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ABSTRACT

The recent progress in the microinstability theory

of Tokamaks is reviewed.




I INTRODUCTION

One of the most important problems of the controlled fusion research

is the observed anomalous transport across the magnetic field in mag-
netically confined plasmas. The basic idea of magnetic confinement of
plasma is that the magnetic field restricts the charged particle motion
to a gyroradius around the magnetic field line so that, upon colliding
with other particles, they random walk across the magnetic field with a
small step, of the order of their gyroradius. The classical diffusion

coefficient is therefore DC = ')é‘ Jz_z o T..j( 3‘2., where
)ﬁ; is the electron - ion collision frequency and Jﬁ_ is the mean
electron gyroradius. The confinement therefore is expected to improve
with increasing magnetic field and temperature. In Tokamak geometry,
there are geometric factors that enhance the classical diffusion coeffi-
cient (neoclassical diffusion), which however is still small compared
with the observed particle and energy transport. To account for the
anomalous transport is therefore a central problem for Tokamak research
and is yet poorly understood. The major energy loss in Tokamaks is
through the enhanced crossfield electron heat conductivity which is in-

versely proportional to plasma density (Alcator scaling) and has a mag-

nitude of the order
4 72'1 7
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which is about one to two orders of magnitude higher than neoclassical

prediction. ;t; may also depend inversely on 7£‘ and /ﬁ& .




To explain this anomalous crossfield transport has been the primarily
motivation for studying the microinstabilities in Tokamaks. For a con-
fined plasma is always in a state of non thermal equilibrium with excess
free energy due to the deviation from a homogeneous, Maxwellian distri-
bution. This excess frequency can feed into many natural oscillations
in plasmas leading to plasma instabilities and anomalous transport. To
confine a plasma pressure by magnetic field requires a current perpen-—

dicular to both the magnetic field and the pressure gradient

-
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The drift velocity associated with this current
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is much below the ion sound speed CS = (Z:/‘/) , as ‘/2 24 Zh =(//£‘ /{X)

where we have assumed the temperature to be uniform. This relative motion
between electrons and ions across the magnetic field generates a new set
of modes with phase velocity comparable to the Zﬁz and frequency
-

W = Z% which is usually much below the ion cyclotron frequency ,(Zb'
for Aﬂ%,’ </ » where f; is the mean ion gyroradius. Because they
are generically of the same origin, we will call all these low-frequency
modes drift modes. In Tokamaks the toroidal geometry introduces rich
varieties of drift modes, particularly as a result of the so-called

trapped particles, i.e. particles trapped by the inhomogeneous magnetic




field. Those instabilities which own their existence to the trapped

particle are usually called trapped particle instabilities. In Section

IT we will review the theory of drift waves in the slab geometry with
sheared magnetic field, which has seen much progress in the past few

years both in linear stability analysis and in nonlinear development.

IT ELECTROSTATIC DRIFT WAVES IN SLAB GEOMETRY - LINEAR THEORY

a) Local Analysis

Consider a potential perturbation %/X)-ZK 4)’""{ Z- W'L‘)
in a slab plasma with density 27/X) = 7, [/1‘ % ) immersed in
a static magnetic field 81? Assuming W& _.Q‘_ = ‘e%¢ , A{/{} <(/

and /- =€ , we may calculate the ion density response using the guiding

center approximation in which the ion experiences a £&rx8 drift and a

polarization drift
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Using the continuity equation for ions
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we then obtain the perturbed ion density as

n- e W 2,2
M”;‘—f/f"f’”{/f] ®
2 &

<




-—_’_4_‘_7/'4"

where w an L:T N .
i * T ™k </hd:

As the thermal velocity of electrons 1%: is much greater than the parallel
phase velocity ‘ﬁ?ﬁ& » the bulk electrons can readily adjust their

parallel pressure to balance the electric force

”%_’flﬁ:—Zj“ 7

At

$0 as to achieve a Boltzmann distribution

77; = 7, «&245/7: (8)

Because the low frequency and long wavelength of the potential, the quasi

neutrality condition must hold

Using (9) and substituting Eq. (8) into Eq. (4) while neglecting the last

term of (4) due to the polarization drift, we find the following linear

equation
24y 22,
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Note that we have used the electron Boltzmann distribution Eq. (8) without
linearization. Thus Boltzmann electrons do not contribute to nonlinear

mode coupling. Thus by neglecting the ion polarization drift, one finds

that any form of f}’(:;y,_zdi1f;> is a solution to Eq. (10).




We have so far neglected the "resonant electrons" whose parallel velo-
city is close the parallel phase velocity ’[/}; =z %/(I/ and thus in
Cerenkov resonance with the wave, causing induced emission and absorption.
To find their response to the potential perturbation, we use the drift
kinetic equation which is simply the reduced Vlasov equation for the
guiding center distribution 7[/4{;: 7//;) z‘) where ,F: 7/;} are
guiding center position and parallel velocity :
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Assume that /.:,‘ 6 [/l; %/ -+ 74&),“76 4/4/.*43—0?‘)

76 ((f" , we may linearize Eq. (11) to find
£ = ﬂ/é’%’g”é%)/ﬁ’"’é”i) (12)
s e

Integrating over 7/,7 to obtain the density perturbation which for a Max-

wellian equilibrium distribution :
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the plasma dispersion function with the contour defined in the Landau
sense (i.e. ; has a small positive imaginary part). For W (<{”

*
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Note that for W= W,p » the resonant electrons make no contribution.
Substituting Eq. (15) and Eq. (5) into quasi-nautrality condition Eq. (19),

we find the dispersion relation for drift wave
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This is the universal instability, so named because it is thought to be

prevalent in all magnetically confined plasmas. The ion polarization
1p%*™

drift produces a downward frequency shift j‘t/‘- = - L 4.& which

makes the wave energy negative in the frame of electron diamagnetic

drift in which the resonant electrons do not feel the effect of inhomo-

geneity
f-w 2k KLy b
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The electron Landau damping thus makes the wave unstable.

In a collisional plasma with high electron-ion collision frequency, the

density perturbation can be obtained from the electron fluid equations
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where°Z7J: fZﬁ:in the parallel diffusion coefficient. From Eq. (6),

(9) and (17) one obtains the growth rate for the dissipative drift mode

for l/,;> W

AR AN

b) Nonlocal Analysis

So far we obtained the linea¥ dispersion relation neglecting the spatial
variation of the potential along the density gradient 947%). Because of
the plasma inhomogeneity, we should properly solve the eigenvalue problem,
yielding not only the frequency and growth rate, but also the width of
the region where the mode is localized (the eigenfunction). In the
absence of sheared magnetic field, one expects the drift modes to be
localized near the maximum density gradient. We may therefore expand the

drift frequency around the maximum density gradient

3
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to find the eigenvalue equation as Weber equation with a "potential well

(
2
due to the A;w Xén term :

R =

2
which has the fundamental-mode solution 5&"’ ,Lx/b -RKX with

~' |/f Z as the width of localization. There is also a small
frequency shift ;N —'p/[ )‘% In the presence of a sheared mag-

netic field due to the radial variation of the rotational transform Z ,
which we model in the slab geometry by introducing a y —component mag-

)

A
netic field as Z :)’K, Xé; so that the total magnetic field is

5 5 /_2 .,LZ,. /V) This sheared magnetic field makes /{‘; a function

of X, 41/ - 'zi/ﬁ = ’?/2’7‘/1;’?4‘;

In this case, the additional ion sound term arising from the perturbed

parallel ion motion must be taken into account and Eq. (19) becomes

2'6[1? W, /4‘4‘_ xe /Z'Czkt
/s i [ 2 ’) Po(@yr = ags /10 @

where we have neglected the imaginary part and the last term is from

L, A A
0] C; wz'with C‘ = /c /y . Note that the last two terms are of

the opposite sign so that,for sufficiently strong magnetic shear, the
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"potential" proportional 4 ¥ for the Schrodinger equation becomes a
" v, . . .
hump instead of a "well" and it can no longer trap waves, i.e. localized
mode no longer exists. This is the criterion for shear stabilization

given by Krall and Rosenbluth

/ (21)
Ls /s

This condition, though easy to satisfy, is not sufficient because even with
potential hump, unstable modes can still exist if it has an outgoing group
velocity. From now on we shall simply neglect the density gradient variation

and take into account only the spatial variation of £I/ due to magnetic shear.

To do the stability analysis correctly, one must include the complete

electron response and the eigenvalue equation is

& YV e =0
LGl il

PR S
where !:4/? and XY is normalized to _f} .
Quite surprisingly, it was first shown by numerical analysis that there
is no absolute instability, i.e. exponentially growing eigenmodes, even
for a very small shear. Then Antonsen proved that in fact Eq. (22) has
no absolute instability at all. He transformed the coordinate A’ by

rotating it 90° in the complex plane to ; = ~¢cW )’/‘J,g_
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= Y- /f‘ /4
;/f)- /‘/‘/éu/ﬂ/%, Z/ 4.(5)] % c) €/1+7) (23)

is real and greater than unity, where &; = N/{// /f) /3
2
= ey W With the bound
L[Z_g /&‘4{%;) . e boundary
conditions for localized modes : fp—-) O &y fﬁ #9 , which corresponds

to outgoing mode condition (group velocity in X be away from the

singular surface) and f o ?/—_—_ © ;,f' )’::o >

a quadratic form can be obtained from Eq. (22) by multiplying it with
o . . i
? and integrating over ; . Then assuming &) = «)’1"& with ¢>o

for instability, we set real and imaginary part of Eq. (22) to zero to

)/f /f[/w/ ‘%/17“//1’)/?/1;*/ =

Since ;)0 and Wy k&.)athe integrand is positive and )/ must vanish,

find

a contradiction. Thus we proved the absence of absolute instability.

Chang and Liu extended this analysis to include the effects of electron
temperature gradient and again no absolute instability exists for both
signs of / /L,, » even though this makes an- important contribution

to the growth rate in local analysis.

This result is surprising because for a number of years the analysis of
drift wave stability in a sheared field has followed the prescription of

Berk and Pearlstein in which the resonant electron response in Eq. (22)

is approximated by settingZ to 4}/7 %/lyz s which is then
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treated as a perturbation for modes satisfying outgoing boundary con-

&
ditions. This leads to a shear stabilizing condition Z‘% P /%}é

The complete stabilization of absolute modes by small amount of shear
shows the importance of 2 [%%)near W= ’41/‘% in affecting
the stability. An interesting conjecture which has received considerable
publicity recently due to Molvig and Hirshman is the possible desta-
bilizing effect of resonance broadening in a sheared magnetic field.
The argument goes as follows. It is seen that the complete stabiliza-
tion is due to the dynamic effects of those electrons near the rational
surface 2,’7-'0 or more precisely between X =& where /4, =0 and
X = X, vwhere W*‘-s‘:/tg, //\’g/ %', . So if some anomalous process
can diffuse these electrons out of thisregion to the region where X 2 Xe or
W,\'-/,{,; /x) & 7k then one would expect the usual resonant approximation
to be valid and the drift wave again become unstable. In a sheared mag—
netic field, the resonance broadening is enhanced because of the coupling
between parallel and perpendicular diffusion. The usual decorrelation
~/
time due to electron flow along the magnetic field %/V’&) is now
coupled to motion across the field because ,/,,?-/X) = 4(/?-/&/4;.
r/é,Lpf/LS so that 5
2 2
Al g ¢ = A D t‘/zj

or the decorrelation time

~ %/ 4
(5 = /4//; %)

-/
much smaller than /,410) . Adding this to the electron dynamics, they
found that the drift wave becomes absolutely unstable for relatively small

value of D « In fact the growth rate as a function of ] first becomes
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positive for JD,>J§&$ reaches a maximum then decreases again to zero
7 . .

for JD Jé;ﬁ They interprete Zl“x as the saturation value for the

anomalous diffusion. The work, though interesting, suffers from the

criticism that "resonance broadening" is important only for resonance

particles which in this case have I//'/ > W% located beyond )’e

in the first place. Thus they applied the broadening mostly to the

nonresonant particles %@;{ ﬁ?/;or which one has little justification
{4

to use resonance broaden.

Making use of the Antonsen transformation, Lee and Chen developed an
elegant S-matrix scattering method to prove that, quite generally for
761% O and even including the electromagnetic perturbation of shear
Alfvén type, there is no absolute instability of drift wave type in a
plasma slab with sheared magnetic field. Then only remaining instabili-
ties in a slab plasma with sheared magnetic field are (i) current-driven
drift waves. This, however, requries a large parallel drift velocity
between electrons and ions to become unstable

’Z_{ > éhéj

e

that it is not likely to occur in present Tokamaks. There may also be

electromagnetic instability driven by parallel current.

(ii) Ton temperature gradient instability. For sufficiently large ion
temperature gradient 7.: /‘4. 7:>/ » local theory predicts an insta-
¢ Al

bility. In a sheared field, this instability has a very narrow locali-

zation width and requires the integral equation for 9’ as one can no
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longer expand ?/X) - ?/Oj A ?/X 7+ ?l;") IL/,_ with

zji. and an integral equation must be solved.

(iii) Trapped particle modes. In particular the trapped electron

mode 1is important for most of the present Tokamak devices because

the effective trapped electron collision frequency 22;2 = Jﬂ;;//C;

( €= ﬁ%% the inverse aspect ratio) is already comparable to or
smaller than their bounce frequence %& = /;%. In this case because
the ion is untrapped, i.e. ’{‘; > Nh' (except PLT at the highest
temperature of 4.5 Kev), we may resort to the slab-like analysis for
ions and untrapped electrons but replace the resonant electrons by the
trapped electrons including their collisional contributions to find the

dispersion relation as

o= 4)‘_ * Zl!
/- w* ,f [.ﬁ,«z/ ‘/22’( * z,/.Zm*’)zZ.S_

w4 eVy

. The sziar s;biali;eséttz mogi’ if /‘ [%/Tf/)//.] lf]
7 (/T éf/ L 4

c) Convective Amplification

where T =

Sle? g

Although there is no absolute universal instability, there is still the
possibility of convective amplification of a source such as the thermal
noise. The wave packet initially grows in time, but unlike absolute
instability which grows indefinitely in time, here the growth would satu-
rate by convection. If the exponential amplification factor is much
greater than unity, then the mode is convectively unstable. The condi-

tion for convective amplification is
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III NONLINEAR THEORY OF DRIFT WAVES

Once the linear theory predicts instability, unstable modes would grow
quickly into nonlinear region where the nonlinear processes become
important. Nonlinear theory for drift waves have been developed to
take into account (1) the quasilinear effects, (2) nonlinear ion

Landau damping, (3) three-wave interaction, both among drift modes

and between drift waves and convection cells, (4) strong turbulence
effects and finally (5) the anomalous cross-field transport due to
drift waves. Computer simulation has also been a valuable tool for
studying effects of nonlinear drift waves. Since quasilinear theory
and weak turbulence theory of drift waves have been adequately reviewed,
we consider here only the more recent development of the nonlinear
mode~coupling theory because of its simplicity, and its ready extension
into strong turbulence with contact to two-dimensional hydrodynamic

turbulence.

As we discussed before, the electrons with Boltzmann distribution do not
contribute to the nonlinear mode coupling. If we neglect the resonant
electron effects and assume cold ions, then the only effect contributing
to mode-coupling is the usual hydrodynamic U"V7b’ term which in this
case make its presence in the ion polarization drift, the last term in

Eq. (4). Substituting Eq. (4) into Eq. (5) and using the quasi-neutrality
condition : /}7‘ - ;)7_,_ =/, f%, Hasegawa and Mima found the

following nonlinear equation for drift wave by neglecting resonant
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electrons and ion temperature effects :

Zlp-rvr )+ % ;-f—}f: LB () vI Y

(2-1)

where = (//72 andﬁd_-,cﬂg  prs £ = 72/_,2‘..

In the frame moving with Vi » the third term on the left vanishes and

7.. .
we may rewrite Eq. (2-1) by letting 7/—7 d "“"{ A‘-‘”" ﬂm%{c,

) /l//l) 2— Mg r) [/[/)/{/r‘) o2
//frl

ohere M//,r):-z—-/‘[tg Fp)] P T)

If one set ,{/—) ©9 | this equation is identical to the two-dimension
hydrodynamics. There are two constants of motion : the energy W and

the square vortricity (emstrophy) &/

w=). % 2// [ )] A% -
= S 14 A ]
w = ) Z/f ) s 4P 2 E

In the limit of 4/—9 o » they reduce to the well-known constants
in 2-d hydrodynamics. In the non dissipative 2-d hydrodynamics
it is well-known from equilibrium statistical mechanics that the canonical

distribution of ”/{/in the phase-space defined by the real and imaginary
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parts of Z(/‘;is

D — o W4y o (< + 4 D Mg
L. =

(2-5)

from which we find the standard Gibb's spectrum for the expectation value

for the energy for the /{"‘mode :
ey
(/W/»{}/L> = (L "'/4{ ) (2-6)

where 0(, / are constants determined by the total energy and enstrophy :

. > L
W - goﬁﬁ{"

LA

(2-7)

For a negative - temperature system, o( and /5 are of the opposite sign

and it is possible to have "condensation" in which practically all energy

is concentrated in the mode with /{D-':/ / . If £, £y > then

the mode with longest wavelength has the most energy. This indicates the
possibility of energy cascade towards the longest wave, i.e. inverse
cascade, opposite to the usual mode coupling process in 3-d hydrodynamic
turbulence where the energy is cascaded towards short wavelength. With

dissipation, Kraichman has shown that in fact there is a dual cascade in

which the energy is cascaded towards long wavelength and enstrophy is
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cascaded towards short wavelength, mutually exclusive of each other in
a given inertial range. We may obtain the spectrum in the inertial
range from the following considerations. Suppose there is a source for
the /{; mode where energy and enstrophy are injected into the system.
Introducing the definitions of omnidirectional energy g‘ —‘—274{%
such that/&a = total energy. Then for/(< »{,; we expect the
energy cascade with the energy flux in k-space conserved in the inertial

range where there is no dissipation

g"'{ = _f"é;{ = M (2-8)

&

-
where ,22 :47’ is the nonlinear rate of eddy turnover, which is also the
I3 » z
rate of energy transfer to different modes. Since M» 2/ 2 é {,

we have from Eq. (2-8)

_5 | -9
gjf““’é% 7 o %=M'{ 3(2—9)

which is the well-known Kolmogoroff spectrum. For [){{, , we expect that
there is enstrophy cascade but no energy cascade so that the enstrophy

flux in k-space is conserved in the inertial range

P 3
A A RPN
Tt

(2-10)

and

- /I/
é:( =oC % 5 (2-11)
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The corresponding enstrophy spectrum is % = %z’hf" ol /{ B 7_/:{
Compare this with the equilibrium enstrophy spectrum /{‘/[(7"/4{ ’)
which approaches a constant for 1arge/4( » We can see that the enstrophy
must cascade toward high /( to approach equilibrium. These spectra

have been verified numerically by Fife and Montegomery for 4{7’:? /

(hydrodynamic region).

Despite its relatively simple form, Hasegawa-Mima equation is not ex-
pected to be relevant to the present Tokamaks because it neglects the
growth term and ion thermal effect, both are expected to have important

modifications,

Coherent solution

The Hasegawa-Mima equation

’—Q/A‘%—ﬂ /‘y“, /2i¢2/’; - 2)’ ZXJ?((Z-II)

also has the following vortex solution

U+, T&r) _ .y B e
pe L2 [0 JEE -l 5 [ -

:~j(j_fd . Ko, S Foa
’5 Ky

(2-12)
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where )/__”t: vy &8, /1’-‘-)’)"‘:\5' ,/Sm

and 4 is the radius from the center. The value of A is determined
by’requiring 9¢/2i" to be continuous across a line at =&, .\7; and
/\/I are the Bessel function of the first kind and modified Bessel
function of the second kind. A remarkable feature of this solution is
its rapidly decreasing amplitude with # , i,e. its localized nature
?_, e“f’/f;— as =3 &9 ., The collision of two such vortices
has been studied numerically by Makino, Kamimura and Taniuti, and found
the vortices are remarkably well preserved after collision, thus
suggesting two-dimensional recurrence. This problem has also been
examined analytically using the reductive perturbation theory by Nozaki

et al,

IV EXPERIMENTS ON DRIFT WAVES IN TOROIDAL PLASMAS

Experimental studies of drift wave in Tokamaks have been performed by
Mazucatto, Surko and Slusher, Semet et al., A definitive study of drift
wave in toroidal plasmas has also been carried out on FM~-1 Spherator by
Okabayashi and Arunasalam, in which the variation of the drift wave
spectrum with magnetic field shear was reported. In the case of high
shear, Z.S Zh Z 7 » the frequency spectrum for a given oé shows sharp
peak at h)*_ - 4% . In the case ¢£ medium shear (Jé“ 2'79,
the width of the peak is substantially broaden indicating a larger growth

and stronger nonlinear effect. 1In the case of low shear Z5/[‘, > 70,
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the peak at ‘1/",_ disappear all together, instead at

strong, broad peak at zero frequency appears for all 4 studied
(5 3 /{f; S5 ). The frequency spectrum of /J%}tfaries as 4)—‘(
with 4’5 ol £6 . This was interpreted as the excitation of convection
cell by drift waves. With microwave scattering on ATC plasma, Mazucatto
has observed density fluctuations peaked near '/ﬂ/f ot /in the drift
wave frequency range (100 - 200 KHz). The total density fluctuation
J"/}{ Pos .S",Y/o”z‘ can account for the anomalous electron heat trans—
port in ATC with the assumption 32%)* = 0, ] . More recently he
measured the density fluctuation in PLT where the trapped electrons are
important as )éc<“3’¢, He found that for a given ,{:/0 t«’,’ the frequency
spectrum is sensitive to the plasma density., For ) = 2)(/0/"/4;, the
frequency spectrum is peaked at zero frequency and is symmetric with
respect to zero frequency in contrast to previous observations in ATC
and TFR where a clear shift of the frequency spectra towards the electron
diamagnetic frequency was observed. At higher densities 7% Yrio /%g,)
this shift was also observed in PLT. The fluc-
tuation is observed to be larger on the outer side of the torus consistent
with the predication of trapped electron modes. Although JHA appears
to remain constant as the plasma density changes, it increases signifi-
cantly with rising ion temperature due to the neutral beam injection,
Furthermore as ion temperature exceeds 4 Kev, where ion
trapping is important , a new mode appears (trapped ion mode ?), strongly
located in the outer region (with respect to the major radius). The

frequency spectrum for 4 = 10 cm™1 peaks at 50 KHz on both electron and
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ion diamagnetic directions. This mysterious mode has yet
to be explained though the theoretical possibility of trapped ion

mode or ion temperature gradient mode are being explored.

Semet et al. recently used absolutely calibrated far-infrared laser
scattering and Langmuir probe to study the drift wave turbulence in
UCLA Microtor. With a wide range wavenumber measurement from /é =3
to 50 cm_l, they were able to deduce the wave-number dependence of
the scattered power as 4‘3‘%etween 0.‘..(4ﬂ €2 | This is the
' region where ion nonlinear Landau damping is expected to be important
and it would be of interest to compute a steady-state spectrum in the

region.
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