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Abstract

It is shown that ion acoustic waves can be trapped in a density
cavity with sufficiently steep walls. Standing waves can be excited
during the sudden creation of such a cavity in resonance absorption
and could greatly affect the latter process through the enhancement

of stimulated Brillouin scattering.
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We consider the following physical process : Intense electromagnetic
radiation with p-polarization is incident at an angle 6 to the density
gradient of an inhomogeneous plasma. The Airy-function swelling1 of
the wave intensity causes it to peak near the reflection layer (where
wp = w, cosf), and the ponderomotive force creates a density cavity
there. Associated with the density minimum is an electrostatic poten-—
tial, which accelerates ions toward the center of the well. If the
bottom of the well is sufficiently flat and the sides sufficiently
steep, the trapped ions are two-stream unstable, and the resulting

ion waves are trapped within the well. Although the self-consistent
solution of this problem including the process of cavity formation is

too complex for analytic treatment, the physical ideas involved can

be made clear by discussing the various pieces of the whole problem.

1. Ton Waves in a Density Gradient

We consider a one-dimensional plasma without magnetic field. Tt will
~be sufficiently accurate to neglect finite ion temperature and devia-
tion from quasineutrality; these approximations are well justified
in microwave simulation experiments, where Te/Ti = 10 and kZA% € 0.01.
Taking E = - V¢ and neglecting electron inertia, we have for an iso-

thermal electron fluid at temperature T

O=enVfp -KTUn « F | (1)



where FNL is the ponderomotive force of the incident light wave

T
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o being the ponderomotive potential {E2)/87 and n. the critical
density mwg/4ﬁe2. For the present, we neglect the ambipolar field E,

and assume an equilibrium in which the pressure gradient is balanced

by the ponderomotive force in a caviton

-
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where the prime stands for 9§/9x.

In first order, we denote perturbations by letters without subscript;

for the electron fluid we thus have

! ! w !
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the basic assumption being that QNL is not perturbed

Eliminating it
by Eq. (3), we obtain
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Defining YV E N[ ny(x) (6)
we have
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The ion equation of motion is

ML +vov) =-evd,

R4 - - (8)
which is trivially satisfied in zero order, since v, = ¢é = 0. 1In
first order, for perturbations of the form exp(-iwt), we have
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The ion equation of continuity gives, in first order,
'
m + gV +vn =20
¥ ) (10)
[
! n
“Ww— +V +v_2 =0, (11)
o ",

Here n/nO can be replaced by v, since n; =m is assumed. Substituting

for v from Eq. (9), we have
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where
t s
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The middle term in Eq. (12) describes convective charge transfer in a

density gradient and can cause the ion wave to be localized if the gradient

is large enough.



2. Trapping of Ion Waves

With the notations

- !
%(*) - no /Y\o (14)
and
K, 2 wlcs,
(15)
Eq. (12) can be written
" ! 2 -
V -\-%(X)\) +k°v-o. (16)

To put this into WKB form, let
)
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This leads straightforwardly to

\3" + Q(\L) ) = 0’ (18)

where

Q) = k: - "ig"Z‘C%L. (19)

The turning points of this WKB problem are given by Q(x) = 0; and if Q
is positive between the turning points, one has oscillations there and
exponential decay outside. The frequency w has discrete values given

by the quantization condition

X
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Consider a parabolic density well of the form

V\o:hoo(l‘i‘-’-’z:;). (21)
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We normalize to x,, defining

- X - WX
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(5) = w (§8) _ 2%
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we have
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where the prime now stands for 3/3%. From Eq. (19), we find for this

case

Qs) = k* - (1+s*)2, (25)

This shows that Q is smaller at £ = O than at the turning points where
Q =0. Thus, Q is negative between the turning points, and ion waves

are evanescent there while they propagate outside.

Localization is not obtained even if we assume a density hill of the form

L
“:V‘oo<"‘§"1_ . (26)
0

It is easily found that in this case

Q(s) = k¥ « (1-9)"2

(27)
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which is also negative at the center. The trouble with a parabolic
profile is that, although g(x) and né(x) vanish at x = 0, the gradient

in g, namely,
(5) = 2 1-$*
- 1
d (1e§9)*
does not vanish at £ = 0. To localize ion waves, one must have a
caviton with a flatter bottom, and hence steeper walls. It can be shown

that cubic or higher order profiles can lead to Q > 0 inside and Q < 0

outside the well.

It should be noted that ion waves could also be trapped on one wall of
a caviton, where g # 0, as long as g' = 0 there. For instance, a profile

of the form

g:aﬁ_,"—r\o) M, = Ng, Exp (b3 ""‘gaf:’)

has a Q(£) which peaks at £ = 0. However, it is difficult to imagine how
standing waves could arise naturally there, and this case will not be

discussed further.

3. Solution for a Particular Profile

For a density well symmetric about x = 0 which can localize ion waves,

it is clear that we need

%(o\=0) 9'(0)=O, %(-x)‘-'--g(%), (28)



where g(x) = nj/n,. The simplest function satisfying these conditions

is
3

g = 4 (x[%,)® = 4%°. (29)

This implies a density profile of the form
) x*/xt ¢t

v‘o"' “oo e - hoo e . (30)

Eq. (16) becomes
!
v'+ 483y + kv =0, (31)

With the transformation

Y = vexp (£%4)

(32)
we obtain
94"+ (k-3 -4a5b) g =0, 5
where
Q(s) = K- b1~ 45 .

The functions ny(g) and g(g) are shown on Fig. 1l; the density well has

very steep sides. The shape of ¢ __ required to produce this profile is

NL
given by Eq. (3)

&NL z - Snc\(T 3(%]).3,

or, from Eq. (29),

Et
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The value of the constant C is immaterial; the shape of this curve
is also shown in Fig. 1. It is seen that the curve is flatter-topped
than an Airy function; however, in the dynamic process of caviton
formation the steady state implied by Eq. (3) does not necessarily

obtain.

The turning points of Eq. (33) are easily found.

Let
23X, (36)

Then Q = 0 implies

423+é2-—\<z=0.

(37)
This is a cubic of the form
23+Q2+b=0) (38)
with
4z b=-k*4, (39)
Since the discriminant
D';‘-_-?-\-%_;:-\—Z;ﬂ-'\'g‘?O, (40)

there is only one real root, given by

z=(-Lib+ D"")q3 +(-%b - D‘h)"g_ (41)
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Thus the turning points are given by

§ =t [Y V) P p e -Vemrrye

1l

with £ x/x0 and k = wxo/cs. The half-width Ej is a function of k
(or w) and is plotted as a function of k on the left half of Fig. 1.

The shape of Q(£) also depends on k and is shown in Fig. 1; more pre-

X

cisely, we have shown Q*, which is the local wavenumber klocal’ as a

function of £ for k = 3, 5, 10, and 15. The possible frequencies are

fixed by
5 L 2 AN \
S (k*-£37-45°)" 45 = (m+})m (43)
Sl

where k = wxo/cS = koxo. Thus, for a given mode number n, k is fixed,

so that Ao = Zﬂcs/w scales with the caviton width X

The wave amplitude can be found by integrating Eq. (33) for y. However,

the density perturbation is

Ny =V =Y exp (-55%) , (44)

according to Eq. (32). Thus the envelope of the wave amplitude is peaked
at the center of the well. The wavelength, however, is constant through-
out most of the well, becoming longer near the walls, as shown by the

plots of klocal vs. £ in Fig. 1.
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4. Excitation of Standing Waves

We now consider the zero-order electric field. When the caviton is

first formed, electrons are ejected by the ponderomotive force, and

a potential hill is created to eject the ions. Because of Debye
shielding, a potential difference of about 4KT/e will exist between

the center of the caviton and its sides, and any excess potential will
occur in a sheath at the caviton walls. 1In a collisionless cold-ion
plasma, this ambipolar potential gives rise to an ion velocity distri-
bution that is very peaked near the sheathsz. In fact, the ion distri-
bution arriving at a sheath edge is already marginally ion-acoustic
unstablez. After the requisite number of ions has been ejected, a
quasi-steady state is reached in which the outward ponderomotive pressure
balances the inward plasma pressure, and the ambipolar potential vanishes
(to order Ti/Te); this is the state assumed in the previous sections.

If now the pump field is reduced, the potential must reverse so that

the resulting electric field helps to balance the inward plasma pressure,
according to Eq. (1). We now have a potential well. In particular,

if the pump field is switched off suddenly (relative to an ion transit
time), Eq. (1) predicts that the potential will be simply related to

the density profile by the Boltzmann relation

Mo = Nge Xp (ed,IKkT), (44)

For a square density profile such as that shown in Fig. 1, this means

that the potential distribution will be nearly sheath-like. The
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previously accelerated ions are trapped and oscillate in the poten-
tial well. In addition, as the caviton fills in, new ions fall into
the well suffering the full potential drop e¢max' Thus, the ion
distribution near the caviton walls consists of two nearly monoener-
getic streams with velocities ty, = i(2e¢maX/M)%, plus a number of
slower ions which were near the caviton center at the time the ambi-
polar potential was reversed and therefore did not receive the full
acceleration. The ion distribution near the caviton center is nearly

the same as that at the sheath edge if the cavity bottom is nearly

flat (see Fig. 1).

We approximate this situation by a four-component plasma consisting
of Maxwellian electrons with density n ., cold ions with density Dogs
and two cold ion streams with densities n, = nozand velocities tv .

The variation of v, with x and the effect of né on the ion motion are
neglected in the square-well approximation. The effect of the bounda-

ries is neglected for the moment, and we look for perturbations of

the form exp i(kx-wt).

The first-order ion equations of motion, from Eq. (8), are

(-kug)v, = (ekiM) §

(w+ kv v, = (ek]M) ¢ (43)

W V3

(ekiM) ¢
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while the electrons satisfy

e /KTe = Nelngg = (M, +n, +1m,) Mee (46)

The ion continuity equations give

(w- \t.\lc,)\r\| = kno‘v‘

(m"’ kVo)V\z = khazvz (47)
why = kngvy
Defining 8 = hOS’“oe , (48)

so that - -\ (49)
Noi™ Moz = ‘5_(_l-g)\¢\°e ,
we may substitute Eqs. (45) and (46) into (47) to obtain the set
N 2
(m-kvo)ly\‘-r‘i(l—s)kcs (V\‘+V\z_+h3) =0
\ S -
(wrkvy Y n,- 5 (D) K (n+wn4my) =0 (50)

.1 -

w* ny - § ket (n,+n,4n3)= 0,

The condition that the determinant of the coefficients vanish is
Lt

(o-kve) -50-0)idt L (-8t -l (1-F)k%d

- lz(l-g Yetet (wkvp)' - %U"X)U’Cst =5 (1=8)ktt =0,

51
-0 ke ~Skhe - § kgt 1)



_14_

Substracting the third column from the first and second columns,

we obtain

(vo-kvp)? 0 -4 (1-8) et
0 (w+lvy)? 50Dt || = o . (52)
- Q’L _M‘L wl - K\I}C_‘?'

Expansion in minors of the bottom row yields

—u' (wkve)” $(1-F)ked - W(w-kve)® 3 (1-F) e, +

1 (53)
+ (F -Ske) (W -y ) = 0.
Defining
W= wh
L A
K= \Lc.s (54)
= L.,
V= kvt

we obtain the cubic equation
W* = (K-2v)W" + [V-K (-3)]vwW - SV = 0, (55)

To see the nature of the dispersion relation, assume that the population

of non-oscillating ions is small, so that § « 1 and can be treated as

a perturbation. To zero-order in 8, we have

W,™ = (K+2V)W, + V(V-K) = 0, (56)
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aw, = K+ 2V + [ (keaV)t - 4V (V-K)) T (s7)

Unstable solutions with zero frequency exist if we take the minus sign

and the discriminant is sufficiently large. This requires

(K+2v)? ¢ (K+2v)* - 4V (V-K)

0 < 4av(K-V)

LOVEK, e vicel, (58)

Thus there is instability if v, is sufficiently small. This illogical
conclusion is typical of fluid two-stream instabilities and is, as
usual, reversed by kinetic effects, which will require v, to be larger
than the ion thermal velocity. Note that finite-frequency modes are

not unstable in this case because the discriminant is positive definite.

If we now rewrite Eq. (55) with W, in the small term containing §, we

obtain
- N 2 _ _ \Y 2
2W = Kr2v 2 {(K+V)* -4y iy K*SK(?"W)“- (59)
Now the condition for purely growing modes is

V
V < Ki\-$(3+@,] ‘ (60)

where we have taken Wo to be negative. We see that the range of insta-

bility (and the growth rate) have been decreased. This is simply because
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the ion streams must move more plasma than just themselves. 1In
addition, it is seen from Eq. (59) that finite-frequency modes can
be excited if § is sufficiently large, since the § term is negative

and can make the discriminant negative (and W = w2 complex).

This is an extremely simplified treatment which neglects two types
of damping : Landau damping and density-gradient damping. Landau
damping cannot be treated without a detailed knowledge of the ion
distribution function, but the trapped density-gradient modes can,
in principle, be found by the technique of Sec. 3. We may neglect
the variation of vV, across the well, but we must retain the density

gradient and the x-derivative of the perturbed quantities.

The first-order ion equations of motion and continuity for the three

species are
—wv, « vy, = —(e[M) ¢!
—twv, = VoV, = —(elM) ¢! (61)

- \‘w\l3 = "(.eIM)¢'

. ! ' !
LR AT A AT AR *Vm, = 0
]

i ' '
- luV\-‘* V‘OZV‘L ""Vz“o; ‘Vo“z < O (62)

. , ,
‘W3 T MeyVs * Vivey To
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The variable ¢' can be eliminated by the electron Boltzmann relation
{Eq. (46)}, and nél and néz can probably be neglected by the sharp-
sheath approximation, since vé has been neglected anyway. Nonetheless,

we are left with six simultaneous differential equations in six un-

knowns, which is too complicated a system to solve analytically.

5. Discussion

Although the thresholds can only be obtained by computation, it is

clear from the above that trapped ion modes can exist in a sufficiently
square density well and can be excited by a sufficiently large and
monoenergetic population of trapped ions. The most unstable wavelength
will be determined by v, and will lie between two extremes : short A's
near ZWXD will be Landau damped, and long A's near 21Txo will be damped
by the density gradient. In between, a number of discrete wavelengths
(and corresponding frequencies) can be simultaneously unstable. Note
that Landau damping is likely to be smaller than in a Maxwellian plasma.
Ions with energies larger than the well depth e¢max are not trapped, and
if e¢max is comparable to KT, there is an absence of trapped ions faster
then the ion wave. As for transit ions that pass through the well,
there is also a dearth of these that have the proper velocity, since
they must have near-zero velocity outside the well, and therefore have

near—-zero flux.
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The mechanism described here yields features resembling those of

ion oscillations observed in microwave experiments3: the localization
of coherent standing waves in a caviton, the tendency for k to be
less than w/cs, the tendency for the mode number n to be large, the
existence of steep cavity walls, the tendency for waves to be excited
after a sharp turn-off of the pump, and the simultaneous occurrence

of discrete frequency bands at low pump power.

If this effect really occurs, it can have important consequences for
resonance absorption in laser fusion. It is currently thought that

at high powers profile steepening would suppress stimulated Brillouin
scattering (SBS). However, if ion waves can be trapped in a cavity dug
at the reflection layer, the SBS becomes an absolute instability instead
of a convective one and is likely to prevent laser energy from reaching
the resonance layer, where it can be linearly converted to plasma

waves. Of course, the direct conversion to ion energy at the reflection
layer is of some benefit, but the reflection coefficient should become

very large once the ion waves reach a reasonable amplitude.
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