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ABSTRACT

We consider the temporal evolution of ion-acoustic turbulence induced by
a constant current in a two-—temperature plasma (Te>>Ti)' The evolution is
described by a quasilinear model which includes resonant and nonresonant wave-—
particle interactions. The resonant interaction, through its local features
in velocity space, requires discrete particle distribution functions which may
respond locally in the resonant region. We choose a finite element discretiza-—
tion and show, by comparison with the frequently used approach of evolving Max-
wellian distributions, that the latter may produce both quantitatively and quali-
tatively erroneous results. We then show that the high energy ion tail, for
whose formation the nonresonant interaction is essential, may quench the ion-
acoustic instability in the way proposed by Dum and co-workers when inter-

preting their particle-in-cell simulation results.
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I. INTRODUCTION

Current driven ion-acoustic turbulence and the anomalous resisti-
vity related to it has been one of the most fundamental problems of
plasma and controlled fusion physics as well as of astrophysics in
the last two decades. Experimental work is currently being done on
two different heating schemes for controlled fusion devices which re-
ly, at least in part, upon the anomalous resistivity due to ion sound

b

turbulence. On the one hand, it has been shown that large toroidal
devices might be turbulently heated through a skin layer by an alterna-
ting electric field. On the other hand, experiments on relativistic
beam heating of plasmas indicate that the return current of drifting
plasma electrons gives rise to ion-sound turbulence which enhances the

*"  The ion-sound turbulence might also

dissipation of the beam energy.
be important in laser fusion where it could limit the electron heat flux
5 . e s

to anomalously low values, As far as anomalous resistivity under astro-

physical conditions is concerned, it appears that it must usually be con-
co . 6 . . .

nected with ion—sound turbulence. Fast plasma heating in chromospheric

flares, for instance, and in the vicinity of pulsars may be explained in

. 6 . . .
this way. Moreover, the anomalous dissipation due to 1on-sound turbu-

lence may play an important role in the formation of collisionless shock

waves.
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. 3,4,7 . . . s
Various laboratory and computer simulation experiments , as

. . . 10 . .. . .
well as analytical considerations , indicate that high energy 1ons
are an important feature of ion—acoustic turbulence. Up to now,
theories in which high energy ions are considered, suffer from serious
drawbacks. It is, for example, difficult to understand how the one-

. . . . 1
dimensional coherent trapping theory proposed by Manheimer and Flynn
could be applied to a basically multidimensional spectrum as it is seen
. . 8,12 . " . .
in experiments. On the other hand, in the theories involving reso-

.1 5 . . . .
nance broadening , which 1s a higher order effect in the framework
of weak turbulence theory, the most important lower order effect, name-
ly local quasilinear flattening, is not taken into account., In these

theories the ion tails are assumed to be Maxwellian and therefore can-

not exhibit local quasilinear flattening.

The objective of the present paper is to investigate numerically the
temporal evolution of ion-acoustic turbulence driven by a constant cur-
rent. Using different physical models and different numerical approxima-
tions, we will be able to draw conclusions concerning their relevance and
their applicability. In Sec. 2 the basic equations are given. In Sec. 3
we assume Maxwellian distribution functions allowing the temperatures and
a discretized wave spectrum to evolve in time according to quasilinear
equations. These equations may or may not include nonresonant wave-par-
ticle interactions. In Sec. 4 we replace first the Maxwellian ion distri-
bution by a one-dimensional finite element distribution, which allows for
local quasilinear effects, and show that the results differ qualitatively

from those in Sec. 3. The case of a two-dimensional discretized electron
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distribution function18 is discussed afterwards. A scaling law for
the ion tail formation by nonresonant wave-particle interaction is
obtained in Sec. 5 on the basis of a one—dimensional model. The model
includes Maxwellian electrons, finite element ions and finite element
waves. In using this model, however, no saturation is obtained. The
saturation is the topic of Sec. 6, where a two—dimensional discretized
electron distribution and a one-dimensional discretized ion distribu-
tion, with some two-dimensional effects included, are used. Finally,

a short discussion of the results obtained is presented in Sec. 7.

"It should be mentioned that the present paper represents a kind of
a diary of our studies into ion-acoustic turbulence of fully-ionized
plasmas. We feel that a unemotional tale of our calvary towards an
at least partial answer could profit to others. Bad models should be

known as much as promising ones.

2. BASIC EQUATIONS

We consider a uniform, collisionless, unmagnetized plasma consisting
of hot electrons drifting with a constant velocity Ye = Ve e relative
to a cold ion background (Ti << Te). The electron current generates
ion—acoustic turbulence in the system, which results in anomalous re-
sistivity. The constant current is sustained by an electric field

E = E(t)gx varying in time in proportion to the resistivity.
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The problem stated here may be studied on the basis of simple
quasilinear equations which include resonant and nonresonant wave-
particle interactions. For a complete description nonlinear wave-
particle-wave processes would have to be included as well. The aim
of this paper is, however, to show that the nonresonant interaction
of ions with waves is an important feature in ion—acoustic turbulence

. . 8 . . .
as anticipated by Dum et al. For simplicity, we therefore neglect

the nonlinear processes,

We will use throughout the paper the following dimensionless units:

pe’ — T deo e eo
Teo P
L e TiTeo’ E~> E, é%->4ﬂnTeokdeo£k’ (1
ex = -
deo
f(s)+ n f(s)
vP
the

the Debye length

Here is the electron plasma f A
er wpe pla requency, deo

evaluated with the initial electron temperature T , and ék is the
eo k
spectral distribution associated with the ion~acoustic oscillations.

The thermal velocity is given by v = Te /m , where m 1is the
o e e

theo

electron mass. p =1, 2 or 3 indicates the dimension of the velocity

or the wavenumber (k-) space. e = -1 and y = y, = m /m. are the di-
i e 1

mensionless forms of es/ms. With the above stipulations the equation

describing the evolution of the spatially-averaged distribution function
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f(s)(g,t) for species s reads
T SR O B Tk o () )
at IV = oV M= oy
where
D_.(S) - B__(S) N §(S) (3)
The resonant part of the electron diffusion tensor D(e) is given by
p .
Efe) = 27 [ d k 5# %;K Sk + v - wk)a (4)
and the nonresonant or sloshing part by
(e) Pk k:k 1
s =2 [ v& 57 — (5)
where the growth rate
o [Py ke E s -k 6)
Yk , 9€ ] Vo2t %y W = 20 ¥ (
k — — —
dw "
k
The integrals in Eqs. (4) and (5) are restricted to kz > 0. F(v,t) is
. . . . . _ (e) (1)
the combined distribution function, F = f + uf . The wave frequen-—
cy w, is given by e(k,wk) = 0, where
1 P k- %%
elw) = 1-g7 [V PET= (7

The ion diffusion tensors 2‘1)’ g(l), and §Fl) are obtained by multi-

o - @),

plying the corresponding electron tensors by u2 e.g




Finally, the evolution of the spectral distribution is described by

aEL
- - ZYKEE . (8)

The Egs. (2) - (8) will now be solved under several different assumptions

in the following sections.

3. MAXWELLIAN PARTICLE DISTRIBUTION FUNCTIONS (moment approach)

The main assumption here is that the particle distribution functions

maintain a Maxwellian shape in the course of time, i.e.

2
(v=V )" i
1 1
£ oL e -1 (9)
(27) 2 22 |
" Vihs ths _J
> L
where v (t) = T? and v, .(t) = (uT.)%. We have assumed one-dimensionali-
the e thi 1

ty, an assumption which does not qualitatively affect the results as long
as we maintain Maxwellian distribution functions. The same remark holds
for the additional assumptions which we want to make here, namely

2 2 .
uTi<<(m/k) §Ve<<Téo and Vi = 0. To lowest order therefore, we can write

the real part of the usual dielectric response function

1

EE—— (10)
k2T (t)
e

2
e(k,wpt) =1 - p/w +

instead of Eq. (7).

Since our study is restricted to the case of an imposed constant
current, Ve = const, the evolution of the particle distributions is fully

described by the evolution of the temperatures. The pertinent equations

may be derived from Eq. (2) by taking the second moment and
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using the above-mentioned approximations

2

. v r & ¢ i
' 2 2 k~k
Te = - 57 ) ?%'(1 i} VE) * ?'%; ' 2 (o
V2n Te / € Te ! k

2

) v < o, ¢
) 2
T, - = 573 | 7§'(1 ) VE) VE _‘7¢ ( iy, £, 1+ - (2
1 \/ZTT Te J e e , J kT

The dot denotes time derivatives and ¢k = wk/k is the phase velocity of
the waves. The first term in Eq. (11) stems from the resonant interac-
tion, Eq. (4), the second term from the nonresonant interaction, Eq. (5).
With A = 1, Eq. (12) gives ii due to both resonant and nonresonant inter-

actions. The effect of resonant interaction can be singled out by choos-

ing A = 2.

For a numerical treatment of Eq. (11) and (12) together with Eq. (8)

a discrete spectral distribution E; is needed. 1In the context of the

present section one could just opt for the usual equally spaced discrete
13,18 . . ..

waves. Instead of this, however, we introduce a finite element

approximation as it will be required in subsequent sections for con-

Vergence reasons, i €.
t = § 5 t k

The piecewise constant basis functions Xz(k) are defined by

(1 k£ €k ek,
xg (k) = $
i 0 elsewhere y

(14)
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i i - < Cevvnnsee< k . is-
assuming some discrete k-mesh kl kz L+1 The dis

crete form of Eq. (8) then reads

= = e 15
g-=1,& -1, , L (15)
where
k2+1
'3 k2+1 - kg k
ky

The Egs. (11), (12) and (15) are now solved numerically, stepping in
time by means of a simple time centered finite difference scheme.

The k—-integrals from kg to k are evaluated numerically by Simpson's

e+l

rule.

In Fig. 1 the temporal evolution of the electrostatic fluctuation

energy

P
P £
W = (17)
g j@mP  k

is shown together with the evolution of the ion temperature, Ti' The
qualitative behaviour of these quantities is quite insensitive to whether
only the resonant interaction (A= 2 in Eq. (12)) or both the resonant
and nonresonant interactions are active. Moreover, the qualitative be-
haviour does not depend on the initial conditions as long as W(t=0) and
Ti(t=0) are sufficiently low. The quantitative behaviour, however, must

evidently depend on the model chosen as well as on the initial parame—
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ters. The evolution in Fig. 1 has been obtained with Ve = 0.12,

2.7 x 10—5, u = 1/1836 and 15 waves,

T =1, T, =0.01, W)
eo io

equally spaced between kl = 0.05 and k16 = 1.55.

The most important feature of the evolution is the fact that the
instability is quenched. The mechanism is easy to understand. The Max-
wellian shape of the ion distribution function being maintained during
the evolution, the ion Landau damping increases rapidly with increasing
ion temperature and eventually overcomes the electron growth rate. This
saturation, however, is entirely unphysical in the case where the ions
merely interact resonantly with the waves. In our model the resonant
interaction affects the whole ion distribution function thus increasing
the number of resonant particles. The slope of the distribution function
in the resonant region being imposed by the Maxwellian shape, the ion
Landau damping must increase accordingly. In reality the resonant
interaction operates locally in velocity space; no bulk heating and
no increase of resonant ions can result, and the ion Landau damping
will always tend to decrease under the influence of mere resonant inter-—
action. The inclusion of nonresonant interaction, which provides physi-
cal means for particle exchange between the resonant and the nonresonant

region, does not render our model much more reliable.

It appears that evolving global distribution functions are of limi-
ted utility in problems where the wave-particle interaction is the do-
minant part of the physics involved. . They might, however, permit reason-
able estimations concerning turbulent phenomena in strongly collisional

plasmas.
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4. DISCRETE PARTICLE DISTRIBUTION FUNCTIONS

4.1 Discrete 1D ion distribution function

We now turn our attention to the local evolution of the ion
distribution function f(i)(v,t), in velocity space. One might argue
that a one-dimensional model should be sufficient, since the formation
of a tail extending primarily in the direction of the electron drift is
expected. This model will at least enable us to study consistently the

transfer by nonresonant interaction, of bulk ions into the resonant

region.

For the sake of simplicity we use as a first approximation a one-
dimensional wave spectrum. As a consequence we have to maintain a Max-
wellian electron distribution function in order to prevent immediate

. . 15 .
saturation due to the formation of a plateau. This is a purely one-

. . . . . 17 .
dimensional effect, which has been treated in detail elsewhere and 1s

not of interest here.

We now derive a discrete form of the one-dimensional ion kinetic
equation, (Eq. (2), that allows for local response. Firstly, Eq. (2)
. . 20 .
is put into the weak form imposing natural (Neumann) boundary con-
ditions on the distribution function. The convection term due to the
electric field Ex’ can be removed by a transformation into the frame of
freely accelerated ions. The corresponding term in the electron equa-
tion may then be considered negligible. The only effect of this approxi-

mation is that the overall momentum conservation is violated. The next
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step is to approximate the distribution function by a finite

element expansion,

M+1 (i)
(v,t) =7 £ b ). (18

m=1 m

(1)

In equations concerning the ions v will always be used to denote v .
X

The basis functions wm(v), are the standard roof functions,

0
VoS V-1
vV o
-v V1SV S Yy
m m1l
Y (v) = J _ (19)
m VoV o
v <
m+1 Vm m " ’ Vm+1
f
L o Vel SV

corresponding to the simplest choice possible for second order differen-

tial equations. A discrete v-mesh, V] SV, S remreenec Va1 is assumed.

Making use of the expansion, Eq. (18), we obtain the discrete version of

Eq. (2)

(1) (1) _ (i) (1) (1)
Amn fn = (Rmn + Smn ) fn m=1,..... , M+ 1 (20)

where the sum symbol over repeated indices has by convention been omitted.
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Further

mn wm wn dv (21)

1) _
A -

is the mass matrix,

. (k)
i)y _ _ .3 XQ' v ot
Rm = "M 5 J W23 ntn (22)

v

the resonant interaction matrix and

3

. (k) ga
(1) _ _ b ' ' (. YkXZ
S - ™ g J dv wm wn}dk 3¢, 3

3 (23)
k'k (v-¢k)

mn 2

the nonresonant interaction matrix. The primes denote derivations with
respect to v. The spectral density has been inserted in its finite ele-
ment form, Eq. (13). The wavenumber kv in Eq. (22) is a function of v
and t according to the simplified dispersion relation, Eq. (10),

ki = u/(v—Vi)2 - l/Te, where we have retained the quasilinearly produced
ion drift Vi' On the other hand, in Eq. (23) the phase velocity ¢k de-
pends upon k and t, (d:—Vi)2 = u/(k2 - T;l). The integraLs in Egs. (22)

and (23) are numerically evaluated using a three-point Simpson's rule

per interval. The principal value is approximated by

P = ol-6h & D (24)
X

The width & is to be taken of the order of the velocity mesh size in

the resonant region, i.e. in the region where x = v - ¢k = 0.

/14




_14_

The Eqs. (11), (15) and (22) form a complete set of ordinary differen-
tial equations in time. In order to show clearly the effects due to

the local response of the ion distribution function in the resonant
region we supplement these equations with the same initial conditions

as in the previous section. The result, indicated by open circles,

is presented in Fig. 2. For easy comparison the result obtained in

the previous section with A = 1 is shown again (continued line). First
of all, we observe that the fluctuation energy does not saturate al-
though the ion temperature keeps increasing with time. The reason

for this behaviour can be found from an inspection of the quantity
<Yi/ye> which is the ratio of the ion damping rate to the electron
growth rate averaged over the wave amplitudes. The nonresonant inter-
action steadily brings new bulk particles into the resonant region where
in principle they could establish and maintain a strong negative slope
and hence induce strong ion Landau damping. The fact that the ratio
<Yi/ye> always remains much smaller than one, however, indicates that
the resonant interaction is strong enough to maintain a sort of plateau
in spite of the ion influx from the bulk. This behaviour is further
illustrated by Fig. 3, where the ion distribution function together with
the fluctuation spectrum is shown at a time near to the saturation point

of the previous model, t = 5000.

We have performed many runs with different initial conditions, diffe-
rent drift velocities and different mass ratios p. In none of these runs
we have found saturation. The absolute value of <yi/ye> was never bigger
than about 0.5. All the runs ended with a "pathological' ion distribu-

. (1) ; . . .
tion: f (v=0) was decreasing in time due to the reversible nonresonant
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heating and due to the particle transfer to the resonant

region until it was as small as the growing plateau. This situation
occurred at fluctuation energies of the order of 0.05 to 0.1. General-
ly we accepted the results as long as the tail did not comprise more than

one third of the ions.

4.2 Discrete ion and electron distributions

Before we discuss the tail formation in detail in the next section,
we first turn our attention to the local quasilinear modification of
the electron distribution function. We hope that the quasilinear de-
pression of the electron growth rate suffices to bring the ratio <yi/ye>
above unity and that saturation of the wave energy results. As mentionned
earlier the quasilinear treatment of the electrons must be more than one-
dimensional. The reason is that in most cases the turbulent ion-acoustic
waves have a broad angular distribution and interact with almost all elect-
rons resonantly. The simplest model which takes this fact into account
and which does not prevent electron run-away is two-dimensional. Ideally
we would therefore like to solve Eqs.(2) and (8) in two dimensions. Un-~
fortunately the structure of the nonresonant interaction term, (Eq. (5),
is rather formidable: each particle interacts with each wave, or expressed
in terms of a numerical method, it means that each velocity cell inter-

acts with each wavenumber cell. This prohibits us from searching for a

numerical solution of Eqs. (2) and (8) as they stand.
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In order to find possible simplifications we note first, that
the ways in which the electron and the ion populations interact with
the waves differ distinctly. Almost all electrons undergo resonant
and nonresonant interactions, whereas only the tail ions are resonant.
The electron distribution function is modified globally by both pro-
cesses which act somehow independantly of each other. Their relative

importance may be estimated from the two terms in Eq. (11) yielding

. 1
(Te) ufTe
_ A . (25)
(Te) A"

For most cases of interest this quantity is much smaller than one and
we therefore neglect the nonresonant term in the electron equation. As
we have already learned we may not do so in the ion equation. Hence
the only way to simplify the ion part is to make it one-dimensional.
This may be achieyed by assuming the distribution function to be narrow

in the direction perpendicular to the driving current, i.e.

f(l)(vx,vy,t) = f(l)(vx,t) 8 (vy). Integration of Eq. (2) over vy then
yields
(1) . . (1)
of
(V’t) = ___a_ (R(l) + S(l>) Bf (26)
at v 3V

where the electric field term has been dropped. Again v stands for v_.
X

/17




- 17 -

The diffusion coefficients are simply

2
. 2 k
R(l) = 2ﬂu2 J d k 5 ék —2(-2—— § (kxv - wk), (27)
(2m) = k =
2
2 k
(i) 2 [ dx £ x @7 1
° B (27)2 YE k kz (k v - w )2 (28)
[i x 1—(
The growth rate Yk Eq. (6), follows directly from f(l) « 6(vy). The
dielectric function Eq. (7), is evaluated consistently with the same
1D ion distribution. Retaining the electron and ion drifts to lowest
order we find
: uk 2 kV
kZ 9 | = 9 X . Xe
w | _ 3 22 (29)
uuli (mli kxvi) k Te
and
uT k 2
) e x
- = 2 2.2 .
(0 = Kk Vy) L+ k2T -k v 2T (30)
e x e e

We now have a complete set of differential equations: Eq. (2)
(e) . (e)

for the electrons where D is replaced by R° 7, Eq. (26) for the
ions and Eq. (8) for the fluctuations. The set is supplemented by
the relations given in Egs. (4), (6) and (27) through (30). With respect
to the discretization it is evident that the most difficult is the re-
sonant interaction between waves and electrons, since both populations
are two-dimensional. A few years ago we described a method which allows

. 1 . . .
us to tackle this problem 8 and applied it to Langmuir turbulence. It

../18




‘_.18_

is trivial to adapt from Langmuir to ion-acoustic turbulence; only
the relations concerning wave dispersion, i.e. the relations for
9€/3w and for w, s Egs. (29) and (30), have to be changed. Moreover,
in the ion-acoustic problem these quantities depend upon time through
Ve(t) and Te(t) and need a frequent up-dating.

In 18 the discretization of the electrons is achieved with pyrami-
dal basis functions Wm(VX,Vy) upon a rectangular mesh subdivided into
triangles. The waves have been represented by equally-spaced single
points in k-space. We found later that the waves should be expanded in
finite elements for technical reasons: the number of input-output opera-
tions from core to disc and back may be cut down by a fair factor in
this way. We give therefore a short description of how the wave spectrum
may be approximated by finite elements. The procedure is analogue to
the one used in Eqs. (13) and (14). The finite rectangular k-space is
subdivided into small rectangles Py with area (Azk)g of irregular size.
The basis function Xz(kx’ky) takes the value one on the small rectangle
o and is zero elsewhere. Integrals over small rectangles 0, are per-
formed numerically using J = 4, 9 or 16 integration points gg with
equal weight according to the precision needed for good convergence.
Each of these integration points may be viewed as one 'single-point-
wave' as used inls. Then the discretized forms of the electron equa-

tions follow directly from there. The kinetic equation, Eq. (2), be-

comes

aled (e gl ey f(e)’ (31)
mn n mn mn n
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where the mass matrix
A J v v dv (32)
m n

the resonant interaction matrix

) _ —
R(e) = =27 Z ééif_ilg 1 g L ds (k .EXE)(k .EEE)
mn ,  J .2 k2 = 3v’ T v . (33)
LG DR k=K
k = %
and the electric field matrix
BWn 2
Cmn - J wm v dv. (34)
X

The quantity ds in Eq. (33) denotes a line element in velocity space

and the straight line T is defined by

LC'Y_—“’ =O. (35)

If we approximate the total growth rate by

__ 2 f 2. (e), (D)
rE = nggjz J ygd k = r2 +r2 (36)
)
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we can immediately write down the electron part, namely

n
(e) _ (e)
T, =) £
m=1 i=1 dw T .
| ko k 1 k=x

1
3 (37)

D~ L
(o]
)
‘ﬁ—-_""’\
Q.
7
o
@
2=
=]

There remains one difficulty: we do not want to impose the field E
but rather the current Ve. E is determined by the anomalous resisti-
vity. One can obtain an expression for E directly from Eq. (31)

using the relation

(v) A e(e) _ g, (38)

Xm mn n

<
[]
e
<
»
Fhoe
[o 9
<
1]

Hence

E - _ Xm mn n (39)

at each instant. In the code the nonlinearity brought in by Eq. (39)

is treated in a time explicit manner which ensures that an eventual

(e)

n

small deviation of the actual drift velocity (vX)mAmnf from the

imposed value Ve disappears within one time step :
w)y r )L [:(v ya £ oy :]
At X'm mn n e

X m mn n (40)

At
E(t + =) =

(v)C f(e)
Xx'm mn n

The discretization of the ion equation, Eq. (26), is done as pre-

viously, Eqs. (18) through (24). The form of the kinetic equation,
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Eq. (20), remains the same, only the expressions for the interaction

matrices, derived from Eqs. (27) and (28) differ :

bE
. (Ak ) k
(i) - - 2 [3 y £ X r} ;1
Rmn H Z 21 {dkx kx2+(ky)% men v = o /k ’ 41)
=1 (8k )
x" L
L
. 2 E (8k ), ( aP
i _ _ B Ly 1 Y
Smn - Z e Jdkx m dv ‘i‘m‘l’n W (42)
=1
(Akx)
The growth rate is given by
[ w I
(i) 2 | ' (1) v, ky |
= ———— |dk — KT ¢ ¥'!' (—
T (8k ), J x | K2 %€ 8e ] n n(kx) _ 1
L™ k= |k, k), | (43)
8k ), “k R

The Eqs. (15), (20) and (31) can now be solved in time using
thérrelations (21), (29), (30), (32) through (37) and (40) through (43).
In Fig. 4 the temporal evolution of the electrostatic fluctuation ener-
gy W, Eq. (17), is shown together with the ratio <yi/Ye>. The initial
conditions for this run are Ve =0.12, Teo =1, Tio = 0.02,

p =1/1836 and W(0) = 4x10-1o. The ions are described within the inter-
val v = [50.03, 0.@] which is subdivided by 38 nonequidistant points.
The electron distribution is given on a quadratic domain, v = E}S., +8;I

and vy = [58., +8;1 which is subdivided into small rectangles of irre-

gular size by 23 lines with v, = const and 18 lines with vy T const
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resulting in M = 500 grid points. As far as the waves were con-
cerned, we used a domain given by kX = [@., 2:] and ky = [}2., +2;],
which is subdivided by 8 lines with kx = const and 10 lines with

k = const resulting in L = 29 waves.

All the runs we made with different initial conditions and diffe-
rent discretization parameters have shown qualitatively the same be-
haviour as the one presented in Fig. 4. We never found saturation.

The wave energy always increased at a slower and slower rate but we
never observed a <yi/ye> larger than one. However, we did not push
these calculations to their extreme limits in time, because after a
set of runs of this kind we were convinced that the multi-dimensionality

would be important even in the ion dynamics.

It was not just the run shown in Fig. 4 that led to this conclusion.
We had also made numerical experiments where we imposed artificial elect-
ron growth rates Ye(t) with ad hoc chosen different time dependancies.
We found that the qualitative behaviour of W and <yi/ye> was once more
the same as in Fig. 4. Only the time scale was influenced by Ye(t).
The conclusion was that our sophisticated 2D-2D-1D-model could not pro-

duce results qualitatively different from those in Sec. 4.1.
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5. ION TAIL FORMATION BY NONRESONANT WAVE-PARTICLE INTERACTION

The results of the numerical experiments with imposed Ye(t)
show that the 2D-2D-1D-model is not significantly better than the
simple model of Sec. 4.1 where the electron distribution function is
represented by a Maxwellian. This latter can certainly not give
correct time scales, because the Yo will always be overestimated due
to the absence of the quasilinear flattening; but it can be used to
study the ion tail formation by nonresonant interactions which, apart

from the time scale, appear to be independent of Yo

Firstly, we demonstrate that the ion tail formation is indeed not
, . . . . . . . 8
inconsistent with the observations made in particle simulations . In
Fig. 5 the evolution of the wave energy is shown together with the

temperatures and the number of ions in the tail,

oo

n, = ff(i)dv , (44)

vo(t)

where v, is given by the phase velocity of the slowest initially un-
stable ion—acoustic wave. n, is therefore the number of resonant par-
ticles. The initial conditions are V = 0.75, T =1, T. = 0.01,
e eo io
-6
p = 1/100 and W(0) = 1.3x10 ~. At t=250 the values of the plotted
parameters approximately coincide with those of the particle simulation

at t=0. At t=500 the fluctuation energy has reached the value 0.039

corresponding to the saturation value in the particle simulation. From
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the fact that the saturation occurs at t=700 we deduce that our

time scales, as expected, are too small. The discrepancy is rough-
ly a factor 3. Let us compare now the other quantities at equal W,
W=0.039. We find Te = 4, Ti/Te = .15, n_ = 0.3, whereas the particle
simulation results are Te = 3.8, Ti/Te = .10, n = 0.2 (7). These
quantities compare favourably. We question the value of n, because
the method of estimation used in the particle simulation case may be
different to that used here, Eq. (44); also in the paper8 n, is given
for the final time, t=1000. It seems, however, that our model over-
estimates the number of hot ions. Nevertheless one can say that the
agreement is remarkably good and that there is no doubt about the
importance of the monresonant wave-particle interaction for the

formation of high energy ions.

Next, we investigate the relation between W and n for different
initial conditions. Since time is meanimgless in this model, it is
removed by plotting nt(t) versus W(t) during the evolution. First of
all, we find that the curve nt(w) depends on neither u nor Ve which is
the result that was expected from the runs with imposed Y, For this

to be possible, the average Yi must always be substantially smaller

than the average Ye, otherwise \f would influence the ion tail formation
through the nonresonant diffusion term, Eq. (5), S(i)aye+yi. The only
parameters which can icfluence the behaviour of nt(w) are nt(t=0) and W(t=0)
themselves. In Fig. 6 the behaviour for three different initial fluctua-
tion levels is shown. All three curves converge for increasing energy.

This once more tells us simply that the dynamics of A has no direct

influence on the production of hot ions. 1In runs with different initial
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temperatures, hence different initial n_, one sees the same phenomenon:
at energies of the order of 0.02 one finds roughly 207 of the particles
in the tail as in Fig. 6. It is noteworthy that the mean wavevector
<k> of the fluctuations at W = 0.02 depends upon the initial temperature
Tio' For the values Tio = 0.01 and 0.03 we found <k> = 1.2 and 0.7
respectively. Since S(i) has a l/k2 dependance, Eq. (5), one would
expect the tail production to depend upon <k>. That this is not the

case indicates that the tail production results from a subtle interplay

between the resonant and the nonresonant interactions.

A further comment on Figs. 5 and 6 is that as soon as we initialize
the fluctuation level to a value above 2x10_4, saturation occurs at an
energy barely 107 higher than the initial level. The first sign of this
phenomenon can already be seen in the case W(0) = 5){10_5 in Fig. 6, where
the curve strangely bends back. It is evident that under these circumstan-
ces our weak turbulence model fails due to the neglect of discrete particle
effects (i.e. spontaneous emission and related friction). It was for this
reason that the initial condition of the particle simulation, W(0) = .005,

could not be used to produce Fig. 5.

From this section we retain that the nonresonant wave-particle inter-—
action produces substantial fractions of resonant particles consistent
with observations. However, as we have already seen in Sec. 4.1 their

distribution remains too flat and does mot induce strong Landau damping.
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6. SATURATION AS A MULTI-DIIENSIONAL QUASILINEAR EFFECT

In the model with a 1D ion distribution the resonant particles
are confined to a domain in v-space which is bounded from above by
v = max(wk/k) =c, = (UTe)%’ thé ion-sound velocity. Such an upper
bound does not exist in a multi-dimensional situation, because the
relation to be satisfied by a resonant particle is merely v * k = w, -
This means that a particle with [v| > c, can interact with all waves

having a k such that v * k = Wy - Hence we may hope that the resonant

wave-particle interaction speeds particles up to velocities higher than
e Ion tails extending up to 2 cg have indeed been seen in particle

. . 8 . . , . . .
simulations . In turn, we can hope that the ion distribution in this
extended resonant region remains steeper than in the 1D case, offering

therefore the possibility of saturation.

In order to test these ideas we incorporate the effect of more
dimensions in the model presented in Sec. 4.2. As mentioned there,
due to the complexity of the nonresonant term, we cannot permit our-—
selves to treat the ions really in more dimensions. The multi-dimen-
sionality, however, seems to be crucially important only for the re-
sonant interaction. We replace therefore the 1D Dirac delta-functions
in R(i), Eq. (4), and in y(i), Eq. (6), by a broadened resonance func-
tion, which takes the multi-dimensionality into account. A reasonable

form of this function may be found by assuming for a while that the

ions are isotropic in two dimensions. Going back then by brute force
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to 1D we find that 6(v—wk/k) has to be replaced by the function

w
k 2 2 2. =%
T vkx v wk /kx )

G(k,v) = § (45)

which has the same norm as the &§-function. The introduction of this

new resonance function into R(l) and y(l), Egs. (4) and (6) respecti-

vely, and the subsequent discretization are straightforward. The non-
resonant interaction term, Eq. (42), is divided by 2, thus accounting
for the two degrees of freedom in which the distribution function is

affected by the nonresonant heating.

Using this new model we have finally found saturation, Fig. 7.
The initial conditions for this run are similar to those in Sec. 3 and

4:V_ =0.12, T =1, T, =0.02, W0) = 4 x 10 *° and » = 1/1836.
e eo 10

The velocity and wavevector meshes are the same as for Fig. 4, We do
not believe that too much importance should be attached to the quanti-

tative result, W = 0.01 and -E = 5.7)(10_5, bearing in mind that
sa max

t

we have made a rather crude approximation to the real 2D situation.
The same remark obviously holds for other quantities such as T , T.,
e’ 1

(e) (1)

and the explicit shapes of f and EL. Since we have completely

. .. 21
documented the general behaviour of these quantities elsewhere for
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a run with Ve = 0.75, Tio = 0.02 and y = 1/100, we restrict
our interest here to the tail formation. Fig. 8 shows the evo-
lution of the ion distribution function in the tail region for the
. . . . 5
run shown in Fig. 7. Up to the saturation time, t = 1.1x107, the
number of particles in the tail increases steadily and the tail ex-
tends roughly up to 2cs(t). At saturation the particle influx from
the bulk ceases leaving the number of resonant particles unchanged in
the further evolution, whereas their energy still increases due to the
. . . . . 5 .

resonant interaction. At the final time, t = 3.6x107, the tail ex-
tends to almost 3cs. The number of tail particles at saturation is
1.57. This figure is roughly one order smaller than what we expect
from our 1D calculations, Fig. 6. There are several reasons for this.
First of all we have divided the nonresonant interaction term by a
factor 2 in order to simulate a 2D ion distribution as mentioned
above. A further factor 2 stems from the 2D waves because for equal
energy increase, W, the 2D nonresonant term is weighted by a factor

2,2 . ..
<kx/k > 2 0.5 as compared to the corresponding 1D term. The remaining
factor 2 may come from the fact that the resonant interaction near to

the bulk is weaker than in the 1D case and is therefore less effective

in evacuating particles brought in by the nonresonant interaction.

Runs with higher saturation energy showed substantially higher
numbers of hot ions. For a saturation energy of 0.06, for example,
we found 207 of hot ions. Even this number is markedly below the va-

lue obtained with the 1D model. A comparison with the values obtained
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in the simulations8 indicates that the 2D model, although some-
what inconsistent, describes the ion tail formation better than

the 1D model. Moreover, the number of hot ions produced with the
2D model depends slightly upoun the electron to ion mass ratio:

with higher ion masses we obtain at equal fluctuation energies less
hot ions. This tendency has also been seen in the simulations. On

the other hand no dependance upon the current Ve, has been observed.

There remain two important topics to be discussed: the non-
resonant interaction for damped waves and nonlinear wave-wave-particle
effects. As far as the nonresonant interaction is concerned, ten

years ago there was some discussion about the sense or the nonsense

of the so-called 'negative diffusion" in quasilinear theory.zz’23

The nonresonant diffusion coefficient, S(l), may locally become ne-

gative whenever some growth rates become negative. In the nonresonant

(1)

region where R = 0 the total diffusion coefficient is therefore ne-
gative, which is obviously a disaster. Starting from round-off and
discretization errors the numerical solution will immediately blow up.
A diffusion equation with negative coefficient describing a physical
phenomenon is an absurdity and must stem from an erroneous handling of
mathematical tools. In the case in question S(i) is locally of higher

(1) (i) _

order than R in an expansion in y/w. The importance of S e-

sides in 1its much larger support in velocity space; the influence of

R(l) and S(l) is comparable only under the integral fdv. S(l) should

therefore only influence the global properties of the distribution
function. Numerically we solve this problem in a pragmatic way. When-
(1), (D

ever R becomes negative in a specific velocity interval we
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replace B/BVS(i)Bf(i)/Bv in this interval by B/Bvs(i)Bféi)/av;

féi)(v) is taken as the Maxwellian having the same momentum and

energy as f(i). By means of this the negative diffusion term is
replaced by a source term depending nonlinearly on integral quantities
of f(i).

With respect to nonlinear wave-wave—particle effects, we believe
that they are not negligible. We find that even resonance broadening
could quantitatively affect our results in Fig. 7. The broadening
evaluated for the spectrum corresponding to Fig. 7 turns out to be
A(wk/k) a.cS/Z. This value is at the extreme upper l1imit for the vali-
ditiy of the theory of resonance broadening. One could anticipate, how~
ever, that the inclusion of induced scattering in our model would not

allow the fluctuation energy to grow to values where resonance broaden—

ing would be important.

7. CONCLUSIONS

We have used different one- and two-dimensional quasilinear models
to study the evolution of current—-driven ion—acoustic turbulence. We
are not able to give definite quantitative answers because on the one
hand, we have not considered nonlinear wave-wave-particle interactions
and on the other hand, because we have treated the effects of the multi-
dimensionality on the evolution of the ion distribution function in an

approximate manner only. We did produce however strong evidence that
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the nonresonant wave-particle interaction is indeed responsible for
the appearance of high energy ions during the evolution of ion-acous-
tic turbulence. We also have shown that these ions may quench the in-
stability by linear Landau damping. As a by-product, we have found
that models which use global particle distribution functions are of
rather limited applicability in problems dominated by quasilinear

effects.

Ion-acoustic turbulence seems to be a very difficult problem in
the sense that a quantitative answer can only be hoped for in a comp-
lete multi-dimensional model including resonant and nonresonant wave-

particle interactions and induced scattering.

b
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FIGURE CAPTIONS

Time evolution of the fluctuation energy, W, and of the
ion temperature, Ti’ according to the model with Maxwellian
distribution functions including resonant (R) or resonant

and nonresonant (R + NR) particle interactions.

Time evolving fluctuation energy, W, ion temperature, Ti’
and growth rate ratio, <yi/ye>, according to the models with
a Maxwellian ( ) or with a discretized (©9°9) ion
distribution.

i
(D)

Typical discretized ion distribution function, (v), and

wave spectrum, (wk/k = v), in the 1D model.

Time evolution of the fluctuation energy, W, and of the growth

rate ratio, <yi/ye>, as obtained with the 1D-2D-2D model.

Time evolving fluctuation energy, W, electron temperature, Te’
ion to electron temperature ratio, Ti/Te’ and number of t.il
ions, s according to the 1D model with a discretized io1

distribution.
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Fig. 7

Fig. 8

s

_37_

Fluctuation energy, W, versus the number of tail ions,
n_, in course of time for three different initial fluctua-

t

tion levels, W(0).

Typical time evolution of the fluctuation energy, W, and
of the electric field, E, as obtained with the extended
1D-2D-2D model where some 2D effects have been included in

the 1D ion dynamics.

The ion distribution function in the resonant region at 5 sub-
sequent times according to the extended 1D-2D-2D model. The

arrows point towards the values of Cs at these times.
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