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Abstract

Saturation of the current-driven ion-acoustic instability in a weakly-
ionized plasma is investigated within the context of a quasilinear model
that includes the effects of collisions. The turbulent wave energy is
calculated under the assumption that the waves are excited within a cone
of a small angle. The results obtained compare favorably with the recent

. . ./
experimental observations of Ilic.



I. Introduction

In plasma physics, the current-driven ion-acoustic instability is one

of the instabilities most studied. Experimentally, interest in the
instability has been stimulated by its connection with anomalous resis-
tivity, a useful mechanism for heating plasmas in controlled fusion de-
vices. Different theories of plasma turbulence have been invoked to
describe the saturation mechanism of the instability and to determine
its spectrum. However, as yet there seems to be no satisfactory
agreement between the theoretical results and experimental observationsl.
Apparently, there are two reasons for this situation. On the one hand,
the theoretical models do not take into account real physical conditions
in a particular device, while on the other hand, the results of experi-

mental observations have not been sufficiently conclusive.

Recently, new detailed measurements of the ion-acoustic turbulent spectrum
in a positive column have been reportedz. It was argued that there are
two nonlinear mechanisms which could be responsible for the saturation

of the instability in this experiment. The first is electron trapping
modified by collisionsB, the second is ion resonance broadening4.

An objective of the present paper is to show that the experimental results
obtained by I1i¢ can be interpreted by means of a simple quasilinear
theory modified by collisions. The plan of the paper is now outlined.
Firstly a brief formulation of the theoretical model is given. The re-

sulting equations are then solved analytically, assuming that the system



is in a stationary state. The spectral distribution of the turbulent
oscillations is obtained in a purely one-dimensional case. 1In a pseudo-
three-dimensional case, where the oscillations are excited within a

cone of a small angle, we derive an approximate formula which relates
the total wave energy to relevant physical parameters (Sec. II ). In
order to obtain a more accurate quantitative description of the turbu-
lent system, the basic equations - somewhat generalized — are solved
numerically in Sec. III. Finally, a discussion of the results obtained
and their comparison with the experimental observations of Ili& are pre-

sented in Sec. IV.

II. Theory

1. Basic Equations

The plasma under consideration is assumed to be weakly ionized, uniform
and unmagnetized. The electrons are hot (Te:» Ti) and drift with a
velocity ?d = Vdgé(vd > 0) relative to a cold ion background. The
electron current is sustained by a weak, external dc electric field

+ + 3 . 3 I3
E, = Ey,e, which results in the generation of an ion-acoustic instability

)
in the system. Since the dynamics of charged particle motions are domina-
ted by collisions with neutrals,before the instability is excited the

electron drift has to be several times greater than the ion sound speed

cg [;(Te/mi)%], in order to offset the damping by ion-neutral collisions.



The turbulence model adopted to describe the system consists of the
quasilinear kinetic equations generalized to include the effects of

the collisions between charged particles and neutrals. As will be
verified a posteriori (Sec. III), the modification of the ion distribu—
tion function due to the turbulent oscillations is negligible for the
range of the relevant physical parameters considered. Therefore, the
ion distribution function may be taken as a Maxwellian with a tempera-
ture T,. With this stipulation, the basic equations describing the
problem can be given in the form5’6
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Here f is the electron distribution function, IK is the spectral dis-

tribution of the electric field associated with the oscillations, and e

and m, are the electron charge and mass, respectively; AD is the
2Ti ,15
electron Debye length, m, and‘vi =\ are the ion mass and ther-
i
mal velocity, and Ve and v, are the electron-neutral and ion-neutral

collision

(4)



frequencies, respectively. The last term in Eq. (1) is the simplest
version of the collision term of the Bhatnagar—Gross—Krook7 model,

where fo is a nondrifting Maxwellian with a temperature To. We have
dispensed with the integral part of the collision term since for a

uniform plasma [fdv = ffodv = 1. 1In the equation for the growth-rate (4),
the first term describes the gérenkov excitation of the ion-acoustic
oscillations by the drifting electrons whereas the last two terms represent
the ion Landau damping and the damping due to ion-neutral collisions.

In deriving Eqs. (4) and (5) we have assumed that vd/v < 1, v; /w-« 1,

and v /kvy « 1, where Ve = (2Te/me)2.

2. One-dimensional Model

Since the experimental results cited indicate that the turbulent spectrum
is stationary, and essentially one-dimensional, it is tempting, initially,
to seek one-dimensional stationary solutions to Eqs. (1) - (5). Thus,
assuming that Tp(c) = (2m)2L, 8(k)8(k,) and £(¥,t) = £(W) 8(v,) 8(v,),
where k = kz and v = v, the integration over dk and &3 in Eqs. (2) and
(4) can be carried out explicitly. On integrating Eqs. (1) and (3) over
dv dvy and dkxdky’ respectively, and discarding the terms with time de-—

rivatives the set of Eqs. (1) - (5) is reduced to
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where IV = Ik=w/v and wpi is the ion plasma frequency. In Eq. (6)

we have eliminated the external electric field by means of the relation

eEo/me =‘vdven, anticipating that the contribution of the turbulent

oscillations to the resistivity is negligible.

>, where v.> 0

Let the oscillations be excited within an internal <vL,c L

s
is a lower boundary of the spectrum which will be specified later. Then,

according to Eq. (7) the electron distribution function will be deter-

mined within this internal by the equation Yy = 0. A simple integration

yields
= ﬁ. 4"(4,‘/(’.5) - S
f=fonye e M For | L) )" («r/c>) }

_/,gflz,,y{“f[("“_] uf ) ) VeV, Ce7, (s

where f(vL) is an arbitrary constant. Outside the interval <V 5Cg%s

where I, = 0, the electron distribution function satisfies the equation

na - f-f *

which follows from Eq. (6). The solution to Eq. (9) is easily shown to be
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where f(cs) is an arbitrary constant and & is the probability integralB.

Imposing the requirement that f be continuous at VL and cg the

constants f(wv ) and f(cg) are fixed by Eqs. (10) and (8), respectively.

In order to determine the quantity vy we make use of the condition

that the total number of particles is conserved : [ffdv = 1. Evaluating
the integral by means of Egs. (8), (10) and (11), and taking into account

that v. < ¢g < Vg€ Vo, after some algebra we find that the quantity v

L L

must satisfy the following transcendental equation
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An example of a numerical solution to Eq. (12) is given in Sec. III.

Having found the electron distribution function we can now determine
the spectrum. On substituting f from Eq. (8) into Eq. (6) we obtain
a first order differential equation for Iv'which can easily be solved.
Taking into account the condition that I, =0at v = Vi and neglecting

the terms of the order cs/vd we finally obtain
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where n 1is the charged-particle density and w__ is the electron plasma

pe
frequency. If we discard the terms corresponding to the ion Landau
damping and approximate Ve by v, , formula (13) reduces to that obtained
earlier by Vedenov, Velikhov and Sagdeevs. In order to find the total
electrostatic wave energy density Eq. (13) must be integrated numerically.
An example is given in Sec. III. Concluding this subsection, we can now
show by means of Eqs. (8) and (13) that the contribution of the turbu-

lent oscillations to the resistivity is indeed negligible. On defining

the turbulent collision fequency as

= -f-(fa_vjl :I:vl fijf. dnr 14
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we estimate that
1,
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3. Pseudo-three—-dimensional Model

Let us now consider a situation where the turbulent oscillations are
excited within a cone of a small angle 6 defined by cosf = K'gz/k.

A question arises as to how small the angle 9 would have to be in order
that the one-dimensional model developed in the preceding subsection
would still apply. We put forward the following argument. In the one-
dimensional model the number of electrons which are in resonance with
the oscillations is approximately cS/ve. In the case of a finite angle
we can estimate the number of resonant electrons to be of the order 6.
Hence, we conclude that the one-dimensional model will apply for angles
8 £ cs/ve v (me/mi)%. Consequently, for the spectra with an angular

L
width greater than (me/mi)2 the problem becomes three-dimensional.

In what follows, we confine ourselves to the case where (me/mi)%<<e <« 1.
It is then physically plausible to approximate the electron distribution
function perpendicular to gz by a Maxwellian with temperature To. Owing
to this approximation we can integrate Eq. (1) over dvxdvy to obtain an
equation for the electron disbribution function in v = v,. We find
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The expression for the diffusion coefficientD may be further simplified
if we assume that the turbulent oscillations are uniformly distributed
over an angular internal <0,60>. On performing the integration over d8
in Eq. (17), and introducing the spectral distribution per unit of k by

means of the relation fIEdK/(Zﬂ)3 = glkdk/ﬂ, we obtain

2 [ -4
D=(3) f_%.kkwm& , as)

where the resonance function Rk(v) is given by

’/Q&(’\T)=x1::,‘;z/&v’ /_,(7 A‘Z;:’;:r)z)/ (19)

and T is the incomplete gamma functiong. As 6, > 0 we find that

Rk + § (v-w/k), as one would expect.

The same procedure as that used above can now be applied to Eqs. (3)

and (4). We obtain

d 1y
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where we have neglected the term corresponding to the ion Landau damping.

The reason for this approximation is discussed in Sec. III.
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We are interested in stationary solutions to Eqs. (16) and (20).

It is easy to see, however, that the mathematical structure of the
equations, even after discarding the terms with the time derivative,

is rather formidable. We have been unable to obtain an exact analyti-
cal solution to these equations. Therefore, to obtain at least a notion
of how the total energy of the turbulence scales, with respect to rele-
vant physical parameters, we resort to the following simplified model.
Firstly, we replace the actual resonance function {Eq. (19)} by a model

resonance function defined as

1
_ w=kar]
we 1™ s ) lu-Ael<uie,

,R* (w)= ° (22)
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This function has the same area and approximately the same height, width,
and shape as the actual R function. Secondly, we assume the spectrum

to be sufficiently narrow so that we can put I, = Ioa(k—ko). Here kg,

k
is a characteristic wavenumber of the spectrum which cannot be determined

within our rough model. Its value might be inferred either from the

linear dispersion relation or from experimental observations.

With the assumptions listed above Eq. (16) becomes
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Introducing a new variable x = (v—whﬂlxveeo) Eq. (23) is reduced to a

simple form

d af df
Tx("“'"‘>@_‘f3@-+§o—§=o , Ixi< 4, @
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The general solution to Eq. (24) can be expressed in terms of the Bessel
. 10
functions J,(z) and J,(z), where v = B/o and z = 4(|x|—1)/a . For
our purpose, however, it is sufficient to take a few significant terms
of the series expansion of the Bessel functions since it turns out that
o> 1 for the range of physical parameters considered. Thus, approxi-

mately, we have

C 4+ 4=X 1 0< X< 4 (26)
5: ( d_,_ﬁ)-'-jt"/z,\)jc ) )

f=¢, (14 ”*X)+C(1+x) oA

~4<x <o, @N
}
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where Cl’ 02 and C3 are arbitrary constants. In deriving Eq. (26) we

have discarded the singular complementary function as being unphysical.
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Evidently, for x < -1 the function f is given by Eq. (10). Imposing
the condition that f be continuous at x =-1 we determine the constant

C2 as

C, =- Ry
gtﬂhn%3

. (28)

The constants C, and C3 are fixed by the condition that f and df/dv

must be continuous accross x = 0. Thus, we obtain

2 ﬁ"'i ) 73 R ((3+i)(°l2‘62) . (29

c c B-1 C =-0 Qo2+ B(L+173)

In order to determine the quantity I, we need to calculate the integral

fdf/dka(v)dv. On making use of Eqs. (26) - (29) and (22) we find

7
d§ 4 o
R‘E’R*W) an = Y2 ov-3 (30)
0, Rhyg3
where we have assumed that
1&B &, (31)
We now combine (30) and (21), and put Y = 0. On substituting o from
0

Eq. (25) into the resulting equation we finally obtain the following

approximate expression for the total electrostatic wave energy density

¢’St ( /2 ,2))¢n /]& 2 @ol (Izoxb)z;‘
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where W, . = Io/(872). The condition (31) which has to be satisfied

st

for formula (32) to be valid can now be written explicitly as

%« 3’1(“’;‘)2 £ As .

6, N, Vem 6, (1+ &: k; )3/2 .

1«

Although the principal result of this section - Eq. (32) - was derived
with the aid of a number of simplifications, surprisingly good agreement
is found between the values obtained from this equation and those deter-

mined by numerically integrating Eqs. (16) and (20).

IITI. Numerical Calculations

In order to provide a test of the predictions of the theory developed

in the preceding section we shall now obtain numerical solutions to the
basic equations of our model. Before doing this, however, we shall
introduce a number of modifications into the equations. First of all,

we allow for the quasilinear evolution of the ion distribution function F.
Since the number of ions which can be in resonance with the turbulent
oscillations 1is very small, regardless of whether the spectrum is one-
dimensional or not, we shall ignore the finite angle effects when treating
the ioﬁ distribution function. Thus, instead of Eq. (21) we consider

the following expression for the growth-rate

_ T w 3 QF _Vn (%)
W& 2 Xq{ma, “’" xa()"Lw/Ar,/jk 2
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Next, in the particle dynamics we would like to take into account
Coulomb collisions, which have been tacitly assumed to be negligible

in the foregoing calculations. Inasmuch as the number of resonant
particles is small, it is appropriate to make use of the collision
integrals in Fokker-Planck form. They can be obtained from the linea-
rized Landau collision integrals by integrating over the velocities
perpendicular to Zzll. Consequently, the equation describing the dyna-

mics of the ion distribution function can be written as

I _fe V¥a 1, 2F
2t ’( ‘z‘:w(i_?;/csf) 2w " (F-F)
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where F0 is a Maxwellian with temperature T; , and Vi; is the ion-ion
collision frequency. The electron distribution function is governed

by Eq. (16), with the following collision term added onto the right—-hand
side

3
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where Vee and Vej are the electron-electron and electron-ion collision

frequencies, respectively.
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Equations (16), (20) and (35) together with Eqs. (18), (19), (34) and
(36) form a complete set of equations describing the dynamics of the
turbulent system. This set, supplemented by the initial conditions :
£(£=0) = £,(v-vy), F(t=0) = F,, L (t=0) = I;7 = T k?/{1+(kA)) 2},
is solved numerically using the finite-element method. The description
of the algorithm is not given here since it has been published in detail

elsewherelz.

In order to proceed we first establish which independent parameters
must be specified in the numerical calculations. From the structure of
the equations it is easily seen that we may choose the following dimen-
sionless parameters : 6, vz = vd(melTe)%s U o= me/mi’ n = TelTi,

*
en

*

] .
in

= Uen/lz, g, = Gin/lﬁ, g = (nk%)"l, 8§ = n/(n+N), where Oen 204 0ip
are the effective cross sections for the electron-neutral and ion-neutral
collisions, respectively, and N is the neutral-particle demsity. It
should be pointed out that during the computations we keep the electron

drift velocity fixed rather than the dc electric field, which corres-

ponds to the situation in the experiment.

We have performed two series of computations : one where the Coulomb
collisions were "switched off'", and one where they were included. Let us
examine the former. 1In the first study we considered the one-dimensional

situation, viz. 6, = 0. TFigure 1 shows the spectral distribution at the

- . i * s
saturation time for a typical set of plasma parameters : Yy W 2.10x1071,

*
in

I

W= 1.36x107%, n = 50, opp = 9.50 x10712, o¥ = 1.31x10710, g=14.76x1075,

8§ = 1.31x107°, The broken line represents the analytical solution given
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by Eq. (13) with v, = 2,16 A which was determined numerically from
Eq. (12). One can see that except for the largest values of kkD the
analytical spectrum agrees with that obtained from the computations.
A better agreement is found if one compares quantities which are more

relevant, viz. the total electrostatic wave energy density, the average

wavenumber and the width of the spectrum. They are defined as

1
W =zwl , I=|Lak,
(37)

1
kT, @=L fuiig g

/nT

From the computations we obtain welst e

2.94x1078, KAy = 9.69x1071,
AkAD = 3.16 x 10” !, whereas the numerical evaluation by means of Eq. (13)

yields W

elst/nTe = 2.92x1078, |

= 9.47x1071, AkA_ = 3.45x10 L.
D D
Last but not least, we should mention that in this study we did not
observe any significant modification of the ion distribution function

due to the turbulent oscillations. Thus, the assumption made in deriv-

ing Eq. (13) is fully justified.

Next, we investigate the effect of a finite angle, keeping the other
parameters fixed. The total electrostatic wave energy density as a
function of the angle 8, is plotted in Fig. 2. The broken line represents
the value of Wo1st determined by means of Eq. (13) whereas the solid line
shows the behaviour of Wgjg¢ according to formula (32) multiplied by a
factor 1/3 to give the best fit {hereafter called the modified formula

(32)}. We observe that except for very small angles the modified formula

(32) describes the behaviour of welst fairly well. Figures 3, 4 and 5
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show the dependence of total electrostatic wave energy density upon the
electron drift velocity, the electron-neutral effective cross section
and the ion neutral effective cross section, respectively, for a fixed
finite angle. Once again the solid lines correspond to the modified
formula (32). The reasonably good agreement between the numerical and
analytical results indicates that the best fit factor is to a good

approximation independent of the plasma parameters.

We now turn our attention to the ion Landau damping. In the computations
with relatively small values of T, it appears that the spectrum is lo-
cated in that portion of k-space where the ion Landau damping is negli-
gible. For larger values of Ti the same is true at the time of satura-
tion. However, in earlier stages of evolution the spectrum extends to
larger wavenumbers, and consequently a part of the wave energy is ab-
sorbed by the ions via Landau damping before saturation is reached.

Thus, the final wave energy obtained from the computations is somewhat
smaller than that predicted by the analytical model which, of course,
does not take the effect last mentioned into account. This dis;repancy

is clearly demonstrated in Fig. 6.

In the last study of this series we have investigated the dependence of
the turbulent wave energy upon the ion mass. An inspection of Eq. (32)
reveals that there should be no dependence. The computations for a

variety of gases have shown a variation in wave energy of less than 303,

for the two extremes of hydrogen and argon.

Let us now turn to the case where Coulomb collisions are included in the
numerical model. Evidently, the degree of ionization & is the essential

parameter which will control the competition between the collisions of
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charged particles with neutrals and the Coulomb collisions. Initially
we assigned the same value to this parameter as in the foregoing
studies, viz. 6§ = 1.31x107°, and simply repeated all the computations
with the Coulomb collision terms "switched on". It turns out that for
such a low degree of ionization the effect of the Coulomb collisions is
negligible except in the case where the electron-neutral effective
cross section is very small. As can be seen from Fig. 7, the Coulomb
collisions become an important factor in determining the wave energy

* -12
when Oan © 10 .

The state of the turbulent systém changes appreciably as we increase

the degree of ionization. As an example, Fig. 8 shows the angular de-
pendence of the wave energy for 6 = 1.31x10 3. We notice that the wave
energy is roughly two orders of magnitude higher than that for

§ = 1.31x107°, Moreover, the variation with angle no longer follows

the parabolic scaling given by Eq. (32). The reason for the energy
increase can easily be understood if one realises that the Coulomb col~
lision term, due to its differential structure, is much more efficient

in restoring the electron distribution function than the BGK term. (We
can estimate that these terms are comparable if \)en/\)ee v (ve/Av)2 > 1,
where Av is the width of the wave-particle interaction region in velocity
space.) Consequently, the wave energy must reach a higher value in order
to achieve a balance between the quasilinear and the collisional modi-
fications of the electron distribution function. The wave energy as a

function of the degree of ionization is plotted in Fig. 9. We observe
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that for & » 10 “ the plot is a linear function of 8. This is the

part corresponding to plasmas which are dominated by Coulomb collisions.

IV. Discussion

Let us now apply the results obtained in the previous sections to the
ion-acoustic turbulence which has been observed in the positive column
of a helium dischargez. In order to calculate the theoretical values
of the turbulent wave energy corresponding to the observations we need
the experimental values of the steady-state parameters of the discharge.
Moreover, we must know the angular width of the observed spectrum.
Following Iliéz, we take : Te =5eV, T; = 0.1eV, the neutral-gas
pressure p in the range 50 to 200 mTorr, the discharge current I in
the range 0.5 to 3A, and the angular width of the spectrum 6, = 5x10 2.
For the calculations, however, we need the values of the electron drift

velocity and the charged-particle density rather than the discharge

current. The values of these quantities for different pressures and

4

.11 . 1
currents were inferred from the earlier works of Ilic 3, and Illééﬂlal. s

and are summarized in tables 1 and 2. Consistent with the temperature
. 15 .
data we take the following values of the electron-neutral and the ion-
16 . . . -
neutral effective cross section, respectively : Oop = 5.6x10 16cmz,

Oin = 7.7x10715¢cm2,
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TARLE 1
I = 3A
p(mTorr) vz 10710h (em™3)
50 0.29 3.4
100 0.21 4.7
150 0.18 5.6
200 0.15 6.4
TABLE 2
p = 100 m Torr
I(a) V; 10~ 10n(em™3)
0.5 0.13 1.3
1 0.15 2.2
2 0.19 3.6




_22..

It is now easy to recognize that the numerical data used in Fig. 1

are typical of the experiment cited. The values of the electrostatic
wave energy corresponding to this data, and to the observed angular
width of the spectrum, are indicated in Figs. 2 - 9 by a circle. As

can be seen in Fig. 2, the wave energy is about two orders of magnitude
higher than that calculated from the one~dimensional model. Thus,

even for such a narrow spectrum as that found in the experiment the
angular width plays a crucial role in determining the saturation state.
On the other hand, the effect of the Coulomb collisions appears to be
negligible for these experimental conditions as can be seen in Figs. 7

and 9.

In order to compare the theoretical results with the experimental obser-
vations we have calculated the total wave energy for different neutral-
gas pressures and discharge currents. The results are shown in Fig. 10.
We see that the wave energy increases with the discharge current, and
decreases with the neutral-gas pressure. If we consult Fig. 8 of Ref. 2
we find that the measured wave energy shows the same tendency. Moreover,
the calculated values of the normalized wave energy compare favorably
with those found in the experiment. They are typically 10 ° to 107%.

As far as the average wavenumber of the spectrum is concerned we find
in all calculations that'EXD‘U 0.73, which is the same value as in the

observations.
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In conclusion, we have shown that the experimental results obtained

. v2 . . . e
by Ilic™ may be satisfactorily interpreted by means of a quasilinear
theory generalized to include the effects of the collisions between
the charged particles and the neutrals. We do not claim that the
other interpretations advanced do not apply. However, ours seems to

be the simplest one.
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Figure Captions

Fig. 1

Fig. 3

Fig. 4

Spectral distribution of the electrostatic wave energy

for 6, = 0. The broken line represents the analytical

. * -
expression (13). The parameters used are : vq = 2.10x10 1
—_ - * -
u=1.36x10"%, n = 50, o’é‘n =9.50x10 12, o;, = 1.31x10 10
g =4.76x10 5, 8§ = 1.31x10 5.

Electrostatic wave energy as a function of the angle 60.

The solid line represents the modified formula (32) with
22__ . .

kOAD = 0.5 and the broken line the value of welst obtained
from Eq. (13). The parameters used are the same as in Fig. 1.

The circle indicates the value corresponding to the experiment

(see Sec. IV).

Electrostatic wave energy as a function of the electron drift
velocity for 6, = 0.05. The other parameters used are the

same as in Fig. 1. The solid line is the analytical expression.

Electrostatic wave energy versus the electron-neutral
effective cross section for 90 = 0.05. The other parameters
used are the same as in Fig. 1. The solid line is the analy-

tical expression.
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Fig. 5 Electrostatic wave energy versus the ion-neutral effec-
tive cross section for 90 = 0.05. The other parameters
used are the same as in Fig. 1. The solid line is the

analytical expression.

Fig. 6 Electrostatic wave energy as a function of the ion tempera-
ture for 90 = 0.05. The other parameters used are the same

as in Fig. 1. The solid line is the analytical expression.

Fig. 7 Electrostatic wave energy versus the electron-neutral effec—
tive cross section in the case where the Coulomb collisions
are taken into account (the triangles). The dots refer to
the case without the Coulomb collisions. 60 = 0.05, and

the other parameters used are the same as in Fig. 1.

Fig. 8 Electrostatic wave energy as a function of the angle 90
(with Coulomb collisions included). The triangles and the
dots correspond to § = 1.31x1073 and § = 1.31x1075, respec—
tively. 60 = 0.05, and the other parameters used are the

same as in Fig. 1.



Fig. 9

Fig.
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Electrostatic wave energy as a function of the degree
of ionization (with Coulomb collisions included).

8o = 0.05, and the other parameters used are the same as

in Fig. 1.

Total wave energy versus the neutral-gas pressure and the

discharge current.
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