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ABSTRACT

The method of correlation functions together with a Fourier-transform
technique is used to construct self-consistent equations describing the
adiabatic interaction of coherent waves with weakly turbulent plasmas. The
formalism is applied to study the propagation of a low-frequency ion-acoustic

wave in the presence of high-frequency ion-acoustic turbulence.

It is found that the turbulent waves increase the phase velocity of the co-
herent wave in the case where they all propagate so that each has a velocity
component in a given direction. In the opposite case, the phase velocity of
the coherent wave increases or decreases depending on whether the turbulence

peaks at low or high values of kXD.
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I. INTRODUCTION

In laboratory as well as in astrophysical plasmas, one can frequent-
ly encounter situations where coherent and turbulent waves are present
at the same time. Such a wave coexistence may arise owing to different
causes: coherent waves are excited as a result of the condensation of
the turbulent wave energy in the wavenumber space (modulational instabi-
lity), they are injected into a turbulent plasma for diagnostic or heat-
ing purposes, and both kinds of waves appear spontaneously due to the
simultaneous operation of different instabilities. As the coherent
waves evolve in the turbulent system, they produce modulations in the
spectral distribution of the turbulent waves. 1In turn, the turbulent
system affects the behaviour of the coherent waves: their dispersion
relations, amplitudes and phases. Consequently, a self-consistent de-
scription of the interaction between both kinds of waves should consist
of a set of coupled equations: dynamic equations for the coherent waves
and a kinetic equation for the turbulence. The formulation of such
equations is a difficult problem in general. However, it can be simpli-
fied considerably if the interacting waves are far apart in frequency-
wavenumber space and the turbulence is weak. One then deals with what

. . . . . . 1
1s known as adiabatic wave lnteraction with weak turbulence.

A problem of this type was first considered by Vedenov and Rudakov.2

On making use of the Lagrangian formalism and semi-quantum mechanical
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approach, they derived self-consistent equations describing the adia-
batic interaction of ion-acoustic waves with the electron Langmuir
turbulence. Since then a number of papers have appeared treating si-
milar problems in different contexts. However, in most of them a rather
heuristic approach is used: a turbulence is described in an ad hoc man-
ner by means of the Liouville equation for the distribution function of
turbulent waves, while coherent waves are described by means of equations
of the hydrodynamic type in which a ponderomotive force associated with
the turbulence is also introduced in an ad hoc manner (see e.g. Ref. 3).
A more systematic approach was adopted by Sakai et a1.4, and Kono and
Yajima 3 who have shown how the reductive perturbation method6 can be

extended to treat the problem in question.

An objective of the present paper is to show that the method of corre-
lation functions together with a Fourier-transform technique offers a
simple systematic alternative to the approaches cited above. In Sec. II
the method is illustrated on an example where the master dynamical equa-
tion describing the behaviour of a physical system is a general three-
wave interaction equation. The formalism developed is then applied in
Sec. IIT1 to study the propagation of a low-frequency ion-acoustic wave in

the presence of high-frequency ion-acoustic turbulence.
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II. THREE-WAVE INTERACTIONS

Let us consider a weakly-nonlinear conservative system whose state
is described by a variable ¥ which obeys the following dynamical equa-

tion in wavenumber space:

.2 — ‘ (1)
Cae=nly =2 Vopppls B

Here wp is an eigenfrequency, V pt.p" is an interaction kernel, and
? s

the index p signifies the wavenumber 3. Eq. (1) is in dimensionless
units chosen such that {?PI << 1. Moreover, the quantities WP, wp and

Vp p',p" satisfy the symmetry relations (see e.g. Ref. 3)
L] H

¥
YF = -YIF (complex conjugate), CO“P = - wF )

(2)
VP’I’" r\\ = V"’)f‘; F\ =~ MF)"F) "f’“ = Vf"; _r\) F sdgn,(a)r wP“) .

We now assume that Wp consists of two parts: a coherent one WP = <Wp>

0y
and a fluctuating one Wp = WP - Tp’ where < > denotes an ensemble

average. Our objective is to obtain a set of equations for the

quantity @; and the correlation function gp = <V ¥

1 >
»P PP

A
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On taking the ensemble average of Eq. (1) we immediately find

o)

P vV - =7 117 \ (3)
(3=l ,,Z e (5 B * Fpep).

Further, subtracting Eq. (3) from Eq. (1) we obtain

o\ L T 11 +”"\__ ‘ 4)
SR AP SRR A S A e

f‘

Next, we multiply Eq. (4) by Wp" and the corresponding equation for

yp" by @p. Adding and averaging the resulting equations we find

s -2 e CF o

(5)

+/ﬁr)f‘;r-/p‘) + (PHP“)},

v

f\' L3 . 3 3
where h = <Y ,Wp"> 1s the triple correlation function. The

= b4
PP’ ,p" PP
same procedure as that used above can now be applied to construct an

equation for the triple correlation function. It yields
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(4f‘at w “~Ur )/&f’ifi Z{%ﬂf’r\ (f ;F)rm)r_r\

g (et ¢ Greep)}

Ny ’\:
where f v oy = <Y ¥ ¥ ",>is the quadruple correlation func-
PsP sP »P pp pP'DP
tion. We have discarded the terms of the order 0(Yh) in Eq. (6) since
for our purposes it is sufficient to obtain the triple correlation

function correct to O(¥%).

It is obvious that the equations (3), (5) and (6) do not constitute
a closed set. In order to achieve a closure we assume that the en-

semble considered is a quasi-Gaussian one. We then have (see e.g.

Ref. 7)

frrr‘; ! g/r ?;) 3?)”“ ??:Fm +%f"’ 8?),’“ . (7

On substituting f from (7) into Eq. (6) we obtain

("""‘"w wv r)}l,br’ w= f’l” w = Z{ f-”"r (3?)’9\‘ 379“,‘ r__lo\
(8)

Yo Bprp)* (bp)* (pp ),
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As will be verified a posteriori, the functions h and g vary on dif-

ferent time scales such that

L% 1% .g..?:/ |

On making use of this property, Eq. (8) can be integrated on the fast

time scale to yield

Appp = Rupp Bepsp®

(10)

Ark‘r“ - ')) 1

2 P) Y —

WprOp+@p) [y s0p

where we have assumed that h -~ o for t » - w,
We now combine (10), the right-hand side of Eq. (8) and Eq. (5). After
some algebra we finally find

a —
(.____.w..w\>3/‘..2§:yf( v ug/| v
A U] - -

I g P (Y i %,r)rf PipP (D

PR %r‘-r") = T
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where

"35 {Wr ad r»r"’r‘ P AEE Fr

| Il 1 u v 12)
(B st ) 2 s Uy dppspep
X tp UL AL l/' vl “A U W
e xS T T
X %__ru) ru__rm)} ‘
In what follows, the wavenumbers Ef, c_f' etc. refer to the coherent
field while the wavenumbersz; k' etc. to the fluctuating one. We now
> -
9| <1k, [W |« [yl (13)
and
nJ
(14)

<
It

NS
I
o
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On applying (14) to Eq. (3) we have

where we have defined

(16)

M,a, = ek 9ok

The reason for this definition will be discussed shortly. Expanding the
> >
right-hand side of Eq. (15) in Iq[/|k| and keeping only the lowest order

terms we arrive at

2 \TTF W 1Ur . — 17
aon)Yy "% by 1 Yy "% -4 A//w .

The application of (14) to Eq. (11) yields

("%t e 7! *QA—Wz)M&,qf "2% ?71 (%’/2%,7)) Th-9+h

(18)

. + | \ I \
xN&-?/z;?"%' l4/:2“,(&,9’, 92-9-k M** 9’/2:7"7’)

- Y2+ kYo -k
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- >
On expanding again in [q[/{k[ and keeping only the lowest-order non-

vanishing terms we finally have

N L TAR )
Wi q +,,,,r..._._./\& 20 2. ¢{/\i,,.¢($-$)'5‘“(‘/w,xq

F
N Y “‘-’Nﬁ»‘m’ 4 Vo
* ‘&Uqaf’ r:ﬁ&z B '*Qqajk 9? ’3‘15’ - ";9} J@Jﬁl&-‘h

xg(w =Wy ‘){/V 1 =R 3ign, (W, Wy )/V '/V ) v}
where the symmetry relations (2) have been used. Equations (17) and
(19) constitute the desired set for the unknowns ¥ and N . From

k,q

the structure of this set it is easily seen that the condition (9) is

equivalent to the assumption (13).
Let us now justify the definition (16). It is obvious that the corre-

lation function gq/2 + k,q/2-k is related to the two-point spatial corre-

. . N> N > . .
lation function C = <¥(x)¥(x')> by the following relation

p.p P (20)
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On the other hand, it is well known that for a homogenous turbulence
(in the absence of a coherent wave) the two-point spatial correlation
function is related to the spectrum N by

k

77 = =3\

Chom = Z Nk @’;A.(x—x ) . (21)

In the presence of a longwavelength coherent wave (a weakly inhomoge-

neous turbulence) the two-point correlation function can be represented

> > !
in the form C = C(x~-x', 5

), where the dependence on the second argument

is weak. Transforming into the Fourier representation we thus have

7, N
¢ ZN(?&-?) AR (x=X")
= —~)e
< (73
(22)
A ®  mncm— ’X*K‘
=2 N "7
Ag9 7
Combining (22) with (20) we obtain (16). Evidently, in the absence of
a coherent wave we have N =N § » and Eq. (19) is reduced to the

k,q k 'q,0

well-known kinetic equation for three-wave interactions (see e.g. Ref. 3).
Concluding this section, we would like to point out that the method de-

scribed above can easily be extended to include four-wave, wave-particle

and wave-particle-wave interactions.
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III. INTERACTION OF ION-ACOUSTIC WAVES WITH ION-ACOUSTIC TURBULENCE

Let us now apply the formalism developed in the previous section to
study the propagation of a low-frequency ion-acoustic wave in the pre-
sence of high-frequency ion-acoustic turbulence. First, we need to
establish an appropriate master dynamical equation. We shall consider
a collisionless, nonmagnetized plasma composed of a cold ion fluid and
a warm electron fluid. The nonlinear evolution of ion-acoustic pertur-
bations about a uniform, velocity-free equilibrium may then be described
by the equations of continuity and momentum transfer for the ion fluid,
the Boltzmann distribution for the electron fluid and the Poisson equa=
tion. For our purpose it is sufficient to keep only quadratic and cubic
nonlinearities in these equations. It can then be shown by means of
standard technique8 that they are equivalent to the following equation

for the wave variable C

(3emon)p =2 Yy G Gyp

(23)

+§merCCQH

ta )

- fef B B g By
)
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V um:-_...l-._Q..z_&)_t_ 1 + A + 1 _.:l (25)
hh’ P’ P (7: (3; 6 b- "\ (3',_ '.n (3 r_r\\\ )

=——£s‘?"’-(l°a\ BI" - (4"’ (P )‘3)2)1/2 . (26)

Here e, Te and >\D are the electron charge, temperature and Debye length,
respectively, and c. is the ion sound speed. The normalization of the
wave variable is chosen in such a way that in the linear approximation
Cp -—-‘.Fp, where‘-Pis the electrostatic potential. In Eq. (23) we have
dispensed with the mode corresponding to the eigenfrequency —wp. The
reason for this approximation will be seen soon. It is worth mentioning

that Eq. (23) can also be derived from the Hamiltonian formalism.9

The coupled. equations for the coherent wave and turbulence can now be

written down by analogy with the case treated in the previous section.
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Confining ourselves to the lowest order terms inEq and Ik q =
1

<8 E > btai
q/2+k q/2—k we O ain

(i3e-wy) 57, = % V%,&,J« I,k)q,

+3'§°r‘ V'%'&f’k C?‘ I"W"?" )

(27)

F ek

where the symmetry relation V—p,p',—p" = _Vf,P',P" has been used.

We now assume that in the absence of the coherent wave the plasma
is in a stationary state in which only the turbulent waves with positive
phase velocities along the z-axis are excited. This is a typical situation
encountered in experiments. Next, we assume that a small amplitude co-
herent wave with a positive phase velocity along the z-axis is injected

into the plasma. The interaction of the coherent and turbulent waves is

6 + (1)

then described by Eqs. (27) and (28). We t I I
y Egs. (27) (28) pu %q,0 K,q

q(t) =1 (),

k,
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where lIk(;)|<<I , and linearize Eqs. (27) and (28) to obtain
3

k
n - )
AW =
300Gy = 2 Vyuoh Ly
_ (29)
+ 3C7’ % V;?’}'k/"h Izk
R, IWg W = ’AIA
ot~ =- =
(3 'Y ?)I;w, 1% l,/&.,y,,k Y 0
, Ik Mu,.(
3
u)‘t P 42 ;?(34Q )
where the symmetry relation
V“ ! — "(:)"L (3 V )
i) Wp (3?“ kPP
has been used. On assuming the time dependence of Ea and kaé) to be of
the form exp(-iQt) we find the following dispersion relation for the co-
herent wave from Eqs. (29) and (30)
oy =5 3V gn L - Vot o
=W, = 3 1 Ry AWy =
“y - "f'} Y
(31)

Ay T W
X{ uf w: u; Ry- 3)} %}
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where on the right-hand side, which is small, we have replaced Q by
wq. It should be noted that the term with the denominator in Eq. (31)

oW

. k - . . > >

is regular since wq - — + q # 0 for all finite q and k. Thus, there
ok

is no "Landau damping'" of the coherent wave due to the turbulence.

To proceed further, we evaluate the interaction kermels V's. On

combining Eqs. (24) and (26) we have immediately

—s—»

Voo =3 o {0k (1428, FE sn ) =24

V (32)

EXAZY Y

while Eq. (25) yields

— 1 [e
v”/%’&)"k o _5(72 ;% . 33

We have approximated everywhere Bq 1. On substituting V's from

Eqs. (32) and (33) into Eq. (31) and integrating the term proportional
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ol

to — by parts we finally obtain
k

-0y = %"(‘%Y% I, {2 o5 Ry, (3-4}) + blesOl 3,

x("lfﬁz +3(:12 —2(2.1+2)+ R (-42(5124.3(32 *8(514-40(3; (34)

A 2 -+ e“‘ -+ 1!31__, :}
1-leosBl@} - (1-losBI 33 % V2

where

g = (3063 + CRT - 90y + iy ~ 235 +1)

(35)
1 =-88,+ 60y -80F + 10, - 86; + By -7
e 2 ”

-2 . -6
-P.2 Egk"“ (s*j‘ + -gr (341 )

and 6 is the angle between k and 3.

The dispersion relation (34) may be further simplified if we assume
that the spectrum Ik is isotropic. On performing the integration over

the angle 6 in Eq. (34), and introducing the dimensionless wave energy
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density by means of the relation

W

~ 2 2
M:.—. _;L_’%- =Ik(3&(-‘%—) , (37)

where n is the particle density, we find

_Q:c\),;,('{-l»%@F(ﬁ,&)) ‘ (38)

Here F(Bk) is a form—factor defined by

Fla) = 0; (-8B, +6B, ~6p, + L3y -R)

@, (b +3R, -34% +3) + F(1-BF +6f) 1N

+ (3 ("8(32'4.6{3;"_@(5; +j(5; ,1,(3;'; *2(3;‘1)%(4-(3:) (39)
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Formula (39) may be simplified in two limiting cases: kAD << 1 and

kAD >> 1. We have

(AL 4+ 2 (BAL), ko<1,
F(ﬁ&) ~
1@+, A >1.

The behaviour of the form-factor for intermediary values of kAD is
plotted in Fig. 1, where the broken lines represent the approximate
expressions (40). We observe that the form-factor is positive over
the whole range of kXD-values. Thus, in the case where the coherent
and turbulent waves propagate with positive phase velocities along the
z—axis, the phase velocity of the former increases due to the inter-
action with the latter. In order to obtain a quantitative result the
integral in Eq. (38) must be calculated numerically for a given
spectrum Ik.
Let us now turn to the case where the z-components of the phase velo-
cities of the coherent and turbulent waves have the opposite sign. If
we include the mode with the eigenfrequency —wp in Eq. (23), write down
a similar equation for this mode, and repeat the foregoing analysis we

find that the dispersion relation for the case in question is obtained

(40)
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from the previous one just by changing the sign of Bk, Thus, we have

_Q_=w?<1+%\/\/kl:(~ﬂ*\) . (41)
It is straightforward to show that

2%2-%‘ , kA «q

F(.(gk) A (42)
FU-p , Ahw 1,

The behaviour of the form—factor F(—BE) for intermediary values of

kAD is plotted in Fig. 2, where the broken lines represent the approxi-
mate expressions (42). We see that the form-factor changes its sign

at kAD % .65 approximately. Consequently, if the spectrum peaks in the
region kAD < .65 the phase velocity of the coherent wave increases due
to the interaction with the turbulence. On the other hand, if the spect-
rum peaks in the region kAD > .65 the interaction results in a decrease

of the phase velocity of the coherent wave. Once again quantitative

results can be obtained numerically from Eq. (41).
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Finally, we comment on the results obtained recently by Kono and Yaji-
malo, using a method that is different from ours. Their analysis is
confined to the case where kAD << 1. On putting SP = 1 a priori, they
found that the phase velocity of the coherent wave decreases due to the

interaction with the turbulence. Our results differ from theirs, essen-

tially due to the presence of the logarithmic terms in Egs. (40) and (42),

dw
. . k > . .
which stem from the denominator w - -3 - . In their case this deno-
3k

. . > - . . . .
minator was just wq -k - qcs/k which is singular. It is not clear how

this singularity was eliminated.

IV. CONCLUSIONS

We have shown that the method of correlation functions together with a
Fourier-transform technique can be used to construct self-consistent
equations describing the adiabatic interaction of coherent waves with
weakly turbulent plasmas. In our opinion, the advantages of the method

are to be found in its simplicity and lucidity.
We have applied the formalism developed to study the propagation of a

low—-frequency ion—acoustic wave in the presence of high frequency ion—

acoustic turbulence. We have found that the turbulent waves increase
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the phase velocity of the coherent wave in the case where they all
propagate so that each has a velocity component in a given direction.
In the opposite case, the phase velocity of the coherent wave increases
or decreases depending on whether the turbulence peaks at low or high
values of kAD. In either case there is no "Landau damping" of the co-

herent wave due to the turbulence.
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FIGURE CAPTIONS

Fig. 1 Form—-factor F(Bk) versus kAD. The broken lines represent

the approximate expressions (40).

Fig. 2 Form~factor F(—Bk) versus kAD. The broken lines represent

the approximate expressions (42).
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