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ABSTRACT

Three dimensional stationary states are obtained in which the radiation
pressure of plasmons maintains arbitrary density variations of the
plasma. The distribution of the plasmons in phase space is a universal

function of their emergy.

Kingsep et al1 have proposed a one dimensional model of turbulence in
which the turbulent state is built up from a random set of solitons.
Two and three dimensional envelope solitons have been described by
Kaw et a12. In order to avoid the collapse of their solitons they use

the nonlinear susceptibility of the form3
2
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The fact that these solitons contain perfectly coherent oscillations
probably make them unsuitable for the description of a turbulent state.

4 5 . . . .
Kaw et al and Hasegawa™ have given one dimensional envelope solutions
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for random phase plasmons. Here we present equilibria of both trapped and

untrapped random plasma oscillations in three dimensions.

The plasmon distribution function N(k,r) for stationary states is governed

by the equation6
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In this equation W is given by

(4,r) = a{iﬂ:)w‘ 3\434’1
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where7 w =en(x)/m, v, =T /m . When the plasma is in equilibrium
pe - e Te e e

with the radiation pressure of the plasmons its density is

n=n e/xp[— /(T + T,)] (2)

with the potential
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V is the volume of the cube with periodic boundary conditions. The con-
nection between N and E is found from the equation for the energy density
Y
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where & 1is the dielectric function. Expressing lEkl in terms of Nk and

replacing the sum by an integral one obtains
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Here we have introduced the frequency Cu% = (ezno/me)2 for the purpose

of normalizing our variables.

Any function of 0 (k,r) is a solution of (1) so that we may put
1 2
N= F(w'/e;)

The problem of determining F is similar, but not identical to the BGK

. 4. . . . . 8 oo . .
problem of finding the trapped particle distribution . Here it is neither
necessary nor useful to distinguish trapped and untrapped plasmons.

Combining Eqs.(2) and (3) one finds
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Putting ﬁ)ze/ng = X and changing the variable of integration this equa-

tion can be brought into the form
-1 % vzci (4)
-Xlgx = @/n) |F(g)y™(y-x)"dy
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where
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and the Debye length 50 is referred to the demsity n,

3:‘= 'I:/e}no

It is important to realize that the right hand side of Eq.(3) is a
positive function of x whereas the left hand side is negative for x P 1,

Thus Eq.(4) has no solution as it stands. Therefore we must replace the



left hand side of (4) by
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where

d = W\ih[“(!)/hal

Thus o(no is the minimum density that will be encountered. At the same
time we must restrict the argument of the solution to the range f{€ x € 1.

Since the integrand in (4) is positive or zero it follows at once that

F(%) =0 qa>, (5)

This is simply reflects the fact that, according to Eq.(2), n(r) £ n,
because d’ # 0.

For y € 1 the function F is obtained by the Abel9 inversion formula

\
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At y =0 and y = 1 this function has the integrable singularities

Fiy)=-T'A

Fly) = TAQ-Y) i
F(y) = ~TAlyy ®

Apart from the factor A, the function F(y) is a universal function,valid



for trapped and untrapped plasmons. This is a very different situation

from the one encountered in the BGK problem.

The plasmon distribution function

N(ﬁ)r) = F(h(z)/m + 33331) (9)

represents a spatial variations of the plasma density held in equilibrium
by the radiation pressure of the Langmuir oscillations. Any density distri-

bution n(r) can be assumed provided n(r) € n.. Obviously n(r) must not be

0’

allowed to become very much less than n_. lest sok become large enough

0
for Landau damping. Therefore Eq.(7) is a reasonable approximation to F

for physically realizable cases.

If n < n
X

the plasmons with
ma
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are untrapped; nevertheless they are distributed according to Eq.(9),

with F given by Eqs.(5) and (6).

The question immediately arises as to why Kaw et a12 have not found this
universal distribution. The essential difference between their treatment
and ours is that they include charge separation of ions and electrons
which leads to an integro-differential equation, analogous to BGK rather
then our Abel equation. It is the differential term that introduces the
additional liberty. However for stationary states, this term is negligible
since the density variations must necessarily be of very much larger

scale then the Debye length. It can only become important for perturbations

moving very close to the speed of sound.

It is interesting to calculate the number of plasmons \7(_1:), irrespective
of k



v(r) = 4% |\ N82d4

For shallow densities variations using again Eq.(7), one obtains the

approximate result
Vo) = @) (T+T;) (n,- h(!))/?ﬁ,(oo

which is a pressure balance equation. It tells us that in this equilibrium

the average plasmon exerts a pressure of ﬁwo/(Zﬂ):; rather than T as

for a particle.

The spatially averaged spectrum

S(g) = SN dr

cannot be evaluated unless n(r) is given. It is, however, instructive to
calculate S(k) for density well, or "bubble", of the shape
Q
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is the radius and n,= &;nois the lowest density reached in its center.
Using again Eq.(7) for F one obtains
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where

7: [3' (\- |n,lm)]vz < 3-‘/’“

It is pleasing to note that the spectrum is cut off below the Debye wave
number, inspite of the fact that Landau damping is not contained in the
model. The form of the spectrum and the cut off are independent of the

radius of the bubble.

It is remarkable that the equilibrium states presented here result from

a universal plasmon distribution function but admit of arbitrary density
variation. The simplicity of this result is due to the neglect of wave-
particle and wave-wave interaction which will have to be taken into ac-
count in future extensions of this work. The ion acoustic dynamics should
also be included in order to treat states varying with time and to examine
the stability of the equilibria. One of the principal aims will be the

description of a turbulent state.
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