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Abstract

Nonlinear self-modulation of the fast ion beam mode
is experimentally studied. At large amplitudes above
threshold the beam mode is observed to be amplitude-
modulated by the self-action. The instability appear-
ing on the carrier wave envelope is found to rapidly
grow with increasing distance and then be saturated.
When the self-modulation deeply proceeds, the wave
envelope splits into a train of wave packets. Finally
we show that the self-modulation can be explained to
come from the modulational instability.




Evolution of wave envelopes due to nonlinear effects is
an attractive subject of plasma physics. A number of theoretical
worksl on the nonlinear evolution of plasma wave envelope have
been reported so far. Kakutani and Sugimoto2 and Chan and
Seshadri3 have indicated that the ion plasma mode becomes modu-
lationally unstable only for large wavenumbers k > kc' at which
ion Lahdau damping is usually very strong. On the other hand,
Ikezi et al.4 have shown, both experimentally and by computer
simulations, that for the ion acoustic wave the ions trapped in
the wave potential troughs introduce effects so much larger than
the modulational instability that the ion acoustic wave can not
be modulationally unstable. On the contrary Watanabe5 has pos-
turated on the basis of his experiment that the ion acoustic
wave can become modulationally unstable. However, it seems that
his experimental data5 demonstrate essentially the same proper-
ties of the ion acoustic wave packets as those observed by Ikezi
et al.4, that is, the data show that the wave packets do not
shrink but expand during wave propagation. In this paper, we
wish to report experimental results on the self-modulation of
the fast ion beam mode and show that this self-modulation can
be explained to come from the modulational instability.

Experiments were carried out using a double plasma device6
containing plasmaé with densities Ne v lO9 cm-3, electron tem-
perature Te v 1 eV and ion temperature Ti ~v 0.2 ev. Application
of a potential ¢ to the "driver" plasma caused an ion beam into
the "target" plasma. Here, an ion beam with velocity v

b v Cs'

|
where Cs is the ion acoustic velocity, was used. In order to

excite waves in the ion beam-plasma system, the?potential ¢ was

externally modulated at a frequencvaO = (0.4 mio.S)wpi, where




wpi/2ﬂ ¥ 1.4 MHz. In this case the excited wave was a plane wave
because of the large diameter of the separating grid. Further,
although the effective temperature and average velocity of the
beam ions were a little increased by the external modulation of
¢, observations showed that the increase in phase velocity of
the excited wave was below a few % of the initial one, even if
the rf (peak-to-peak) voltage Vpp externally applied was as high
as 3 V. A Langmuir probe and an ion energy analyzer were used
for measurements of plasma parameters and excited waves. Wave
patterns were measured by means of an interferometric technique
using a cross correlator7. A frequency analyzer was also used to
observe frequency spectra.

At small rf voltage Vpp only a wave could be observed at
far distance x from the excitation plane. Dispersion relation of
linear waves excited in the system is given in Pig.l together
with those for waves computed on the basis of a linear theoryg.
Comparison of the experiméntal result with the theoretical one
leads us to conclude that the observed wave belongs to the fast
ion beam mode. Figure 1 also gives the dispersive phase velocity
Vp ?nd group velocityvvg of the fast ion beam mode computed for
the same condition.

When Vpp was increased, the wavenumber of ﬂhe beam mbde
was observed to decrease from the linear value %specially around
the first minimum of the wave amplitude, as shoﬁn in Fig.2. The
maximum wavenumber shift was found to increase Qith incréasing
V_._. Details of the experiment on the nonlinear‘wavenumbér shift

PP

will be described elsewhere. Further, at large Vpp above threshold

the carrier wave at w, was observed to be amplitude-modulated.

Figure 3 demonstrates the occurrence of the amplitude-modulation




at large amplitudes above threshold. We can also see from this
figure that the instability appearing on the wave envelope rapid-
ly grows with increasing x and is saturated at some distance.
Here, it should be noted that at a suitable value of Vpp the
wave envelope is scarcely modulated at small X, even if the vio-
lent modulation is observed at large x. This tells us that the
amplitﬁde—modulation of the carrier wave is caused not by some
external source but by the nonlinearity of the wave itself.
Moreover, at large Vpp above threshold a low frequency peak was
observed to appear together with two sideband peaks near the main
peak at Wy in a spectrum as shown in Fig.4. From such spectra we
can know the Vpp-dependence of wave amplitude corresponding to
each peak as well as the one of the carrier amplitude, as illus-
trated in Fig.5. The spatial variation of wave amplitudes is
also obtained as given in Fig.6. On the other hénd, when the
self-modulation deeply proceeds, the wave envelope is observed to
split into a train of wave packets (see Fig.7). For each wave
packet we could find the change of the local carrier frequency.
Figure 8 indicates statistically the existence of a difference
in the local carrier frequency between upstream and downstre?m.
It is known from observations of the nonliﬁear wavenumbér
shift that the phase velocity vp of the fast io# beam mode in-
creases with increasing amplitude. Therefore, we can say that
the phase at point B moves faster than those at%points A and C
in Fig.9. As a result the wave pattern between ﬁ and B is com-
pressed and hence the frequencies over there become a little
higher thaﬁ the initial one, whereas the wave pjttern between B

and C is stretched%and the frequencies become lower. This phe-

|
nomenon is actually observed (see Fig.8). After 'the frequency




modulation considerably proceeds, the part of the wave between
B and C has a faster group velocity than that of the part between
A and B because of the dispersive property of vg (see Fig.l).
This means that the wave is modulationally unstable.

Next, let us consider the self-modulation on the basis of
existing theory. Writing the amplitude of the carrier wave with
linear frequency 0 and wavenumber ko in a form‘such as

5_3_; = (x,t)expli(k x - w_t)], | )

a =

the evolution of the wave envelope can be expressed by means of

the nonlinear Schrodinger equation a59

13y p 2y gyl = o, (2)
3¢

where new coordinates such as

£ = x - vgt and T = t, (3)
are used. The coefficients p = (1/2)_(82w/3k2)o and q = —(aw/alwlz)o
and ithe group velocity Vg are the values evaluated at y = 0.
Introducing two real variables p and ¢ such as

¥ = p'/?exp(ifods/2p) , | (4)
and substituting this expression into eq. (2), weihave a pair of

equations for p and o as

%% + aégo) =0, (5a)
and : |
% t o %‘% = 2pq g—g + Pz-gf[p“l/zg—g(p‘l/zg—g)]. (5b)
Here, if we write the variables p and o in forms such as
C p=o,+ 60 expli(RE - o1)] (6a)
o =0, + 80 expl[i(KE - QT)] - (6b)

and substitute these into the linearized equatiohs of (5a) and

(5b) , the dispersion relation for K and  as follows,




Q= Ko + (—2pqpo)1/2K + 0(K?), (7)
is obtained, provided that o is finite. Eq.(7) indicates that
the wave envelope can be modulationally unstable for small K if
Pq > 0. Applying this theory to our experiment, we can show p < 0
from Fig.l and g < 0 from observed nonlinear waveﬁumber shifts
and hence pq > 0.

In the case that pg > 0, the growth rate of the modulational

instability is given from eq.(7) as

Y = (2pap,)'/?K, (8)
which is proportional to K and pol/2 (= wo), where wo is the
initial carrier amplitude. Further, under the same condition eq.
(2) gives a solitary wave solution, which tends to zero for |£|

+ o, This solution is of the form a59

¥ = ygsechl(q/2p) */?y _Elexpli(qy_*/2)1]. (9)
Hence, the width of this solitary wave AE is such as
AL = 2.6(2p/0) 2y, (10)
which is inversely proportional to its amplitude ws like a usual

solitary wave10

. However, the velocity of the solitary wave does
not depend on ws and is equal to the group velocity vg. Applying
eqg. (10) to our experiment, the width Af is estimated to be AE
2 cm, which is several times larger than the carrier wave wave-
lengthl(ko * 0.4 cm). Further, assuming K = 27/ (2Af), we can
estimate the average frequenéy corresponding to these solitary
signals as Aw/27 = vg/(ZAE) N~ 60 kHz. This is very close to the
average frequency of the low frequency peak observed in spectra
(see Fig.4). Using eq.(8), we can also estimate the growth rate

as y n 105 sec-l, which is close to the observed value (Yob =

vg/L N2 x 10° sec_l, where L is the growth length). From these

results we conclude that the solitary signals on the carrier wave




envelope, corresponding to the low frequency peak in spectra,

are generated by the modulational instability. On the other hand,
the upper and lower sideband peaks near the main peak at w, can
be considered to result from the nonlinear mode coupling betweén
the carrier wave and low frequency wave thus generated.

In cpnclusion, we have described experiments on the self-
modulafion of the fast ion beam mode. The experiments show that
in an ion beam-plasma system with beam velocity vy, v Cs only the
beam mode is observed at far distances from the excitation plane

and its nonlinear properties are well studied. Further, at large
.amplitudes the amplitude-modulation of the beam mode, being a |
carrier wave, as well as the nonlinear wavenumber shift is ob-
served to be induced by nonlinear effects. As a result of the
amplitude-modulation the carrier wave envelope splits. into a train
of wave packets. Such observational results including the ones
obtained from spectral analysis are well explained by existing

theory on the modulational instability.
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Figure Captions

Fig.l.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Dispersion relation of linear waves in an ion beam-plasma
system with beam velocity Vp 4y CS. Here, computation is
made for vy = 1.1 CS, density ratio Nb/Ne = 0.15, temper-
ature ratios Te/Ti = 5 and Te/Tb = 15. F: fast ion beam
mode, S: slow ion beam mode, A: ion acoustic mode. Dis-
persive phase velocity vp and group velocity vg computed
for the same condition are also given.

Raw data of the nonlinear wavenumber shift and amplitude
of a large amplitude carrier wave as function of distance.
Carrier wave signalslevolving with distance x. These are
obtained at wo/2ﬂ ~ 587 kHz and vb ~ 1.4 Cs' Here, the
applied rf voltage (top trace) is externally modulated

at 620 Hz,

(a) Frequency spectra of signals received by a probe at
various rf voltage Vpp’ (b) Frequency spectra of received
signals evolving with distance x.

Initial carrier (A), low fréquency (O) and lower side-

band (®) wave amplitudes as function of the rf voltage

V L]

pPp |
Amplitudes of the carrier (A), low frequency (0O) and
lower sideband (@) waves changing with distance x.
Typical carrier wave énvelope splitting into a train of
wave packets.

(a) Schema of wave packet. (b) Histograms for the local
carrier frequencies on the upstream and d@wnstream sides.

\
Here, Wy is the frequency averaged over the wave packet.

Model of evolving wave packet.
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