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Abstract

An integro-differential equation which describes the anomalous pene-
tration of an oscillating axial magnetic field into a homogeneous,
unmagnetized cylindrical plasma column is solved numerically by a
finite element expansion. Test céses show the good convergence
properties of the method. Available experimental data are compared

with numerical results obtained using the measured parameters.



1. Introduction

An incident electromagnetic field with a frequency w much below the
plasma frequency wp (w ﬁcwp) is strongly attenuated in an unmagnetized -
plasma. This skin effect is usually calculated using the linear, local

constitutive relation
j =c(wWE , (1)

where 0 is the scalar conductivity. But when the thermal motion of the
electrons during one period is not negligible, this local relationship

breaks down and must be replaced by the more general relation1 :
(0 = [ a3 o(x',r,w)E(x',w) , ) (2)

This non-local dependence between j and E means that the current at one
point in the plasma depends on the electric field at all other points
due to the thermal motion of the electrons. It modifies the penetration

of the electric field giving the so-called anomalous skin effect.

The anomalous skin effect in a semi-infinite, unmagnetized homogeneous

plasma with a plane interface, assuming specular reflection of the

electrons at the boundary and a normal incidence of the wave has been
. 2 . 3 ;

calculated by E.S. Weibel™. Blevin et al.” have considered the same

problem in a plane and cylindrical geometry but with a gaussian profile



of the electrons density assuming the existence of a harmonic,
electrostatic potential well to maintain the equilibrium. This
choice was motivated by an existing experimental set-up and by the
fact that with the gaussian profile the analytical treatment can

be carried quite far.

For more general configurations it is necessary to rely on numerical
integration of the coupled Vlasov and Maxwell equations. This is done
in two steps. First the non-local conductivity tensor 2(5’.£'zw) is
computed by solving Vlasov equation, generally by integration along
characteristics. The resulting integro-differential equation which
describes the penetration of the electromagnetic field is then solved.
In this paper we report an example of such a solution which has been
developpgd specifically to help in interpreting avéilable experimental

results.

We consider a straight cylindrical, homogeneous plasma column in an
axially-symmetric high frequency B, field. We assume specular reflec-
tion of the electrons on the plasma-wall sheeth. The ion motion is
neglected. Collisions are represented by a friction term in Vlasov
equation. The non-local conductivity is found by integration along
characteristics. Maxwell equations reduce to one equation for the
azimuthal component of the electric field which is solved by a finite
element expansion, using the weak variational formulation of the
equation. In spite of the singularity of the conductivity kernel at

r = r the method converges well. The measurable parameter is the



magnetic field B, which is obtained by differencing the electric
field. We observe a linear convergence of B, in terms of 1/N for

N ¥ 15, already for cases in which Bz varies by two orders of
magnitude between the axis and the surface. The generalization

to different profiles presents no difficulty as long as the problem
remains one-dimensional and the unperturbed trajectories are not

overly complicated.

2. The Physical Model

A straight cylindrical plasma column is imbedded in an oscillating
axial magnetic field. The penetration of the wave'into the plasma
column can be described either by its oscillating magnetic field com-
ponent Bz(r)exp(iwt)or by the oscillating electric field component

Ee(r)exp(iwt). They are related by
B,(r) = i 2 (rE) (3)
z wr dr 0 i

The plasma homogeneity implies that the conductivity tensor be diagonal

and for our problem we only need the obe component.

The radial penetration of the Ey field is governed by Maxwell's equations

d (14 4
i [}-a? (rEe)] =~ Jp > %)



R
jg = [ dr ogy(rsr") Egx") (5)
(o]

with the boundary condition at the origin
Eg(r = 0) =0, (6)

The conductivity %4 is obtained by integrating the linearized Vlasov

equation for the electron distribution

of of 9f _ VrVe Of _ e 3fg . )

ot v rar r Bvr r Bve m Bve

in which f is the perturbed distribution function and £, the equilibrium

distribution,

The collisions are represented by the relaxation term vf in eq. (7).
We model the unperturbed electronic distribution function by a Max-

wellian

- 2 o 2 _.D _
' th

where Ven denotes the thermal velocity of the electrons

Vth = V2kT/m . (9)

and n is the number density. The ion motion is neglected.



Integrating eq. (7) along the unperturbed trajectories of the elec-
trons, we can express the distribution function f(r) in terms of

Ee(r'). The current density je, given by

jg = —eny [[ dvydvgvef , (10)

is then expressed in terms of EG’ thus giving cee. Carrying out the

calculations the result can be written as

ee(w r ’r) "—"‘T K(r r )

/2 . 2
K(r',r ) bhsrg f dg —22 & 2 {W[srm(/ E-SIHEG + cosa), el

L vp2-sina +-
+z W[Zs(n+1)¢1—r%sin2a ST (/ 2-ginlq + cosa), €]} (1)

n=o

where A, s and € are dimensionless parameters defined by
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R is the radius of the plasma. The functions r » p and ¥ appearing

in eq. (11) are respectively

ty = min(r',r)/R (13)

_ max(r',r) ' (14)
min(r',r)

® 2 t2e 2 exp(-iy)
¥(x,y) = fodttze t (15)

The first sum in eq. (11) means that we have to sum over all possible
combinations of the plus and minus signs. The parameter s defined in
eqs. (12) can be regarded as the factor of anomaly of the skin-effect :
s becomes infinite if the thermal effects are neglected. Note that
the kernel Gee(r,r')is symmetric and has a logarithmic singularity at
r=r' (p=1). Substituting eq. (11) into (5) and (4) we obtain an
integro—différential equation for Ee(r), with the boundary condition

(6) and the condition that BZ(R) is known.

3. The Weak Form of the Electro-magnetic Equation

To solve numerically eq. (4) we first derive its weak form, by multi-
plying eq. (4) with rg(r), where g(r) is an arbitrary trial function of

class C and such that g(0) = 0, and integrate over r.



This gives

R R R
1 . ] 1 1
fodrrg(r)é%-;-é% (rEg) = i/R3 fodrfodr rg(r) K(r,r') Eg(c') , (16)

By partial integration of the left-hand side we obtain

R dr d d i RE -
[ T 3 e FHlrEg (0] + o fodrfodr'rg(r) K(r,r') Eg(r') =
iwR

- g(R) BZ(R) (17)

Thus the problem now consists in determining Ee such that the equality
(17) holds for all g in G, where G is some test space of Cl functions
defined in {O0,R} such that g(0) = 0. Apart from some mathematical
subtleties this problem is equivalent to our initial differential
problem (4). This weak form (17) is the starting point of our compu-

tational scheme.

4, Numerical Discretization

For convenience we normalize r to 1, by replacing R = 1 into eq. (17).

Since all other quantities are dimensionless they remain unchanged.



Let the interval {0,1} be subdivided into N intervals

[(j-1)h, jh] i

[
—
-

e osN (18)

where h = YN (19)

The principle of the method is to replace the infinite dimensional
space G by a finite dimensional subspace SN of functions which are
linear over each intervals {(j-1)h, jh}, continuous at the modes

r = jh, and zero at r = 0. Thus SN can be defined by

SN = Span [WT, cees WN] (20)

where W? equals one at the particular mode r = jh and vanishes at the

others (fig. 1).

The trial function g(r) and the approximate function Ee are supposed

to lie in SN, i.e.

g(r) = Wg(r) m=1l, ..., N (21)
N N

Eg(r) = ] ey ¥ (r) (22)
n=1

. P . , N .
Note that by the particular definition of the roof-function Wn, e, 1s

the value of Ee at the mode r = nh.



The discretized form of eq. (17) then reads

N .
) (App + iBpy) ey = ok B, (1) 8py . (23)
n=1
where
1 114 N d N
App = Io T [E; rqu [E; rwn} dr (24)
Bim = fi fi dr'drrk(r',r) Wg(r') Wz(r) (25)

and amn is the Kronecker symbol. Note that the matrices Amn’ B . are
symmetric. Only Amn can be sparse. We remark also that the right hand
side of eq. (23) is a column vector with all elements but the last being
zero. Thus the solution e, is given by the last column of the inverse
of the matrix (A1m1+ ian).

The B, field is deduced from eq. (3) by using the finite difference

approximation, i.e.

e - e:_ e-_
{%.g% rE ] == 1= * ! %_1 3 =1, ...,N (26)
r=(j-1)h h 2h(i—§)
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5. Results

The integral in eq. (24) can be easily calculated. But the double
integral in eq. (25) must be computed by some numerical method. We
have chosen the nine-points formulaS. The computation of the matrix B,
which is full, takes a rather long machine time, even if the symmetry
is used. The maximum number of intervals N we have taken is 40 when

running with the machine CDC Cyber 70.

Fig. 2 shows a convergence study of the solution Bz for two values of ).
The wvalue of the B, amplitude at the axis is represented as a function
of 1/N. The straight line corresponds to linear convergence. We note
that there is already linear convergence for N ¥ 15. This can be ex~
pected since the Eg field is approximated by piecewise linear function
in the weak variational form and the B, field is calculated by numerical
differentiation of the Eq field, using the finite difference expression
(26). In principle it is possible to extrapolate the computed values

of B, to N = ». The global convergence of B  is demonstrated if Fig. 3

and Fig. 4 where Bz varies by two orders of magnitude.

The approach to the Cold Plasma Approximation solution is shown in Fig. 5
where the amplitude of the Bz field versus the radius is drawn for in-
creasing values of s. We have noted that for s > 20 the Cold Plasma
Approximation and our model give practically the same result. We note

also the approach is not monotonic.



- 11 =

In Fig. 6 some numerical results are drawn for different values of s.
The comparison with experimental results taken in6 is shown in

Fig. 7. We note that our simplified model (the density profile of
the electrons and the current of the discharge are ignored in our

calculations) agree quite well with the experiments.

6. Conclusion

The results of this numerical calculation show that the finite element
method is suitable to solve the anomalous skin effect equations. The
model presented was convenient for the integration of Vlasov equation
but with the finite element technique the direct iptegration along the

orbits should present no difficulty in a more general case.

The comparison between experimental and computed results show discrepancies
in some cases which are due to the model. The inclusion of a weak mag-—
netic field, which is suspected to be the cause of the small discrepancy

is feasible with the two steps technique described here.
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Figure Captions

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Piecewise linear basis function

Convergence study. The amplitude of the Bz field at
the axis is plotted versus 1/N for two values of A.

The straight line corresponds to linear convergence.

Amplitude of B, versus the radius for different values of
the number of intervals N, The broken line is calculated

by using the Cold Plasma Approximation.

Amplitude of Bz at the axis (r=0) as a function of A for

different values of the number of intervals N.

Amplitude of B, versus the radius for increasing values of s.
The curve for s =« is calculated from the Cold Plasma

Approximation.
Amplitude of Bz versus the radius for different values of s.
Comparison with the experimental results represented by the

dots. The broken line is calculated from the Cold Plasma

Approximation.



