluated using the relation
r L
0 : /a outside p
) oy ~ ) "'I - { - —
ij(@w,x,, Yedo,! = § =2, m=v

v (B14)
L-47Z") /6‘ suscde v

which follows from Gauss' integral theorem 29,

Equations (B8) through (B11) may now be used to calculate ¢p in
terms of &, and B,5. By adding Eq. (B8) and (B10), and Eq. (B9) and

(B11), two combined equations are obtained in which &, and I,

appear in expressions of the form

Cpa = (DM~DFQ> P, - (Epa - Epa)za (B15)

and

€ = (Dso." Daa) %, - (E.sa - aa).?.a . (B16)

Using Green's formula in V[ for epa and Vi for egg, one can
express epg in terms of &g and By and eg, in terms of ¢, and

2p. Combining the obtained relations then yields
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(Dpp=21) &5 = (Dps - 21) B, = Epp =+ (22 - Dpa) Ra, (B17)

Dsf’ {DP— D:;s @s ESPEP- Dsq, (EQ . (B18)

Apart from the terms due to the external source, Bg» these integral

equations are precisely what has been found for the stability problem
22

It is easy to solve Eq. (B17) and (B18) numerically. We obtain

Bp = Cop =p + B (5, (B19)
where
-4 /\) -1
Qpp = Mpp [ Ep - (Dps- 21) D2, EbVL (620)
A A -1
MF’F= DP -2 - (DPS-ZI> Dss D5F (B21)
and
%)= Mp £)Dip Dy +21 = Do |
%(xf’): MFP [<DP5"ZI> ks Usq * 21 - pa P’a (B22)
Note that M=} My, = I and Dgg~! Dgg = 1. Equation (B19),

together with (B2), (B20), (B21) and (B22), constitutes the solution

of the vacuum field on the boundary, Eq. (17), which is needed for the

weak variational form.
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On the other hand, for the power, defined by Eq. (26), =5 is

required. It is straighforward to eliminate &, from Eq. (B8) and

(B9) and to use then (B19), which yields the result

-1 . - R
=2 = Toa (VPP— U QPP> =~ Toa, Uﬂ, $_ (%), (823)

This equation corresponds to Eq. (27) in the main text. Here

A Av
Usp = Dpp = 2T = (Dpq - 21) Dy Qu, (B24)
A\ =1
T;’Q— = Epa - (Dpa "ZI) Dacz Eo.a. R (825)
and
Vpp= E?P" (Dfa.“ 2T) D;;_Ea, (B26)

f .
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CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Toroidal plasma (p,) surrounded by vacuum Vi, antenna
P p I

(pa), vacuum Vi an conducting shell (pg)-

Absorbed power, P, as a function of the artificial damping
rate, v, for three different grids (a = b,c,d) and two slightly
different pump frequencies (a,b = ¢ = d). The best result (d)

is obtained with an irreqgular mesh.

Plasma displacement in the poloidal plane due to the excitation
of a TCA equilibrium by a bi-helical antenna for two different

damping rates, v.

Resistive energy flux, S, associated with the plasma displace-

ments depicted in Fig. 3, versus radial coordinate, s.

Real part of the Fourier components, Exm,Z’ defined by Eq.
(39), versus radial coordinate, s, in the vicinity of the
resonant surface of the (n = 2, m = 1) mode dominantly excited

in a TCA equilibrium.

The dependence of three quantities on the inverse aspect ratio

a/R, for a class of Solov'ev-equilibria. Shown are the relative
amplitude of m # 1 components of \p, defined by Eq. (40), at
the location, sp, of the dominatly responding surface, m = 1,

as well as the absorbed power, p.
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Fig. 7 Dominant Fourier components, gxmyé , of the poloidal

Fig. 8

Fig. 9

displacement and the associated resistive energy flux, S,
versus radial coordinate,s, in a fat torus of inverse aspect
ratio 0.333 excited by a (n = 6, m = 1) antenna. The multitude
of resonant surfaces is due to m # 1 modes having an Alfven

frequency wp, defined by Eq. (41), at the pump frequency w,

as shown by the circles and the broken lines.

Contours of the absorbed power § (top) and Q-factor (bottom),
in the plane of frequency, w, and toroidal wavenumber, n (k =
n/R), as obtained from toroidal (left) and cylindrical (right)
models. The location of the resonant surfaces, pg, in the

cylinder is indicated by broken lines.

Relative amplitude, xM", defined by Eq. (43), of the m # 1
modes in a large aspect ratio torus (a/R = .0055) as a function
of the ellipticity, €. The antenna excites dominantly the (n =

100, m = 1) mode.

Fig. 10 Energy flux, S, versus radial coordinate, s, in large aspect

ratio tori (a/R = .0055) of different ellipticity, €. All the
fluxes for € > 0.5 exhibit steep gradients near the plasma
edge. For the sake of clarity, the fluxes calculated for ¢ =

0.5, 1.0 and 1.25 have not been plotted in the vicinity of the

plasma edge.
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Fig. 11 Energy flux, S_1, Sy, S+13° , and SiqtP versus
radial coordinate, s, obtained form 4 different antennae for a
TCA equilibrium (see text for antenna arrangement). The flux

shown in the centre diagram is the sum of S_1 and S,q.

Fig. 12 Plasma displacement in the poloidal plane of a JET equilibrium

due to excitation with an (n = 4, m = 1) antenna.



